

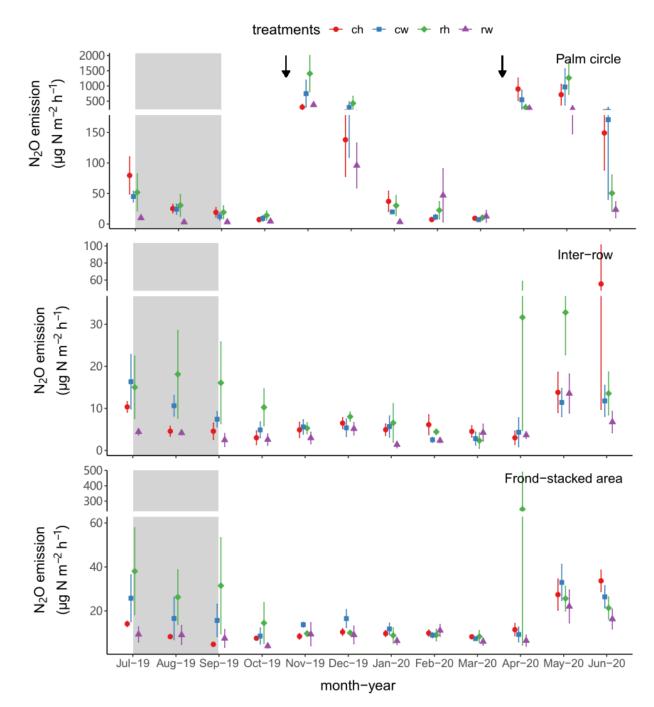
Supplement of

Large contribution of soil N_2O emission to the global warming potential of a large-scale oil palm plantation despite changing from conventional to reduced management practices

Guantao Chen et al.

Correspondence to: Guantao Chen (gchen1@gwdg.de)

The copyright of individual parts of the supplement might differ from the article licence.

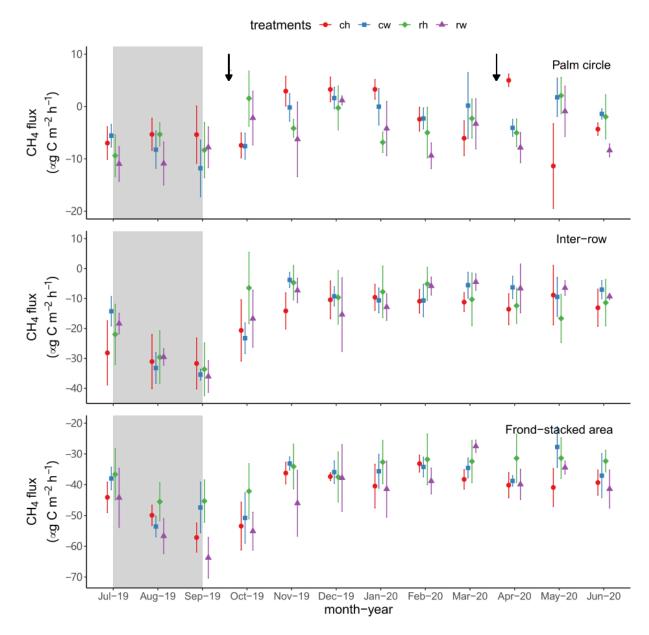


Fig. S1 Soil CO₂ emissions (mean \pm SE, n = 4 plots) from different fertilization and weeding treatments in an ≥ 18 year old, large-scale oil palm plantation, Jambi, Indonesia, measured monthly from July 2019 to June 2020. Gray shadings mark the dry season (precipitation ≤ 80 mm month⁻¹) and black arrows indicate fertilizer applications on the palm circle. Note the different y-axis ranges for the three management zones. ch: conventional fertilization – herbicide weeding, cw: conventional fertilization – mechanical weeding, rh: reduced fertilization – herbicide weeding, rw: reduced fertilization – mechanical weeding

28

Fig. S2 Soil N₂O emissions (mean \pm SE, n = 4 plots) from different fertilization and weeding treatments in an ≥ 18 year old, large-scale oil palm plantation, Jambi, Indonesia, measured monthly from July 2019 to June 2020. Gray shadings mark the dry season (precipitation ≤ 80 mm month⁻¹) and black arrows indicate fertilizer applications on the palm circle. Note the different y-axis ranges for the three management zones. ch: conventional fertilization – herbicide weeding, cw: conventional fertilization – mechanical weeding, rh: reduced fertilization – herbicide weeding, rw: reduced fertilization – mechanical weeding

35

Fig. S3 Soil CH₄ fluxes (mean \pm SE, n = 4 plots) from different fertilization and weeding treatments in an ≥ 18 -year old, large-scale oil palm plantation, Jambi, Indonesia, measured monthly from July 2019 to June 2020. Gray shadings mark the dry season (precipitation ≤ 80 mm month⁻¹) and black arrows indicate fertilizer applications on the palm circle. Note the different y-axis ranges for the three management zones. ch: conventional fertilization – herbicide weeding, cw: conventional fertilization – mechanical weeding, rh: reduced fertilization – herbicide weeding, rw: reduced fertilization – mechanical weeding

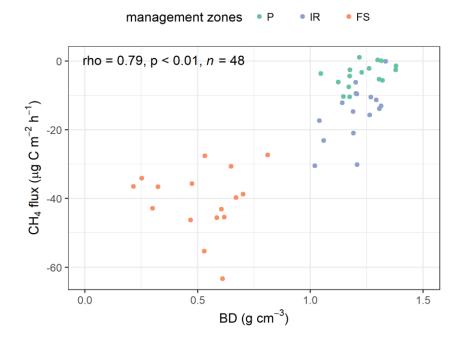
160 rho = 0.51, p < 0.01, n = 48 • . $\rm CO_2$ emission (mg C $\rm m^{-2}~h^{-1})$ 120 . 80 • 40 . 10^{3.5} 10² 10^{2.5} 10³ MBC (mg C kg⁻¹)

• P

IR

• FS

management zones



43 Fig. S4 Spearman rank correlation between soil CO₂ emissions and microbial biomass carbon (MBC). Each data

44 point for soil CO₂ emissions was the average of 12-monthly measurements and MBC was measured once in 2018, as

45 reported by Formaglio et al. (2021). P – palm circle, IR – inter-row, FS – frond-stacked area

46

48 Fig. S5 Spearman rank correlation between soil CH₄ fluxes and soil bulk density (BD). Each data point for soil CH₄

49 fluxes was the average of 12-monthly measurements and BD was measured once in 2018 (Formaglio et al. 2021). P –

50 palm circle, IR – inter-row, FS – frond-stacked area

- 51 **Table S1** Soil biochemical and physical characteristics (means \pm SE, n = 16 plots) in 0–50 cm depth determined in 2018 and soil texture in the 50–150 cm depth determined
- 52 in 2021, reported for each management zone in an \geq 18-year old, large-scale oil palm plantation, Jambi, Indonesia

Characteristics	Palm circle	Inter-row	Frond-stacked area	
Soil organic C (kg C m ⁻²)	6.2 ± 0.6 b	$6.4\pm0.2~b$	9.1 ± 0.8 a	
Total N (g N m ⁻²)	$402 \pm 31 \text{ b}$	$426 \pm 15 \text{ ab}$	571±39 a	
ECEC (mmol _{charge} kg ⁻¹)	35 ± 2 a	$18 \pm 1 \text{ b}$	28 ± 2 a	
pH (1:4 soil-to-H ₂ O)	5.05 ± 0.08 a	$4.81\pm0.05~b$	$5.00 \pm 0.08 \text{ ab}$	
Bulk density (g cm ⁻³)	$1.37 \pm 0.01 \ a$	$1.36 \pm 0.01 \ a$	$0.89\pm0.01~\text{b}$	
Clay (%)	23.30 ± 1.31 a	23.60 ± 1.00 a	25.47 ± 1.37 a	
Silt (%)	7.80 ± 1.19 a	7.73 ± 1.23 a	6.47 ± 1.21 a	
Sand (%)	68.90 ± 1.52 a	68.67 ± 1.35 a	68.07 ± 1.97 a	

53 ECEC: effective cation exchange capacity. For each parameter, different letters indicate significant differences among management zones (one-way ANOVA with Tukey

54 HSD at $P \le 0.05$). Except for soil texture, soil characteristics were reported by Formaglio et al. (2020)

Table S2 Cumulative fruit yield from 2017–2020 (means \pm SE, n = 4 plots) in different fertilization and weeding treatments in an \geq 18-year old, large-scale oil palm

56 plantation, Jambi, Indonesia

Treatments		Cumulative yield (Mg ha ⁻¹)				
	2017	2018	2019	2020		
ch	26.64 ± 1.91	57.55 ± 2.74	83.41 ± 3.63	114.60 ± 4.26		
CW	31.24 ± 1.12	66.51 ± 1.57	96.75 ± 3.55	130.37 ± 4.45		
rh	28.18 ± 2.35	56.31 ± 4.86	86.59 ± 5.21	116.01 ± 6.20		
rw	29.38 ± 4.69	60.62 ± 5.35	90.94 ± 5.25	118.50 ± 5.92		

57 There are no significant differences among treatments for each column (2^2 factorial ANOVA; fertilization: P = 0.35 - 0.96; weeding control: P = 0.07 - 0.32; interaction: P = 0.07

58 0.23–0.57). ch: conventional fertilization – herbicide weeding, cw: conventional fertilization – mechanical weeding, rh: reduced fertilization – herbicide weeding, rw:

reduced fertilization – mechanical weeding. Fruit yield was reported by Iddris et al. (2023)

60 References

- 61 Formaglio, G., Veldkamp, E., Duan, X., Tjoa, A., and Corre, M. D.: Herbicide weed control increases nutrient
- 62 leaching compared to mechanical weeding in a large-scale oil palm plantation, Biogeosciences, 17, 5243–5262,
- 63 https://doi.org/10.5194/bg-17-5243-2020, 2020.
- 64 Formaglio, G., Veldkamp, E., Damris, M., Tjoa, A., and Corre, M. D.: Mulching with pruned fronds promotes the
- 65 internal soil N cycling and soil fertility in a large-scale oil palm plantation, Biogeochemistry, 154, 63–80,
 66 https://doi.org/10.1007/s10533-021-00798-4, 2021.
- 67 Iddris, N. A., Formaglio, G., Paul, C., von Groß, V., Chen, G., Angulo-Rubiano, A., Berkelmann, D., Brambach, F.,
- 68 Darras, K. F. A., Krashevska, V., Potapov, A., Wenzel, A., Irawan, B., Damris, M., Daniel, R., Grass, I., Kreft, H.,
- 69 Scheu, S., Tscharntke, T., Tjoa, A., Veldkamp, E., and Corre, M. D.: Mechanical weeding enhances ecosystem
- 70 multifunctionality and profit in industrial oil palm, Nat Sustain. https://doi.org/10.1038/s41893-023-01076-x, 2023.