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Abstract. Peatlands accumulated large carbon (C) stocks as
peat in historical times. Currently however, many peatlands
are on the verge of becoming sources with their C sequestra-
tion function becoming sensitive to environmental changes
such as increases in temperature, decreasing water table and
enhanced nitrogen deposition. Long term changes in vege-
tation composition are both, a consequence and indicator of
future changes in C sequestration. Spatial continuous accu-
rate assessment of the vegetation composition is a current
challenge in keeping a close watch on peatland vegetation
changes. In this study we quantified the fractional cover of
three major plant functional types (PFTs;Sphagnummosses,
graminoids, and ericoid shrubs) in peatlands, using field
spectroscopy reflectance measurements (400–2400 nm) on
25 plots differing in PFT cover. The data was validated using
point intercept methodology on the same plots. Our results
showed that the detection of openSphagnumversusSphag-
numcovered by vascular plants (shrubs and graminoids) is
feasible with anR2 of 0.81. On the other hand, the partition-
ing of the vascular plant fraction into shrubs and graminoids
revealed lower correlations ofR2 of 0.54 and 0.57, respec-
tively. This study was based on a dataset where the re-
flectance of all main PFTs and their pure components within
the peatland was measured at local spatial scales. Spectrally
measured species or plant community abundances can fur-
ther be used to bridge scaling gaps up to canopy scale, ulti-
mately allowing upscaling of the C balance of peatlands to
the ecosystem level.

Correspondence to: G. Schaepman-
Strub (gabriela.schaepman@wur.nl)

1 Introduction

Peatlands have been widely recognized as one of the world’s
largest terrestrial stores of organic C (Botch et al., 1995; Tu-
runen et al., 2002). The extensive peat deposits show the
historical role of peatlands as sinks for atmospheric C, but at
the same time also show the potential of these ecosystems as
sources for greenhouse gases, such as CO2 and CH4. As a
substantial part of the peatlands can be found on the North-
ern Hemisphere, especially in the region where large changes
in temperature, precipitation and nitrogen (N) deposition are
expected, the response of peatlands to environmental change
has warranted much scientific attention (Bubier et al., 2007;
Limpens et al., 2008; Moore et al., 2002; Wiedermann et al.,
2007).

Most studies indicate that major changes in C sequestra-
tion rate coincide with changes in vegetation composition
(Strack et al., 2006). In general decreases in water table,
increases in temperature as well as enhanced N deposition
favour vascular plant species and, ultimately, have a nega-
tive impact on the bryophyte community through increased
competition for light (Bubier et al., 2007; Wiedermann et
al., 2007). Furthermore, increases in nutrient concentration
and temperature seem to favour graminoid species over eri-
coid species (Weltzin et al., 2000, 2003). As bryophytes
and vascular plants differ in their litter degradability (Dor-
repaal et al., 2005), changes in their fractional covers may
have direct repercussions for the ecosystems longer term C
sequestration rate. Particularly the cover and productivity of
the bryophyte component, dominated by the genusSphag-
num (Bubier et al., 2007), is of major importance to the C
sequestration potential of the ecosystem.Sphagnumis the
main peat former due to its recalcitrant litter and acts as an
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ecosystem engineer dictating the growth environment of vas-
cular plants by regulating the surface hydrology and nutri-
ent availability to a large extent (Belyea and Baird, 2006).
On the whole, the biomass and the PFT fractional cover of
bryophytes, graminoids and ericoid shrubs give a fair indica-
tion of the current C sequestration potential, while changes
in the PFT fractional cover may serve as an early warning
system for ensuing changes in C sequestration on the longer
term. In addition the recognition of pureSphagnumpatches
in a peatland vegetation may be used in the assessment of
near-surface wetness (Harris et al., 2006), which exerts an
important control on the C balance of peatland soils (Belyea
et al., 2006; Robroek et al., 2008). Dry conditions may lead
to dramatic reductions inSphagnumgrowth rates and C fixa-
tion. Near-surface water content is an indicator of the thick-
ness of the unsaturated zone in peat soils and thus relates to
the aerobic (fast) versus anaerobic (slow) decay rates in peat-
land soils. Finally the near-surface wetness is related to the
water table below the peatland surface, determining the size
of the unsaturated zone. A thin unsaturated zone generally
leads to a higher CH4 flux from the peatland surface.

The main three PFTs in peatlands (mosses, grasslike
species (graminoids), shrubs) represent groups of different
structure and biochemistry, such as leaf construction (mosses
lacking a vascular system, versus vascular plants), water and
pigment content, and architecture. These differences result
in distinct spectral characteristics at leaf and canopy level,
such as the reflectance peak around 640 nm for redSphag-
num species and the low NIR reflectance of the ericoids
(ericaceous species). Various studies highlight the spectral
reflectance properties ofSphagnummosses and the influ-
ence of the water content and moisture conditions on their
reflectance under laboratory conditions (Bryant and Baird,
2003; Bubier et al., 1997; Harris et al., 2005; Vogelmann
et al., 1993). Only few studies analysed spectrometer data
of peatlands at the ecosystem scale, thus including mixtures
of Sphagnum, shrub, graminoid, and tree cover. Harris et
al. (2006) inferred proxies for near-surface wetness to map
effects of water stress onSphagnum, based on a variety of
field and airborne sensors (Milton et al., 2008), including an
Analytical Spectral Device (ASD) FieldSpec Pro spectrora-
diometer and the Compact Airborne Spectrographic Imager
(CASI). Recently, tree and shrub leaf area indices were in-
ferred for a peatland through an approach combining in situ
leaf area index (LAI) measurements, field spectrometer data,
and Landsat TM imagery (Sonnentag et al., 2007). Spec-
tral differences between vegetation types were successfully
used in other ecosystems, such as floodplains, to produce
vegetation maps of structurally or chemically divergent veg-
etation based on imaging spectrometer data (Schaepman et
al., 2007). Plant pigment and non-pigment retrieval at leaf
and canopy level are becoming increasingly possible (Ustin
et al., 2008), resulting in spatially distributed and continu-
ous vegetation characteristics that can then be assimilated
into process-oriented ecosystem models or regional climate

models to overcome the limitations as given by maps with
discrete land cover classes (Schaepman, 2007). Before em-
ploying coarser resolution imaging spectrometer over peat-
land areas to map the vegetation composition, it is there-
fore useful to compile a spectral library in situ, allowing to
constrain model inversion approaches for inferring fractional
abundance or biochemistry, or assess the scalability of the ap-
proach from plant to canopy level (e.g. Kalacska et al., 2007;
Bojinski et al., 2003).

In this study we establish a non-destructive methodol-
ogy to derive fractional cover and biomass of the main
PFTs within peatlands (Sphagnum, graminoids, and ericoid
shrubs) using field spectroscopy. To this end we selected field
plots differing in PFT fractional cover and related spectral
reflectance data of these plots with fractional cover estimates
inferred from point intercept data and destructive measure-
ments on dry biomass.

2 Materials and methods

2.1 Test site and set-up

Late spring 2006 we selected 25 plots (50×50 cm) differing
in PFT cover at Reigersplas (52◦50′N, 6◦27′E), the Nether-
lands. The Reigersplas is located in the northeast of the
Netherlands in the National Park Dwingelderveld, and is a
wet heath with patches of ombrotrophic (rain-fed) peatland
vegetation. Five plots (1–5) were selected within the om-
brotrophic patches along five transects (A–E), situated along
the water table gradient, going from relatively wet plots that
were mostly dominated bySphagnumwith sparse graminoid
cover to relatively dry plots with a continuousSphagnum
cover that were dominated by ericoids (Fig. 1). In between
these extremes we selected plots co-dominated by ericoids
and graminoids. All plots had a (near) continuousSphagnum
layer (>90% cover), with one exception with c. 80%Sphag-
num cover (plot A5). Brown mosses are neglected in this
study as they are not abundant in the observed ombrotrophic
patches. The majority of plots were dominated by either
Sphagnum magellanicum(Brid.) or Sphagnum papillosum
(Lindb.), two plots being co-dominated by both species (plots
C4, D2). Taken over all plots, fractional cover of vascular
plant species ranged from< 5% to 99%. In order of impor-
tance ericoid species wereErica tetralix (L.) andVaccinium
oxycoccus(L.) with someAndromeda polifolia(L.) andEm-
petrum nigrum(L.). Graminoids comprisedEriophorum an-
gustifolium(Honck.) andMolinia caerulea(L.).

2.2 Fractional cover determination based on point intercept
method

After selection of the plots, the point intercept method
(Jonasson, 1988) was used to measure the fractional cover
of vascular plants and ofSphagnumbetween 22 May and 4
June 2006. This entailed fixing of a frame of 25 cm×37.5 cm
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Fig. 1. Photographs of the plots of the transect E (left) with corresponding hemispherical-conical reflectance factor data (middle) and
fractional cover as inferred from point intercept measurements (right) showing the changing abundance of PFTs and the effect on the
reflectance spectrum at the plot level. The transect starts with a lawn with highSphagnumcover close to the water table (top) and ends with
a drier hummock plot with high shrub fractional cover (down).

and with a 2.5 cm grid above the vegetation. At 150 points,
a stainless steel needle was lowered vertically to the vege-
tation canopy. We recorded the first plant species that was
touched with the point of the needle (“first-hit data”), and
further distinguished between living and dead material. This
dataset therefore mostly relates to the fractional cover as in-
ferred from a photograph taken above the canopy. It does not
directly relate to the LAI or biomass, as the layers growing
below the highest canopy layer are not taken into account.
For the chosen experimental plots this means that the contin-
uousSphagnumlayer, even though present in all plots (see
Sect. 2.1), is only recorded if no ericoid or graminoid leaves
are covering it.

2.3 Biomass sampling

On 5 June 2006, the total aboveground vegetation in each
plot was cut flush with the top of theSphagnum. The litter
scattered on theSphagnumsurface was also collected. Here-
after oneSphagnumsample (diameter 5cm, depth 7cm) was
cut from the bryophyte layer of each plot. The harvested
plants (dead and living) were sorted into PFTs and dried at
70◦C for 48 h before dry weight was determined.

2.4 Field spectrometer data collection and preprocessing

On 4 June 2006, the canopy reflectance (350–2500 nm) of the
25 plots was measured using an ASD Fieldspec Pro spec-
troradiometer (Analytical Spectral Devices, Inc. Boulder,
USA). In each plot, 5 measurements were taken. The fibre
optic head was mounted at 65 cm height on a tripod; care
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was taken that no shade was cast on the measurement area.
Using the instrument’s 25◦ field of view (FOV), the ground
field of view (GFOV) covered was approximately 29 cm in
diameter. To reduce the impact of changing irradiance condi-
tions throughout the day, a reference spectrum was collected
from a white spectralon panel before the measurement of
each plot. Following the terminology of Schaepman-Strub
et al. (2006), the data acquired with the field spectrome-
ter correspond to hemispherical-conical reflectance factors
(HCRF). No further corrections for the changes in solar
zenith angle, or partitioning of the direct to diffuse irradiance
were performed.

On 08 June, 2006, spectral reflectance measurements were
taken from the dominant species to obtain pure endmember
spectra, following the same measurement protocol as 4 June
2006. To this end homogeneous vegetation outside the pre-
viously measured mixed plots was selected with a high frac-
tional cover (>80%) of the target species.

The spectra were visually controlled for their quality and
measurements outside one standard deviation of the five mea-
surements per plot were excluded. The remaining measure-
ments of each plot were averaged to the final plot spectrum.
Wavelength regions influenced by atmospheric water vapour
were excluded from further analysis. This resulted in a wave-
length range of 400–1360 nm, 1410–1800 nm, and 1960–
2400 nm (1793 spectral bands in total) used in the data anal-
ysis.

2.5 Linear spectral unmixing

Spectral mixing analysis is based on the assumption that the
reflectance of an observed surface is a combination of the
reflectance of the single components of the surface, weighted
according to their abundance (Adams et al., 1986; Roberts
et al., 1993). In most studies it is further assumed that this
mixture is linear and that the multiple scattering is negligible.
The model can be expressed as

Rλ,obs =

N∑
i=1

fi × Rλ,i + ελ (1)

whereRλ,obs is the observed reflectance factor of the surface
in the spectral bandλ, fi is the fraction of the endmember,
N is the number of endmembers, andελ is the residual error.
The inversion of the forward model, called umixing, is based
on the minimization of the root mean squared error (RMSE).
The quality of the unmixing is indicated by the RMSE of the
model fit over all spectral bands (M), calculated as

RMSE=

√√√√√ M∑
λ=1

(ελ)
2

M
(2)

Based on the above assumptions, we hypothesize that the
fractional cover of the single species, resulting from the lin-
ear unmixing of the reflectance of the GFOV, would equal

the fractional cover as recorded by the first-hit data using the
point intercept methodology.

Slightly differing implementations of the unmixing ap-
proach exist (Plaza et al. 2004). We evaluated the linear
unmixing algorithm as implemented in ENVI© (ITT Vis,
Boulder, USA) which did not reveal satisfactory results. An
alternative unmixing algorithm is the multiple endmember
spectral mixture analysis (MESMA) (Roberts et al., 1998).
Within MESMA, three endmember groups may be defined,
each containing a set of pure spectra. The algorithm searches
for the best spectrum within each endmember group. Thus,
a number of slightly varying spectra per endmember can be
indicated, reflecting the natural variability of an endmember,
which is not possible in simple mixture analysis. MESMA
thus allows a different set of endmember spectra for each
observed mixed reflectance, rather than using a common,
fixed set of endmembers for all spectra in the inversion (for a
detailed discussion on advantages of MESMA compared to
simple linear mixture models see Roberts et al., 1998).

We used the MESMA algorithm as implemented in the
Viper Tools version 1.4 (http://www.vipertools.org), which
is an ENVI© software plug-in, to infer the fractional cover
of the three PFTs based on the measured plot hemispherical-
conical reflectance factors (HCRF’s) (Schaepman-Strub et
al., 2006). The minimum non-shade fraction was constrained
to 0, the maximum non-shade fraction to 1. Negative frac-
tions were allowed for the shade endmember. No further
restrictions were applied (e.g. RMSE, max. shade fraction,
max. residual). The MESMA output contains the model as-
signed according to the best fit to the plot level spectrum (i.e.
the name of the endmember spectra chosen for the best fit),
the abundances of each of the endmember spectra, as well as
the mean error of the model fit (RMSE). The algorithm also
indicates cases for which no model could be assigned with
the indicated constraints.

2.5.1 Endmember selection and aggregation for fractional
cover estimation

Apart from the mixed species spectra measurements along
the water table gradient, we performed additional HCRF
measurements on vegetation patches with single dominant
species coverage to obtain pure reflectance spectra. For
Sphagnumwe selected two homogenous plots of the red
speciesS. magellanicumand one of the green speciesS.
fallax (Fig. 2a). TheS. magellanicumendmember clearly
showed the red reflectance peak around 636 nm, while the
green peak of theS. fallaxendmember was very broad com-
pared to vascular plants. Further, theSphagnumcanopies
did not show a steep red edge with a clear NIR shoulder,
showed a higher reflectance peak in the near infrared, and had
a lower reflectance in the covered shortwave infrared (1400–
2400 nm) than green vascular plants (e.g.Molinia green).
Strong water related features were seen at 970 nm, 1200 nm,
1450 nm. Because the measurements were performed in late
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Table 1. Endmember provided for the MESMA procedure. From
each endmember group (i.e. mosses, graminoids, and shrubs), one
endmember is selected by MESMA leading to the best plot level
spectrum fit. The forth endmember is a photometric shade (zero
reflectance in all spectral bands).

Endmember groups Endmembers Species

1st EMSphagnum sm1 Sphagnum magellanicum
sm2 Sphagnum magellanicum
sf Sphagnum fallax

2nd EM graminoids ea1 Eriophorum angustifolium
ea2 Eriophorum angustifolium
mc green Molinia caerulea green
mc brown Molinia caerulea brown

3rd EM shrubs et1 Erica tetralix
et2 Erica tetralix
vo Vaccinium oxycoccus

4th EM shade shade Photometric shade

spring, the dead fraction in graminoid-dominated plots was
still very high. We therefore selected one spectrum for pure
Molinia green biomass and one forMolinia litter. Addition-
ally we had two spectra forEriophorum, containing stand-
ing dead and living biomass (Fig. 2b). Except for the green
Molinia, all graminoid endmembers contain dead biomass
expressed by the relatively weak absorption around 680 nm
which is usually more pronounced by chlorophyll a absorp-
tion, the low near-infrared reflectance, and the almost miss-
ing water absorption features. For the ericoid shrubs we ob-
tained a spectra covering a mixture of ericoids, but domi-
nated byVaccinium oxycoccus,and two pure spectra from
relatively highErica vegetation (Fig. 2c). The pure ericoid
endmember spectra show a very low reflectance in the near
infrared compared toSphagnumand graminoids.

The single species reflectance spectra were grouped by
their PFT, resulting in three vegetation endmembers and one
endmember representing photometric shade (an option in
the MESMA algorithm with a zero reflectance throughout
all wavelengths). The MESMA algorithm selects the spec-
trum of the dominant species within each PFT for the un-
mixing procedure (Table 1). The set of provided endmem-
bers (3 forSphagnum, 4 for graminoids, 3 for shrubs, one
for shade) leads to a total of 36 potential endmember models
(3×4×3=36) which can be assigned to a plot level spectrum.
We thus assumed that in each plot one species is represent-
ing the fractional cover of the entire PFT. This may lead to
higher RMSE values of the model fit when the reflectance of
the species within one PFT varies significantly.

Brightness variations of the spectra of a given vegetation
canopy under stable atmospheric conditions can be related to
the anisotropic reflectance properties of the canopy, whereas
three main factors are important, namely the sun angle, the
viewing geometry, and the structure of the canopy (i.e. the
density and distribution (vertical and horizontal) of the scat-

Fig. 2. Endmember spectra for the MESMA algorithm. TheSphag-
numendmember (top) was selected fromSphagnum magellanicum
(sm) andfallax (sf); the graminoid endmember (middle) fromErio-
phorum angustifolium(ea),Molinia caeruleawith green biomass
(mc green) and dead biomass (mcdead); and the shrub endmem-
ber (bottom) fromErica tetralix (et) andVaccinium oxycoccus(vo).
Additionally, a photographic shade endmember was used with a
zero reflectance value for all wavelengths (not shown).

tering components). Since our measurements are taken with
constant viewing angle and under limited changes in solar an-
gle, variations of the fraction of shade for different sites are
mainly related to differences in canopy structure. Further,
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Table 2. Results of the three MESMA scenarios (1 – all plots with assigned model, 2 – results with RMSE>0.001 excluded, 3 – wavelength
restriction to 400–1000 nm) and corresponding correlation with fractional cover as inferred from the point intercept methodology (PI) for the
three PFTs (the MESMA inferred shrub fraction includes the shade fraction for all 3 scenarios). In the PI-MESMA correlation equation, x
refers to point intercept data and y to MESMA inferred fractional cover data.

Scenario 1 Scenario 2 Scenario 3

MESMA
No. plots 23 21 24
Mean RMSE 0.0056 0.0050 0.0045

PI–MESMA
Sphagnum R2=0.76 R2=0.81 R2=0.47

y=0.8548x+0.0418 y=0.9576x+0.0194 y=0.6913x+0.0218
Graminoids R2=0.54 R2=0.57 R2=0.11

y=0.975x+0.0177 y=0.9882x+0.0275 y=0.628x+0.2396
Shrubs R2=0.43 R2=0.54 R2=0.39

y=0.5784x+0.1549 y=0.701x+0.0881 y=0.7168x+0.0548

the shaded background is constant, given the highSphagnum
cover below the ericoids. Ericoid shrubs with their branches
and thick leaves are assumed to be the main shadow-casting
components for our site (as compared toSphagnumand
graminoids).The shrubs cast most of the shadow due to their
height and loose canopy, further the ericoids showed the low-
est HCRF values, thus being closest to the zero reflectance
spectrum of the shade. We therefore added the shade abun-
dance results to the shrub abundances for the comparison
with the point intercept methodology data.

Three main scenarios are discussed in the results, namely:
Scenario 1 including all plot results where an endmember

model was assigned.
Scenario 2 excluding plot results with a high RMSE. The

corresponding threshold is set as the mean RMSE of all plots
plus 2 times the standard deviation.

Scenario 3 results are inferred from a MESMA run re-
stricted to the wavelength 400–1000 nm. This reveals
whether the visible spectral range contains enough informa-
tion compared to the full wavelength range (400–2400 nm)
of Scenario 1.

The linear spectral mixing model is a physically based
model and resulting abundances directly relate to the com-
ponents occurring within the field of view. The results there-
fore do not need a calibration to retrieve physical quantities.
To validate obtained fractions, we compared the endmem-
ber abundances resulting from MESMA to fractional cover
as inferred from first-hit point-quadrat data. The validation
reveals limitations and uncertainties of the approach and as-
sumptions made.

2.5.2 Relation of fractional cover and biomass

The fractional cover results are used in a final step to in-
vestigate their relation with dry biomass data. We therefore

analyze the relation of both, point-quadrat first hit data and
fractional cover inferred from MESMA, with destructively
measured biomass.

3 Results

3.1 MESMA results

3.1.1 Scenario 1 results (plots with assigned endmember
model)

Out of 36 potential endmember models, 13 were identified
by the MESMA algorithm to fit the 25 observed plot HCRF
data. No specific pattern in the model selection could be
found, apart from the fact that the greenMolinia caerulea
and theVaccinium oxycoccuswere only included in 4 and
3 cases, respectively. For two plot spectra, no appropriate
model could be assigned within the given constraints (tran-
sect A, plot 1 and 4), leading to a final number of 23 plots
with successfully assigned abundances. The reason for A1
(Sphagnumcover of 0.68 by point intercept method) was that
the observed plot level spectrum had higher values than the
availableSphagnum fallaxendmember, while theS. magel-
lanicumendmember showed a higher reflectance but did not
fit the shape in the green and red spectral bands due to the red
reflectance peak. Generally, the obtained fits were very good,
with a low RMSE ranging from 0.0027 to 0.0118, exceeding
0.01 in two cases only. The mean RMSE over all assigned
plots (23) was 0.0056.

3.1.2 Scenario 2 results (plots with assigned endmember
model and high RMSE)

Based on the mean (0.0056) and standard deviation (0.0027)
of the RMSE of all plots, the RMSE threshold (mean RMSE
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of all plots plus 2 times the standard deviation) was set to
0.011, leading to the exclusion of two plots. The mean
RMSE over the remaining 21 plots was 0.0050.

3.1.3 Scenario 3 results (MESMA run based on visible
spectral range)

Scenario 3 revealed how important the infrared spectral range
is for inferring the fractions of the three PFTs within the test
site. Only for a single plot spectrum no corresponding end-
member model was assigned, whereas the RMSE was higher
than 0.01 for three plots. The mean RMSE over all assigned
plots (24) was 0.0045, thus slightly lower than for Scenario
1 and 2.

3.2 Fractional cover

3.2.1 Scenario 1 results (plots with assigned endmember
model)

ForSphagnum, the fractional cover estimate using field spec-
troscopy was in agreement with the point intercept method
(R2=0.76) and close to the 1:1 line, yielding a highSphag-
num cover under open vascular plant canopy and a low
Sphagnumcover under dense vascular plant canopy. The ab-
soluteSphagnumcover in all plots was generally>90% (see
Sect. 2.1). The above result shows that the fractional cover
as inferred from the MESMA procedure corresponds to the
first-hit data, this means that theSphagnumabundance be-
low a dense graminoid or ericoid canopy cannot be inferred.
On the other hand, in case of loose vascular plant canopies,
a denseSphagnumbackground may lead to an underestima-
tion of the graminoid and ericoid fractional cover compared
to first hit data, as adjacency effects may lead to an overrep-
resentation ofSphagnumin the mixed signal.

For graminoids, the agreement between both methods was
less strong (R2=0.54) (Table 2), with the field spectroscopy
method giving a higher estimate at low covers and a lower
estimate at dense cover. Graminoids were not well developed
in June yet, and contained a high fraction of dead standing
litter for some species which might not be well represented
in the graminoid endmember spectra.

For the ericoid shrubs, the agreement between the two
methods was weak (R2=0.19) when the shade fraction was
not assigned to the shrub fraction. When summing up the
shrub and the shade fraction, the agreement between point
intercept and field spectroscopy inferred results was much
higher (R2=0.43).

The field spectroscopy method generally yielded a higher
estimate at low cover and a lower estimate at dense cover,
although the deviation from the 1:1 line was less than for the
graminoids.
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Fig. 3. Relationship between fractional cover estimates using point
intercept method (Fractional cover (% first hits) and field spec-
troscopy (Fractional cover – FS) for 3 PFTs following Scenario 2.

3.2.2 Scenario 2 results (plots with assigned endmember
model and high RMSE)

The exclusion of plot results showing a model fit signifi-
cantly deviating from the mean (i.e. RMSE>0.011) lead to
an improved fit with the point intercept methodology (Ta-
ble 2). The correlations improved toR2=0.81 forSphagnum,
R2=0.57 for graminoids, andR2=0.54 for shrubs with sig-
nificance levels of p=0.002, p<0.001, and p<0.001, respec-
tively (Fig. 3). Further, the fit equations move closer to a 1:1
relationship for all three PFTs (Table 2). When summing up
the shrub and graminoid fractions to a vascular plant frac-
tion, the point intercept and MESMA inferred results corre-
late with a similar fit (R2=0.82). The small difference be-
tween theSphagnumand the vascular plant fit quality can be
explained by the RMSE.

It should be noted that the exclusion of the two data
points relies on a statistical quality measure of the fit of the
MESMA procedure and is not based on any information in-
ferred from the point intercept methodology. The RMSE can
be used as a quality measure to identify outliers – if the spec-
trum cannot be reasonably explained by provided endmem-
bers, the RMSE will deviate from the mean RMSE and cor-
responding results need further investigation.

3.2.3 Scenario 3 results (MESMA run based on visible
spectral range)

Even though the MESMA quality indicators are good, the
poor correlation results of the fractional cover with data from
the point intercept methodology (e.g.R2=0.47 for Sphag-
num, Table 2) show how important the longer wavelength
ranges (i.e. near-infrared and shortwave infrared) are to dis-
tinguish between PFTs in peatlands.Sphagnumshows dis-
tinct water absorption features in the longer wavelength
range due to its high water holding capacity, and pigmenta-
tion alone in the visible range is not sufficient to distinguish
between the three PFTs.
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3.3 Biomass

The MESMA fractional cover based on Scenario 2, as well
as the fractional cover inferred from point intercept data were
finally correlated to the biomass.

For Sphagnumthere was no relationship (R2
≤0.03) be-

tween fractional cover and biomass, irrespective of the
method used (Fig. 4 top). This result is expected as the
Sphagnumshielded by the graminoid and ericoid leaves was
not detected by both methods, while it contributes consider-
ably to the biomass.

For graminoids however, biomass was surprisingly well
related (R2=0.57) to the fractional cover estimate derived
from field spectroscopy, but not to the estimate derived from
the point intercept method (R2=0.26). The graminoid frac-
tional cover as inferred by MESMA varies between 0.02
and 0.7, with an average value of 0.28. This intermediate
vegetation density allows getting a rough approximation of
the biomass through the fractional cover as inferred from
MESMA.

For the ericoid shrubs, there was an opposite response.
Here biomass was better predicted by the fractional cover es-
timate derived from the point intercept method (R2=0.44),
than by the estimate derived from field spectroscopy
(R2=0.14).

When again summing up the shrub and graminoid fraction
for the point intercept and MESMA approach, they showed
an improved correlation with the biomass ofR2=0.65 and
R2=0.60, respectively.

4 Discussion and conclusions

The application of the MESMA algorithm has proven to be
an appropriate methodology to separateSphagnumfrom vas-
cular plant fractional cover in the selected peatland test site.
The low RMSE values obtained show that generally the se-
lected endmembers and corresponding abundances fit well
with the plot level spectrum. This result is certainly influ-
enced by the fact that all spectra were obtained with the same
instrument and thus same spatial and spectral resolution and
under comparable solar angles and weather conditions. Un-
like earlier studies, we present reflectance spectra of all PFTs
of peatlands under natural illumination conditions as mixture
and in pure species coverage.

Compared to the endmembers used by Sonnentag et
al. (2007), theSphagnumversus vascular plant endmembers
of this study show different reflectance behaviour. In our
dataset, theSphagnumreflectance is generally higher than
most vascular plant spectra in the spectral range of the Land-
sat TM band 4 (760–900 nm), and always lower in band
5 (1550–1750 nm) and 7 (2080–2350 nm), while it is the
opposite in the Sonnentag et al. (2007) study. This oppo-
site reflectance behaviour may partly stem from the different
species and structure of the canopy, because the study site of
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Fig. 4. Relationship for three PFTs between fractional cover esti-
mates and biomass for point intercept method (left) and field spec-
troscopy (right). Biomass refers to aboveground dry biomass for
graminoids and shrubs and upper 7 cm forSphagnum.

Sonnentag et al. (2007) included also tree species which were
not present in our case. On the other hand it should be noted
that they inferred the moss endmembers from field spectrom-
eter data while the vascular plant endmember is based on
the TM image. Different scattering and adjacency effects
present in field and satellite measurements, even when com-
pensated properly for atmospheric effects and illumination
geometries, may result in biases which do not relate to in-
herent properties of the PFTs. As the endmembers are cru-
cial for the MESMA procedure, it is recommended to care-
fully investigate their consistency and reliability for the cor-
responding test site.

The wavelength test shows that with visible and NIR
wavelengths only, the MESMA algorithm finds mathemati-
cally suitable solutions to the inversion problem, expressed
by the relatively low RMSE. However, the resulting abun-
dances do not correlate well with the fractional cover as in-
ferred from the point intercept methodology. This is an im-
portant finding for upscaling purposes, as many of the oper-
ational and higher resolution satellites (e.g. Landsat ETM+
and TM) do not cover the spectral range of the well-defined
water absorption bands shown by theSphagnumendmem-
ber. Nevertheless a combination of the green, NIR and SWIR
band might still lead to satisfactory results. However, this
means that the absolute reflectance values of the endmembers
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have to be determined very carefully as the water absorp-
tion feature cannot contribute to identify the properly match-
ing endmembers. This shows the need to perform more de-
tailed analysis when reducing the spectral resolution for the
MESMA procedure.

This study demonstrated that based on spectrometer data,
Sphagnumfractional cover can successfully be distinguished
from vascular plant fractional cover. However, the parti-
tioning of the vascular plant fractional cover into a shrub
and graminoid fraction was less successful and needs fur-
ther work with respect to endmember measurements. This
includes the measurement of shade endmembers to replace
the photometric shade which is wavelength independent, as
well as a careful experimental setup in terms of solar angle
and corresponding reflectance anisotropy effects.

We acknowledge that under less optimal conditions (e.g.,
very noisy data, less optimal endmember selection (such as
not covering all abundantSphagnumcommunities), or us-
ing airborne data without atmospheric compensation), higher
uncertainties might result due to further increasing the ill-
posedness of the inverse problem. It is only recommended
to transfer the presented endmember spectra or correlations
as presented in Table 2 to other research sites, when working
with similar abundances of species. Otherwise we suggest
adapting the analysis to the area of interest by using in situ
endmember reflectance spectra; or alternatively, laboratory
measured endmember spectra of individual species.

The above results lead to the following conclusions for the
application to assess and predict the C cycle in peatlands:

1. The presented methodology can be used to map open
Sphagnumpatches and consequently apply a water-based in-
dex on the pureSphagnumspectra as a proxy for the near-
surface hydrological conditions to detect drought conditions
(methodology as presented in Harris et al. (2006)). Reduc-
tion of the near-surface water content can lead to a reduction
in rates ofSphagnumgrowth and therefore, C fixation. Harris
et al. (2006) mentioned that theirSphagnummapping proce-
dure, based on a mixed tuned match filtering approach, was
largely an iterative process and may increase user bias and
reduce accurate repeatability due to the manual adjustment
of the threshold. After the careful selection of the endmem-
bers, the MESMA approach applied in this study proved to be
very stable, and revealed reasonable results even without ap-
plication of a threshold. Applying a standard threshold to the
product quality output (mean RMSE plus 2 standard devia-
tions) resulted in anR2=0.81 forSphagnumandR2=0.82 for
vascular plants (sum of shrub plus ericoid fractional cover)
when compared to point intercept methodology data.

2. The partitioning of the vascular plant cover into shrub
and graminoid fraction is still limited. This is not such
a problem for boreal peatlands, where litter decomposition
rates are less defined along graminoid-shrub lines. However
this limitation will increase uncertainties when inferring C
turnover for more temperate peatlands, as they show big-
ger differences in decomposition rates between graminoid

and shrub litter (Dorrepaal, 2007). We see the potential to
improve the pure endmembers of the shrubs as the mixed
shrub endmember we used showed the influence of the
Sphagnumreflectance. Further, the shade of the graminoids
and the ericoids on different backgrounds (i.e.,Sphagnum,
graminoids, and ericoids) should be measured separately, re-
placing the photometric shade by a wavelength dependent
shade. PFT specific shade would also partially compensate
for the non-linear scattering contributions of the vegetation
canopy which is currently neglected by the MESMA ap-
proach. Once the partitioning into shrubs and graminoids
has improved, the fractions of the three PFTs can directly be
used to assess the C sequestration potential of the observed
peatland. The observation of the vegetation composition in
combination with wetness indicators will lead to a better es-
timation of the net ecosystem CO2 exchange as suggested by
Strack et al. (2006), who emphasize the importance to com-
bine ecological and hydrological indicators.

This study is a step towards using spatially continuous
mapping of theSphagnumversus vascular plant fractional
cover over time to monitor potential vegetation succession as
induced by changes in hydrology or nutrient availability (e.g.
nitrogen deposition) and related changes in the C cycle.
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