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Abstract. Representing soil organic carbon (SOC) dynam-
ics in Earth system models (ESMs) is a key source of un-
certainty in predicting carbon–climate feedbacks. Machine
learning models can help identify dominant environmental
controllers and establish their functional relationships with
SOC stocks. The resulting knowledge can be integrated into
ESMs to reduce uncertainty and improve predictions of SOC
dynamics over space and time. In this study, we used a large
number of SOC field observations (n= 54 000), geospatial
datasets of environmental factors (n= 46), and two machine
learning approaches (namely random forest, RF, and gen-
eralized additive modeling, GAM) to (1) identify dominant
environmental controllers of global and biome-specific SOC
stocks, (2) derive functional relationships between environ-
mental controllers and SOC stocks, and (3) compare the iden-
tified environmental controllers and predictive relationships
with those in models used in Phase 6 of the Coupled Model
Intercomparison Project (CMIP6). Our results showed that
the diurnal temperature, drought index, cation exchange ca-
pacity, and precipitation were important observed environ-
mental predictors of global SOC stocks. While the RF model
identified 14 environmental factors that describe climatic,
vegetation, and edaphic conditions as important predictors of
global SOC stocks (R2

= 0.61, RMSE= 0.46 kg m−2), cur-
rent ESMs oversimplify the relationships between environ-
mental factors and SOC, with precipitation, temperature, and

net primary productivity explaining > 96 % of the variability
in ESM-modeled SOC stocks. Further, our study revealed no-
table disparities among the functional relationships between
environmental factors and SOC stocks simulated by ESMs
compared with observed relationships. To improve SOC rep-
resentations in ESMs, it is imperative to incorporate addi-
tional environmental controls, such as the cation exchange
capacity, and refine the functional relationships to align more
closely with observations.

1 Introduction

Soil is the largest actively cycling carbon pool in terrestrial
ecosystems and stores almost twice the amount of carbon
currently present in the atmosphere (Lal, 2016). Even a small
change in soil carbon stocks can lead to large changes in the
atmospheric CO2 concentration, influencing future climate
change trajectories. Additionally, soils play a crucial role in
capturing atmospheric CO2 through the storage of soil or-
ganic carbon (SOC) (Hinge et al., 2018). Therefore, the se-
questration, protection, and sustainable management of SOC
stocks can be a promising climate mitigation strategy (Lal,
2020). Accurately representing global SOC storage and its
environmental controllers is essential for predicting realistic
SOC changes under different land use and climate change
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scenarios. However, there is currently no consensus among
Earth system models (ESMs) on how to represent the spatial
distributions of global SOC storage and its fate under future
climate change scenarios (Friedlingstein et al., 2014; Arora
et al., 2020).

Multiple environmental variables, including climatic and
topographic factors, land use history, and edaphic proper-
ties, have been identified as possible controllers of SOC stor-
age (Luo et al., 2021; Mishra et al., 2022). However, cur-
rent ESMs use only a limited number of environmental fac-
tors to represent SOC storage and dynamics. A recent study
that compared SOC stocks from multiple ESMs with obser-
vations indicated a large knowledge gap in both ESMs and
observations (Georgiou et al., 2021). Therefore, it is crucial
to compare ESM simulations with global SOC observations
to evaluate model performance and identify key environmen-
tal controllers of global SOC storage.

Benchmarking ESM simulations against observed data is
a common approach for model evaluation (Luo et al., 2012;
Collier et al., 2018). By comparing model simulations with
observations, model strengths, deficiencies, and needed im-
provements can be identified. The insights gained from SOC
benchmarking can lead to new ESM land model structures
(by identifying key processes) and new parameterizations (by
quantifying key relationships between SOC and environmen-
tal variables). Therefore, benchmarking analysis of ESMs
is an effective tool for reducing uncertainties in predicting
SOC dynamics and can provide more realistic information
for managing SOC under changing climate conditions (Lauer
et al., 2017).

Currently, ESMs predict SOC stocks primarily with model
representations that depend on soil temperature, moisture,
and belowground net primary production (Todd-Brown et al.,
2013). ESMs capture the positive correlation between net pri-
mary productivity (NPP) and precipitation, leading to high
SOC stocks in regions with high NPP and sufficient moisture
(Sun et al., 2016). Higher temperatures increase soil respira-
tion, which, in the short term, reduces SOC storage. Over the
longer term, increased soil respiration can release nutrients,
promoting plant growth and increasing belowground carbon
inputs, thereby contributing to SOC stocks; however, the bal-
ance of these effects can take centuries to manifest (Mekon-
nen et al., 2022). In ESMs, the temperature sensitivity of soil
respiration is often defined using theQ10 or Arrhenius equa-
tions (Wynn et al., 2006), although modifications for extreme
temperatures are likely needed (Jiang et al., 2013; Azizi-Rad
et al., 2022).

Among environmental factors, soil moisture plays a cru-
cial role in plant growth, microbial activity, carbon inputs,
and the decomposition of litter and SOC. Global soil carbon
stocks correlate with mean annual precipitation, emphasiz-
ing the significance of water availability in SOC dynamics.
The relationship between soil moisture and microbial activ-
ity follows a curve, reaching a maximum at the optimal mois-
ture content. Variations in soil moisture can either inhibit or

enhance microbial activity, impacting SOC decomposition
rates and carbon cycling (Moyano et al., 2013, 2018; Wieder
et al., 2018; Davidson et al., 2012). This nonlinear soil mois-
ture function is crucial for predicting SOC turnover, although
its exact form varies among models (Sierra et al., 2015).
Different measures of soil moisture are vital for understand-
ing water availability across different scales, serving as indi-
cators for soil–water relationships and ecosystem function-
ing. Previous studies suggest various functional forms, such
as linear, quadratic, or asymptotic, to capture the impact of
moisture on soil microbial activity, with relative water satu-
ration proving to be a reliable predictor across diverse soil
types (Moyano et al., 2013). The temperature function in soil
carbon models represents the sensitivity of SOC decomposi-
tion to temperature, as well as the availability of soluble sub-
strates that drive carbon substrate decomposition (Davidson
et al., 2012). Based on the Q10 equation, a 10 °C tempera-
ture increase roughly doubles the rate of soil respiration, re-
flecting increased microbial activity that accelerates organic
matter decomposition and increases CO2 emissions from the
soil. Recent research emphasizes that the variability in the
temperature sensitivity of SOC decomposition is influenced
by the microbial community composition. A comprehensive
understanding of the temperature function requires account-
ing for microbial community dynamics in soil carbon mod-
els, as these dynamics are intricately linked to temperature.
This includes both accelerated microbial activity and faster
O2 depletion, which together affect soil oxygen dynamics.
Despite this complexity, the empirical relationship between
soil respiration and temperature, as represented by the Q10
relationship, remains essential for predicting the impacts of
temperature change on soil carbon dynamics and understand-
ing its global implications for carbon cycling (Lloyd and Tay-
lor, 1994).

In a previous US continental-scale study, we derived em-
pirical nonlinear relationships between SOC and environ-
mental factors that achieved comparable prediction accuracy
to a random forest (RF) machine learning approach (Mishra
et al., 2022). In this study, we apply a similar approach us-
ing both global field observations and ESMs to (1) identify
key observed environmental controllers of global SOC stocks
and their functional relationships and (2) evaluate ESMs us-
ing these observational benchmarks. Simulated SOC stocks
from three ESMs used in Phase 6 of the Coupled Model Inter-
comparison Project (CMIP6) – the Community Earth System
Model (CESM; Hurrell et al., 2013), the UK Earth System
Model (UKESM; Sellar et al., 2019), and the Beijing Climate
Center model (BCC; Xiao-Ge et al., 2019) – were bench-
marked with over 50 000 SOC profile observations across
the globe. We used a machine learning (i.e., random for-
est) approach with 46 environmental factors to identify the
key environmental controllers of SOC stocks at the global
scale. We then applied a generalized additive model (GAM)
to derive the predictive relationships between these key en-
vironmental factors and SOC stocks in both observations
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Table 1. Descriptive statistics of global soil organic carbon stocks at the 0–100 cm depth interval.

Standard
Minimum Maximum Mean Median deviation

Location (kg C m−2) (kg C m−2) (kg C m−2) (kg C m−2) (kg C m−2)

Global 0.14 435.30 13.50 9.50 18.20
TS broadleaf forest 0.19 314.40 10.89 8.10 14.02
Temperate broadleaf 0.47 312.14 16.20 12.39 17.28
and mixed forest
Temperate grassland 0.56 315.85 12.1 8.65 16.78
Boreal forest 0.16 311.80 23.50 14.18 33.55
Cropland 0.14 435.29 12.75 9.54 16.00
Shrubland 0.19 312.54 13.59 7.59 25.63
Tundra 0.30 106.86 10.34 6.06 14.81
TS grasslands and savannas 0.32 309.13 12.60 9.16 15.17

TS represents tropical and subtropical.

and ESM-simulated SOC stocks. The specific objectives of
this study were to (1) identify dominant environmental con-
trollers of SOC stocks in field observations and CMIP6 ESM
simulations, (2) derive the observed and ESM-modeled func-
tional relationships between environmental factors and SOC
stocks, and (3) analyze these functional relationships to in-
form needed improvements in ESM representations of SOC
dynamics.

2 Materials and methods

2.1 Soil organic carbon stock observations

We used two datasets of SOC stocks: one for the upper 30 cm
of soil (i.e., 0–30 cm) and one for the upper meter of soil
(i.e., 0–100 cm). We note that, by limiting our analysis to
these depth intervals, we may not be accounting for the to-
tal SOC stocks, as large SOC stocks can be found at much
deeper depths in some soils (e.g., peatlands). The World Soil
Information Service (WoSIS) compiled SOC profiles across
the globe after quality assessment. The 2019 snapshot of the
WoSIS dataset contained 111 380 soil profiles with SOC con-
tent information (given in grams of carbon per gram of soil)
at different soil depths (Batjes et al., 2020). We estimated the
SOC stock (g C m−2) at different soil layers using the follow-
ing expression:

SOC stock= SOC content×
(

1−
G

100

)
×BD×D, (1)

where G is the coarse fragment fraction (%), BD is the bulk
density of soil (g m−3), and D is the soil layer depth (m).

When the measured bulk density value was absent from
the dataset, we used a pedotransfer function (Yigini et al.,
2018) to estimate the soil bulk density:

BD= α+β × exp(−γ ×OM). (2)

Here, OM is the organic matter, equivalent to SOC× 1.724,
with SOC content in percent (%); α, β, and γ are fitting pa-
rameters. We found α = 0.32, β = 1.30, and γ = 0.0089 af-
ter fitting WoSIS data to this equation.

Another dataset that we used in this study was compiled
from Mishra et al. (2021). This dataset contained 2546 soil
profiles with SOC stock (g C m−3) information from per-
mafrost regions in North America, northern Eurasia, and the
Qinghai–Tibet Plateau. In total, we used 113,926 soil profile
observations from these two data sources. SOC stocks of dif-
ferent soil layers were then summed to SOC stocks at the 0–
30 cm and 0–100 cm depth intervals. Because not all of these
soil profiles covered the whole 0–30 cm or 0–100 cm inter-
vals, we used a total of 54 000 soil profiles that included SOC
stock information for both depth intervals. The geographi-
cal distributions of soil profiles used in this study are shown
in Fig. 1. Because SOC stock values across the globe were
highly skewed, we used a natural logarithm transformation
in this study.

2.2 Environmental predictors of SOC stocks

The storage and cycling of SOC are controlled by multiple
environmental factors. In this study, we used observations
of 46 environmental variables, which represented major soil-
forming factors (McBratney et al., 2003). A total of 21 of the
46 environmental variables were climatic variables, includ-
ing the annual average temperature, precipitation, evapotran-
spiration, drought severity index, and statistics for different
temporal scales (e.g., during the wettest and driest quarter
in a year). A total of 13 of the 46 variables described soil
properties (e.g., clay content, sand content, silt content, soil
texture, pH, and cation exchange capacity). Six variables rep-
resented topographic factors (e.g., elevation and soil depth).
Six variables represented land use and land cover types. All
of the categorical variables were converted to integer vari-
ables, and the environmental variables were resampled to a
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Table 2. Prediction accuracies of random forest models across
biomes and at the global scale with respect to predicting SOC
stocks.

R2 square
(random RMSE

Biomes forest) (kg C m−2)

Global 0.61 0.46
TS broadleaf forest 0.54 0.46
Temperate broadleaf 0.50 0.53
and mixed forest
Boreal forest 0.43 0.69
Shrubland 0.58 0.61
Cropland 0.62 0.53
Temperate grassland 0.56 0.48
Tundra 0.69 0.54
TS grasslands and savannas 0.47 0.53

TS represents tropical and subtropical. RMSE is the root-mean-square error.

common 1 km resolution. The environmental factors, their
original spatial resolution, and data sources are provided Ta-
ble S1 in the Supplement.

2.3 Selection of dominant environmental controllers of
SOC stocks

We used RF to select dominant environmental predictors of
SOC stocks within biomes and at the global scale in both
observations and ESMs. RF is an ensemble learning method
that is an extension of the classical classification and regres-
sion trees (CART) approach. Building a collection of uncor-
related CARTs through bootstrapping the samples and apply-
ing the random subspace method at each branch of the trees,
RF improves prediction performance (Breiman, 2001; Wies-
meier et al., 2011; Mishra et al., 2020). RF is well known for
its strength in modeling highly nonlinear relationships be-
tween the predictors and is robust to overfitting (Chagas et
al., 2016). Moreover, RF is not very sensitive to the choice
of the hyperparameters, making it one of the most popular
off-the-shelf models for many classification and regression
problems.

In this study, we trained the RF model using SOC con-
tent as a response variable and environmental factors as pre-
dictors. The model performance was evaluated using the co-
efficient of determination (R2) and root-mean-square error
(RMSE). A 10-fold cross-validation was used to compute
theR2 and RMSE values. Biome-specific analyses were con-
ducted on a subset of the global dataset. For biome classifi-
cation, we used the International Geosphere–Biosphere Pro-
gramme (IGBP) land classes (Loveland and Belward, 1997).
The “randomForest” package in R was used to train an RF
model using all of the observed environmental factors in the
dataset and to identify dominant environmental controllers
of SOC stocks. Prior to fitting into the final model, we per-

Figure 1. Spatial and statistical distributions of 54 000 soil organic
carbon profiles used in this study.

Figure 2. Box plot of the soil organic carbon (SOC) stock for each
biome analyzed in this study. The horizontal line in the middle of the
boxes is the median, while their lower and upper limits correspond
to the respective first and third quartiles. TS represents tropical and
subtropical.

formed a potential collinearity test among the environmental
variables by calculating pairwise correlations and the vari-
ance influence factor (VIF) values. Predictors showing a VIF
value greater than 10 were omitted, leaving 14 uncorrelated
environmental predictors of SOC stocks in the observations.

2.4 Generalized additive model

The generalized additive model (GAM) approach is an exten-
sion of generalized linear models that employs spline func-
tions to model nonlinear relationships between predictor and
response variables (Arnold et al., 2013). In GAMs, the rela-
tionship between the predictor and response variable can be
modeled as follows (Hastie and Tibshirani, 1987):

Y = C+
∑p

i=1
fi (Xi) . (3)

Here, Y is the response variable (SOC), C is a constant,
Xi represents the environmental controller variables, fi is a
spline function for Xi , and p is the total number of envi-
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ronmental controllers. We used the “mgcv” package in R to
build nonlinear relationships between environmental factors
and SOC stocks using GAMs for both the SOC field obser-
vations and CMIP6 ESM-simulated SOC data (Arnold et al.,
2013). The performance of GAMs was evaluated using the
R2 and RMSE.

2.5 Earth system model outputs

We downloaded and aggregated the ESM-simulated SOC
and environmental controller data from three ESMs that par-
ticipated in CMIP6: the Community Earth System Model
(Hurrell et al., 2013), the UK Earth System Model (Sellar et
al., 2019), and the Beijing Climate Center model (Xiao-Ge et
al., 2019). These ESMs included most of the environmental
factors used by CMIP6 ESMs. ESMs did not report depth-
dependent soil carbon projections, making direct comparison
with depth-dependent SOC observations difficult. The major-
ity of land models used in the ESMs were designed to sim-
ulate topsoil carbon for topsoil depth; thus, we assumed that
the simulated soil carbon is contained within the top 1 m of
the soil profile to simplify comparison with observations.

3 Results

3.1 Descriptive statistics of SOC observations

The average global SOC stock within the 0–1 m depth inter-
val was 13.5 kg C m−2, ranging from 0.14 to 435.3 kg C m−2.
Our results indicate substantial variability in global-scale
SOC observations, as the standard deviation (18.2 kg C m−2)
is greater than the average SOC stock. Summary statistics of
SOC stocks at the global scale and within different biomes
are presented in Table 1. Boreal forests and temperate forests
exhibited higher SOC stocks compared with other biomes,
whereas tundra and the tropical and subtropical broadleaf
forests showed lower and relatively similar average SOC
stocks. Tundra and the tropical and subtropical grasslands
and savannas exhibited similar and lower standard deviations
with respect to SOC stock values. Conversely, boreal forests
and shrublands showed higher standard deviations, indicat-
ing a broader range in SOC stock values. The distributions
of total SOC stocks across different biomes are presented in
Fig. 2.

3.2 Dominant environmental controllers of SOC stocks
in observations and ESMs

At the global scale, we found that the diurnal temperature,
drought severity index, annual temperature, and cation ex-
change capacity are the dominant environmental controllers
of SOC stocks in the observations (Fig. 3). By including
all environmental controllers, the RF model explained 61 %
of observed global spatial variation in SOC stocks. The R2

values ranged from 43 % in boreal forests to 62 % in crop-

Figure 3. Importance of different environmental factors for predict-
ing the global SOC stocks in observations.

lands (Table 2), with the importance of key environmental
controllers varying across biomes (Fig. 4). In croplands, pre-
cipitation, drought, diurnal temperature, and cation exchange
capacity were identified as the dominant controllers of SOC
stocks. In grasslands, annual temperature, cation exchange
capacity, and sand content were the dominant controllers. In
forests, the cation exchange capacity, precipitation, and tem-
perature were the dominant controllers, while in shrublands,
annual temperature, soil pH, and cation exchange capacity
were the most important controllers. In savannas, soil-related
variables, temperature, and precipitation were the most im-
portant controllers. Across all land cover types, we found that
the cation exchange capacity and seasonal climatic variables
were the dominant environmental controllers of SOC stocks.

In contrast, the RF model with eight environmental
variable predictors made near-perfect predictions of ESM-
simulated SOC stocks (average R2

= 0.95; the R2 values for
the UKESM, CESM, and BCC models were 0.99, 0.89, and
0.98, respectively). In contrast to the results obtained from
the observed SOC stocks, the dominant controllers of ESM-
simulated SOC stocks were annual temperature, NPP, and
annual precipitation (Fig. 5), with NPP being by far the most
dominant predictor of SOC stocks in the UKESM.

3.3 Predictive relationships between environmental
factors and SOC stocks

The dominant environmental controllers of observed SOC
stocks, as identified by the RF model, were used in a GAM
to derive predictive relationships. We retrieved explicit ana-
lytical expressions by fitting splines derived from the GAM
to the observation dataset. Despite its role as the sole car-
bon source for soil, our results did not show NPP as a strong
controller of observed SOC stocks (Fig. 6a). In contrast to
field observations, all ESMs showed a significant depen-
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Figure 4. Strength and importance of environmental factors for predicting observed SOC stocks within different biomes.

Figure 5. Importance of different environmental factors for predict-
ing global soil organic carbon stocks in three CMIP6 Earth system
models.

dence (exponential increase) of SOC stocks on NPP. Our re-
sults also showed that observed SOC stocks increased almost
linearly with observed annual precipitation (Fig. 6b). In con-
trast, ESMs showed different relationships between SOC and
precipitation. We found a nonlinearly increasing SOC with
precipitation in the CESM, an initial sharply increasing and

then decreasing relationship in the UKESM, and a decreas-
ing relationship in the BCC ESM. Regarding the relationship
of SOC storage with soil texture and elevation, ESMs did not
capture the observed relationships. Our results indicated that
observed SOC stocks decreased with clay content in the in-
terval between 0 % and 20 %, whereas they increased with
clay content above 20 % (Fig. 6c). Similarly, observed SOC
stocks increased with silt content up to 55 % and decreased
thereafter (Fig. 6d).

SOC stock functional relationships differed between the
three ESMs, and, in many cases, they also differed from
the relationships that we derived from observations. In terms
of the effects of annual temperature on modeled SOC stor-
age, we found that SOC stocks decreased with increasing
annual temperature and were most sensitive to temperature
within the range of 0 and 10 °C (Fig. 6e). However, while
the three ESMs captured the general negative relationship
between SOC storage and temperature, none of them cor-
rectly described the varying sensitivity of SOC stocks across
different temperature ranges, especially in extreme tempera-
ture ranges (< 0 and > 20 °C). With respect to representing
the control of elevation on SOC storage, only the UKESM
showed patterns consistent with observations: SOC storage
remained stable at elevations below 2000 m and decreased at
elevations above 2000 m (Fig. 6f).
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Figure 6. Predictive relationships between environmental factors
and SOC stocks in observations (black line) and CMIP6 Earth sys-
tem models (different colors; see legend). Red circles are computed
from fitted curves. The shading around the solid line indicates the
95 % confidence interval.

4 Discussion

Previous studies have suggested that the spatial variation in
SOC depends on multiple environmental factors, such as cli-
matic and edaphic variables, geography, and vegetation. In
this study, we found that climatic variables (i.e., temper-
ature and precipitation) are the most important controllers
of global SOC stocks, followed by edaphic variables (i.e.,
cation exchange capacity), topography (i.e., elevation), and
vegetation (i.e., NPP). Using boosted regression trees, Luo
et al. (2021) studied edaphic and climatic controls on SOC
dynamics at different soil depths and found that soil type
and climatic variables are the most important variables for
explaining SOC stocks (Luo et al., 2021). In this study, we
found that seasonal climatic variables, such as diurnal tem-
perature range and precipitation seasonality, are among the
most important environmental controllers of the spatial vari-
ation in SOC stocks. This result indicates the critical role of
seasonal and interannual climatic variables in understanding
SOC dynamics.

The importance of climatic variables on global SOC stor-
age emerges from their close links with processes that af-
fect ecosystem productivity and soil microbial activity. Con-
sistent with our findings, Wiesmeier et al. (2014) reported
climatic variables (temperature and precipitation) as signif-

icant controllers of SOC stocks up to 1 m depth in German
soils under oceanic climate conditions. Similarly, Sreenivas
et al. (2014) used RF to predict SOC variability across semi-
arid and humid areas of India in the top 30 cm of soil and
found that the top three environmental controllers were land
cover, the mean temperature of the hottest months, and mean
annual precipitation. In our analysis, the overall relative im-
portance of climatic variables was significantly higher than
other variables at both the global and biome scales.

Soil properties were identified as the second most impor-
tant controllers of global SOC stocks. Soil properties influ-
ence various processes that govern soil carbon dynamics.
For example, soil properties impact microbial activity, poros-
ity, and oxygen availability in the soil profile, which directly
or indirectly control soil water dynamics, plant growth, and
SOC stocks. Consistent with our findings, Luo et al. (2021)
reported that sand content, silt content, and soil pH were sig-
nificant controllers of SOC stocks in all soil depths globally.

The Palmer drought index used in this study explicitly in-
cludes factors such as evapotranspiration, precipitation, and
temperature. This index accounts for controls on the soil wa-
ter balance, making it a better predictor than precipitation
alone. Drought severity and duration play crucial roles in in-
fluencing the extent of soil carbon losses through microbial
respiration (Borken and Matzner, 2009). A decline in soil
CO2 efflux is observed as both the quantity and frequency
of precipitation events decrease (Harper et al., 2005). In the
initial phases of drought, elevated soil CO2 emissions occur
due to the rapid response of plants and microorganisms to
environmental stress (Ru et al., 2018). However, as drought
intensifies, overall CO2 emissions diminish due to reduced
root growth and microbial CO2 efflux caused by increasing
soil dryness (Hasibeder et al., 2015). Similar to the impacts
of drought duration, drought intensification results in a de-
crease in total CO2 emission by suppressing soil microbial
activity and associated soil CO2 fluxes (Harper et al., 2005;
Hu et al., 2020).

Cation exchange capacity is a soil property that indicates
the active soil surface to which SOC can be adsorbed, with
polyvalent metal cations playing a significant role in SOC
stabilization by binding organic compounds to mineral sur-
faces (O’Brien et al., 2015; Solly et al., 2020). O’Brien et
al. (2015) found that exchangeable soil Ca2+ is a significant
predictor of SOC stocks. This relationship is supported by
the mechanism in which Ca2+ and Mg2+ promote clay floc-
culation and bind organic matter to clay surfaces. Solly et
al. (2020) reported that SOC and cation exchange capacity
are significantly related in both topsoil and subsoil with a
strong positive relationship.

After climatic factors and cation exchange capacity, to-
pography and vegetation (NPP) were important controllers
of observed global SOC stocks. The effect of NPP on ob-
served SOC stocks was found to be relatively small (∼ 6 %
in soils at 0–100 cm depth). Similar to our findings, Luo et
al. (2021) reported that NPP explained about 10 % of the
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variation in SOC stocks. NPP provides the primary inputs
of carbon to the soil, and NPP generally increases with mois-
ture, temperature, and CO2 levels, up to a certain limit. NPP
also depends on the availability of soil nutrients. Most ESMs
tend to overestimate the increase in SOC pools in response
to NPP increases (Todd-Brown et al., 2013). The effect of
NPP on SOC also varies depending on biome type and soil
depth (Luo et al., 2021; Georgiou et al., 2021). The contri-
bution of NPP to SOC stocks mostly depends on how much
NPP ends up in the soil and how it is translocated to differ-
ent soil depths. Georgiou et al. (2021) reported a saturating
relationship of SOC stocks with increasing NPP in a global
observational dataset. However, Chen et al. (2018) reported
high SOC stocks associated with increasing productivity and
soil water-holding capacity (Chen et al., 2018).

The three CMIP6 ESMs that we analyzed predicted SOC
stocks mostly as a function of temperature, precipitation,
and NPP. These ESMs simulated positive correlations be-
tween SOC stocks and NPP (Fig. 6a), resulting in higher
SOC stocks in areas with a high NPP (Shi et al., 2013; Sun
et al., 2016). In these ESMs, the effects of temperature and
precipitation on SOC stocks are driven by soil respiration.
Most current ESMs simulate the response of soil respiration
to temperature using either the Q10 or Arrhenius equations
(Wynn et al., 2006), where higher temperatures lead to in-
creased soil respiration, which, all else being equal, eventu-
ally reduces SOC stocks (Fig. 6e). Our results showed di-
verse controls of precipitation on SOC stocks in different
ESMs. Todd-Brown et al. (2013) showed that ESMs simulate
soil respiration as either (1) increasing monotonically with
precipitation or (2) rising to a plateau under optimal precip-
itation and then experiencing a subsequent decline with fur-
ther increases in precipitation. Consistent with those results,
the ESMs that we analyzed in this study showed differences
in the functional relationship between SOC storage and pre-
cipitation (Fig. 6b).

In this study, we found that while current ESMs consider
key environmental controllers, such as soil temperature and
moisture, with respect to regulating SOC storage, they show
large inter-model variations in representing the functional
relationships between these factors and SOC at the global
scale. Meanwhile, none of the three ESMs investigated in
this study align with the patterns that emerged from observa-
tions. These results signify potential unrealistic parameteri-
zation or missing critical processes in model representation.
Moreover, our results highlight the importance of including
other environmental factors in simulating global SOC stor-
age. The observed global SOC stocks are influenced by pro-
cesses beyond those currently considered in ESMs, such as
temperature, precipitation, and NPP. Effects of other environ-
mental factors, such as the drought severity index and cation
exchange capacity should also be considered in future rep-
resentations of SOC dynamics in ESMs. Our results high-
light the critical role of observational data in benchmarking
ESM simulations and informing model structures and param-

eterization. Although our findings cannot be directly used to
develop model parameterizations, they can (1) point to cate-
gories of functional forms for controllers, (2) guide where ef-
forts may be best applied to improve model functional forms
(e.g., for the dominant controllers), and (3) provide informa-
tion for modelers regarding where their models may differ
significantly from observed functional forms for emergent
relationships.

We note that although ecosystem-specific environmental
factors (e.g., the presence or absence of certain species, such
as earthworms or termites, or indicators of anthropogenic
land management, such as the use of fertilizers or conserva-
tion agriculture practices) are not represented in the current
generation of ESMs, incorporating these factors – specific to
ecosystems like croplands or forests – may improve the accu-
racy of SOC stock predictions in comparison to observations.

5 Conclusions

Our results document a disagreement between the environ-
mental controllers of SOC stocks in observations and CMIP6
ESM simulations. Specifically, while global SOC observa-
tions indicate that the diurnal temperature, drought index,
annual temperature, cation exchange capacity, and other soil-
related variables are critical for controlling SOC stocks at
the global scale, ESMs overemphasize the roles of NPP,
annual temperature, and annual precipitation in simulating
SOC stocks. Moreover, the functional relationships between
key environmental factors and SOC stocks show significant
uncertainty among ESMs, with no agreement with those de-
rived from observations. Optimizing current model parame-
terizations and developing new model structures that incor-
porate more processes in the soil carbon cycle are crucial
for improving the simulation of global SOC storage in future
ESMs. Our results highlight the importance of benchmark-
ing ESMs against observations to improve the mechanistic
understanding of the global soil carbon cycle.
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