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Abstract. Iron availability and temperature are important
limiting factors for the biota in many areas of the world
ocean, and both have been predicted to change in future cli-
mate scenarios. However, the impacts of combined changes
in these two key factors on microbial trophic dynamics and
nutrient cycling are unknown. We examined the relative
effects of iron addition (+1 nM) and increased temperature
(+4◦C) on plankton assemblages of the Ross Sea, Antarctica,
a region characterized by annual algal blooms and an active
microbial community. Increased iron and temperature indi-
vidually had consistently significant but relatively minor pos-
itive effects on total phytoplankton abundance, phytoplank-
ton and microzooplankton community composition, as well
as photosynthetic parameters and nutrient drawdown. Unex-
pectedly, increased iron had a consistently negative impact
on microzooplankton abundance, most likely a secondary re-
sponse to changes in phytoplankton community composition.
When iron and temperature were increased in concert, the re-
sulting interactive effects were greatly magnified. This syn-
ergy between iron and temperature increases would not have
been predictable by examining the effects of each variable
individually. Our results suggest the possibility that if iron
availability increases under future climate regimes, the im-
pacts of predicted temperature increases on plankton assem-
blages in polar regions could be significantly enhanced. Such
synergistic and antagonistic interactions between individual
climate change variables highlight the importance of multi-
variate studies for marine global change experiments.

Correspondence to:D. A. Hutchins
(dahutch@usc.edu)

1 Introduction

The Ross Sea, Antarctica is the location of one of the world’s
largest annual algal blooms (Smith et al., 2000). These algal
blooms are characterized by spatial shifts in taxonomic com-
position across the region (Arrigo et al., 2000). The colo-
nial prymnesiophytePhaeocystis antarcticatypically dom-
inates phytoplankton assemblages of the southern and cen-
tral polynya areas of the Ross Sea during mid- to late aus-
tral spring, peaking in early summer (DiTullio and Smith,
1996; Smith et al., 2003). Diatom assemblages, usually com-
posed ofFragilariopsis and/orThalassiosira, dominate the
portions of the Ross Sea near the edge of the polynya, par-
ticularly in the west (Arrigo et al., 1999; Leventer and Dun-
bar, 1996). These and other diatom species such asPseudo-
nitzschiaspp. are, however, also present throughout the
polynya (Garrison et al., 2003). Heterotrophic protists have
been reported to achieve high biomass in Antarctic marine
systems (Caron et al., 2000; Dennett et al., 2001; Garrison,
1991; Garrison and Gowing, 1993). However, the impact of
micro- and mesozooplankton grazing on phytoplankton as-
semblages dominated by colonialP. antarcticaappears to be
relatively minor (Caron et al., 2000; Haberman et al., 2003).

In the two decades since the pioneering experiments of
Martin (1990) and deBaar (1990), iron limitation has come
to be generally recognized as a primary “bottom-up” control
on phytoplankton growth in the Southern Ocean. Both ship-
board (Boyd et al., 1999; Hare et al., 2005; Hutchins et al.,
2001; Scharek et al., 1997; Takeda, 1998) and in situ (Boyd
et al., 2000; Coale et al., 2004; Gervais et al., 2002) ex-
periments have repeatedly demonstrated that iron availability
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strongly constrains the biology and biogeochemistry of most
of the open high nutrient low chlorophyll (HNLC) Southern
Ocean.

Parts of the coastal Southern Ocean are also strongly iron-
limited, at least on a seasonal basis. As in other iron-limited
continental shelf waters off California and Peru (Firme et al.,
2003; Hutchins and Bruland, 1998; Hutchins et al., 2002),
the combination of limited iron inputs and high biological
demand leads to annually recurring summertime iron limita-
tion in the southern Ross Sea (Coale et al., 2003; Martin et
al., 1990; Maucher and DiTullio, 2003; Olson et al., 2000;
Sedwick et al., 2000). In this region, mixed-layer dissolved
Fe concentrations can be<0.1 nM during the growing sea-
son, (Coale et al., 2003; Fitzwater et al., 2000; Sedwick et al.,
2000). Since melting sea ice may be a major source of bio-
logically available iron (Sedwick and DiTullio, 1997), future
changes in ice cover could lead to large shifts in the avail-
ability and timing of iron inputs in the Ross Sea.

In general, global change effects are expected to be man-
ifested earlier and most severely in the Southern Ocean
(Sarmiento et al., 1998). The Antarctic peninsula has experi-
enced perhaps the fastest rate of warming and ice loss on the
planet (Vaughan et al., 2003). In view of the expected mini-
mum global temperature rise of 1–3◦C over the next century
(Alley et al., 2007), the broad future trends in coastal Antarc-
tic ecosystems seem likely to include further widespread
warming and ice retreat. If so, these changes in seasonal
ice dynamics and accompanying increased stratification ef-
fects will lead to major changes in mixing regimes, nutri-
ent supplies, and light environments experienced by Antarc-
tic phytoplankton (Boyd and Doney, 2002; Montes-Hugo et
al., 2009). Experiments in other high latitude regimes such as
the Bering Sea and North Atlantic have already demonstrated
the potential for significant effects of increased temperature
on plankton assemblages, including changes in community
composition, photosynthetic rates, nutrient drawdown and
microbial food web dynamics (Feng et al., 2009; Hare et al.,
2007; Rose et al., 2009).

Less is known for certain about future shifts in iron sup-
plies to the iron-limited phytoplankton communities of the
Ross Sea. Since the largest current sources of iron to surface
waters here are vertical mixing and seasonal sea ice melt-
ing (Coale et al., 2003; Fitzwater et al., 2000; Martin et al.,
1990; Sedwick and DiTullio, 1997; Sedwick et al., 2000),
iron availability is highly vulnerable to anticipated climate
change impacts. Reduction of these sources of iron to the
Ross Sea under future global change scenarios would result
in intensification of current iron limitation of phytoplankton
growth. However, other potential sources of bioavailable iron
could increase at the same time, such as melting glacial ice
and icebergs (Overpeck et al., 2006; Raiswell et al., 2006,
2008) or even significant local aeolian input as snow cover
retreats and exposes new soil on the adjacent continent. It
has been suggested that the Ross Sea is freshening due to
increased precipitation, decreased sea ice production and in-

creased melting of the West Antarctic Ice Sheet (Jacobs et
al., 2002). All of these can be significant sources of iron,
so iron inputs to the Ross Sea may already be changing.
Additionally, there is evidence that existing aeolian inputs
from more distant continental sources such as Australia may
change with a changing climate (Revel-Rolland et al., 2006).
The future trends in iron inputs to the Ross Sea cannot be
reliably predicted at present, but it seems inevitable that both
iron supply and sea surface temperature will differ substan-
tially from today’s norms in the Ross Sea, with unknown
consequences for regional food webs. In this study, we at-
tempt to address this issue by examining the biological and
biogeochemical interactions between iron availability and in-
creased temperature in an experiment using a Ross Sea phy-
toplankton and microzooplankton community.

2 Methods

2.1 Experimental design

Experiments were conducted during the CORSACS (Con-
trols On Ross Sea Algal Community Structure) expedition in
January 2006 to the Ross Sea, Antarctica, onboard the RVIB
Nathaniel B. Palmer (cruise NBP-0601). Water was collected
at 75.00◦ S, 177.36◦ E using a trace metal clean towed-intake
surface water Teflon diaphragm pumping system (Bruland
et al., 2005). Water was prescreened through acid-washed
200µm Nitex mesh to eliminate large zooplankton and col-
lected into a 50-L mixing carboy. Collected water was gently
mixed and dispensed into 12 4.5-L acid washed trace metal
clean clear polycarbonate bottles for incubation. Half of the
bottles were spiked with 1.0 nM FeCl3 (final concentration)
at the beginning of the experiment. Bottles were incubated
in two temperature controlled deck-board incubators (Feng
et al., 2009; Hare et al., 2007). Incubators were screened
to 18% ofIo using two layers of neutral density filter. One
incubator was kept at ambient temperature (0◦C), while the
temperature in the other was gradually increased to 4◦C over
the course of 24 h. Bottles were incubated for seven days and
sampled daily under a laminar flow hood using trace metal-
clean techniques. Daily sampling included total chlorophyll,
nanophytoplankton abundance,Fv/Fm and dissolved nutri-
ents. Additional samples were taken at time zero, on day 4
and the final day for>20µm chlorophyll, particulate nutri-
ents, diatom and microzooplankton abundance and biogenic
sulfur. Samples for phytoplankton pigments (determined by
HPLC) and total dissolved iron were taken on the initial and
final days of the experiment.
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2.2 Plankton assemblage measurements

Chlorophyll samples (50–250 mL) were filtered onto either
a GF/F or a 20µm polycarbonate filter using low vacuum
pressure. Samples were extracted for at least 24 h in the dark
at −20◦C in 90% acetone and read on a Turner Designs flu-
orometer (Welschmeyer, 1994). Nanophytoplankton abun-
dance was determined using flow cytometry. Two milliliters
of sample were preserved in 1% seawater-buffered, 0.2µm-
filtered formalin (final concentration) and frozen at−80◦C
until analysis. Samples were run on a FACSCalibur flow
cytometer for 5 min on the high flow rate setting (Camp-
bell, 2001). Nanophytoplankton were identified on two-
dimensional cytograms based on forward scatter (FSC) and
red fluorescence (FL3).

Photochemical efficiency of PSII was measured using a
MBARI 4th generation bench-top fast repetition rate flu-
orometer (FRRF) (Kolber et al., 1994). Samples were
collected each day from experimental bottles, immedi-
ately placed on ice and kept in low light conditions (5–
10 mol photons m−2 s−1) for 30–40 min prior to analysis.
The light and cuvette chamber were constantly flushed with
dry nitrogen gas to avoid condensation on the exterior of the
cuvette due to the temperature difference between the cold
seawater and the laboratory air. Minimal (F0) and maximal
(Fm) fluorescence and the effective absorption cross section
(σPSII) were calculated from each single turnover (ST) sat-
uration curve. The maximum quantum yield efficiency for
PSII (Fv/Fm) was calculated (Genty et al., 1989) by normal-
izing Fm by the difference between the fluorescence at satu-
ration (Fm) and the minimum fluorescence (F0):

8max
PSII=

Fm−F0

Fm
=

Fv

Fm
(1)

Samples for taxon-specific pigments (600–1000 mL) were
filtered under low vacuum onto GF/F filters and frozen in
liquid nitrogen until analysis using high performance liq-
uid chromatography (HPLC). An automated Hewlett Packard
1100 HPLC system was used to separate pigments with a
reverse-phase Waters Symmetry C-8 column and a solvent
gradient containing methanol, aqueous pyridine, acetone,
and acetonitrile (Zapata et al., 2000; DiTullio and Geesey,
2002). A diode array detector was used to record pigment
spectra between the wavelengths 350 and 600 nm, as well
as continuous chromatograms at 410, 440, and 455 nm ev-
ery 5 s, and Chl-a andc were quantified with an HP 1046A
fluorescence detector (excitation 421 nm, emission 666 nm).
Unialgal laboratory cultures with the appropriate pigments
were used to generate purified pigment standards for system
calibration (DiTullio and Geesey, 2002).

Total diatom abundance and community composition was
determined for samples preserved with 1% glutaraldehyde
(final concentration) and stored in the dark at 4◦C until anal-
ysis. Twenty-five mL samples were settled in Utermöhl

chambers for at least 18 h and enumerated using light mi-
croscopy at 400x magnification with a Zeiss Axiovert S100
inverted microscope (Uterm̈ohl, 1958). Diatoms were identi-
fied to the genus level. Total microzooplankton abundance
and community composition was determined for samples
preserved with 10% acid Lugol’s solution (final concentra-
tion) and stored in the dark at room temperature until analysis
(Throndsen, 1978). One hundred mL samples were settled in
Utermöhl chambers for at least 18 h and enumerated using
light microscopy at 200x magnification. Microzooplankton
were identified to the genus level. The use of acid Lugol’s
solution obscured Chl-a fluorescence and made it impossi-
ble to distinguish phototrophic from heterotrophic dinoflag-
ellates based on autofluorescence. However, certain het-
erotrophic dinoflagellates such asProtoperidiniumandGy-
rodiniumcould be identified based on morphology, and were
thus included in the counts.

2.3 Dissolved and particulate nutrients and dissolved
iron

Samples for dissolved nutrients were 0.2µm filtered and im-
mediately analyzed using a Lachat QuikChem 8000 Flow
Injection Analysis System. The precision of the nutrient
analyses were as follows: phosphate 0.7%, nitrite 2.5%,
nitrate + nitrite 1.0%, silicic acid 0.5%. Total dissolved
Fe concentrations were filtered through 0.4µm track-etched
polycarbonate filters (Nuclepore Whatman) and acidified to
pH 1.7 with 4 mL−1 sub-boiled distilled HCl. Total dis-
solved Fe was measured using adsorptive cathodic stripping
voltammetry (ACSV) (Buck et al., 2007). A 5 mM salicy-
laldoxime (SA: Aldrich,≥98%) solution was first prepared
in quartz-distilled methanol (Q-MeOH) and stored in the re-
frigerator. A final concentration of 25µM SA was used
for total dissolved Fe measurements. A 1.5 M borate buffer
was made in 0.4 mol L quartz-distilled ammonium hydrox-
ide (Q-NH4OH) as previously described (Ellwood and Van
den Berg, 2000). The voltammetric system consisted of
Princeton Applied Research (PAR) 303A interfaced with a
computer-controlled AutolabII potentiostat/galvanostat (Eco
Chemie). The working electrode was a “large” mercury drop
(2.8 mm2), the reference electrode was Ag: saturated AgCl,
saturated KCl, and the counterelectrode was a platinum wire.

Acidified samples were microwaved 2×15 s at 1100 W
to release dissolved Fe from ambient organic ligands (Bru-
land et al., 2005), neutralized once with cool 1 mol L−1

QNH4OH, and buffered to pH 8.2 with the borate buffer.
Once buffered, Fe and SA additions were made and follow-
ing ACSV analysis Fe concentrations were determined from
a linear regression of the standard addition curve. The detec-
tion limit for the ACSV method is 0.02 nmol L−1, calculated
from three times the standard deviation of a 0.05 nmol L−1

Fe addition, as no peak is observed in either Milli-Q or ultra-
violet (UV)-oxidized seawater (from which trace metals and
metal-chelating organic ligands are removed from seawater;
(Donat and Bruland, 1988) at deposition times of up to 600 s.
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Deposition times for sample analyses here were between 60
and 400 s, depending on ambient Fe concentrations. The pre-
cision of this technique for replicate samples is less than 4%.

Total particulate carbon and nitrogen samples (150–
250 mL) were filtered at low vacuum onto GF/F filters that
had been precombusted at 450◦C for 2 h. Filters were then
dried at 60◦C. Samples were analyzed with a Finnigan Delta
Plus mass spectrometer and a Carlo Erba NA1500 elemental
analyzer/Conflo II. Elemental compositions were measured
using the mass 44 beam intensity (V) on the Delta Plus and
calibrated against the mass 44 beam intensity of at least five
standards also analyzed during each run of 40 samples. Total
particulate phosphorus samples (100–200 mL) were gently
filtered onto precombusted GF/F filters and rinsed with 2 ml
0.12 mol L−1 Na2SO4. Filters were placed overnight in pre-
combusted (450◦C, overnight) 20 mL borosilicate glass scin-
tillation vials with 2 mL 0.017 mol L−1 MnSO4. Vials were
covered with aluminum foil, dried at 95◦C and stored dessi-
cated until analysis. Total particulate phosphorus content
was determined as follows: vials and filters were combusted
at 450◦C for 2 h, cooled, and 5 mL 0.2 mol L−1 HCl was
added to each vial. Vials were capped and heated to 80◦C
for 30 min to digest particulate organic phosphorus into inor-
ganic phosphate, and digested samples were analyzed using
the standard molybdate colorimetric method (Solorzano and
Sharp, 1980). Biogenic silica samples (100–250 mL) were
gently filtered onto 0.6µm polycarbonate filters, dried at
60◦C and stored at room temperature until analysis. Samples
were analyzed according to Brzezinski and Nelson (1995).

2.4 DMS/DMSP

Samples for dimethylsulphide (DMS) and dimethylsulpho-
niopropionate (DMSP) were collected using the method-
ology of Kiene and Slezak (2006). A small volume of
each sample (≤15 mL) was gravity filtered through a 25 mm
Whatman GF/F filter and the filtrate collected for the imme-
diate determination of DMS. A second gravity-filtered sam-
ple (≤20 mL) was collected and the filtrate preserved with
50% sulfuric acid for the determination of dissolved DMSP
(DMSPd). Aliquots of the unfiltered samples (≤20 mL)
were preserved with 50% sulfuric acid (100µL per 10 mL
of sample) for the determination of total DMSP (DMSPt).
All DMSP samples were stored at 0◦C until they could be
analyzed, which was within three days of their collection.
Upon analysis, the DMSP samples were base-hydrolyzed
(2 mol L−1 sodium hydroxide) and measured as DMS us-
ing a cryogenic purge and trap systems coupled to either a
Hewlett-Packard 5890 Series II gas chromatograph and an
Agilent 6890 gas chromatograph that were fitted with flame
photometric detectors (DiTullio and Smith, 1995). Both sys-
tems were calibrated using constant-temperature DMS per-
meation devices (Vici Metronics) and DMSP standards (Re-
search Plus Inc). Particulate DMSP (DMSPp) was calculated
as the difference between DMSPt and DMSPd.

2.5 Statistical analyses

Main effects (the effect of an independent variable on a de-
pendent variable averaging across the levels of any other
independent variables) of iron and temperature individually
and interactions between these two variables were compared
across treatments using a modified two-way ANOVA analy-
sis based on a percentile bootstrap method (Wilcox, 2003).
This method was chosen over the classic two-way ANOVA
because it does not have the assumptions of normality or
homoscedasticity and generally has higher power. All tests
were done at theα=0.05 level. The statistical software pro-
gram R version 2.5 was used to perform all tests (http://www.
r-project.org). Diatom and microzooplankton community-
level analyses were completed using multivariate statistics.
The ecological statistical software program PRIMER v.6 was
used to perform all multivariate analyses (Clarke and Gorley,
2006; Clarke and Warwick, 2001). A square root transforma-
tion was applied to data to slightly increase the contribution
of rarer species to the measure of similarity among samples.
The Bray-Curtis coefficient was used to generate the simi-
larity matrix. Non-metric multidimensional scaling (MDS)
was used to visualize high-level sample relationships in two
dimensions. The relationships between individual samples
based on whole communities within each were compared
using this technique. Each symbol on an MDS plot repre-
sents an entire community (in this case, either diatoms or
microzooplankton) from a single sample. Two samples with
relatively similar assemblages (e.g., replicates from a single
treatment at a single time) have symbols located very close
to each other on a two-dimensional MDS plot. Two samples
with relatively different communities (e.g., samples from dif-
ferent treatments or samples from different times) have sym-
bols located relatively far away from each other on the same
two-dimensional MDS plot. The MDS plots illustrate rela-
tive differences between samples within a group. Since the
distances plotted are relative and not absolute, the axes of
an MDS plot are without absolute scale. The significance
of treatment effects on community composition were deter-
mined using the two-way crossed ANOSIM test (Clarke and
Green, 1988). This procedure uses ranked similarities and
a permutation test to compare the overall similarity of sam-
ples assigned to groups based on individual variables (iron
and temperature) to the overall similarity of samples between
variable groups to determine the significance level of com-
munity composition differences between variables. Micro-
zooplankton taxa that were significant contributors to ob-
served differences in community composition between treat-
ments were identified using the BEST procedure in PRIMER
v.6. (Clarke, 1993).
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Fig. 1. Size-fractionated chlorophyll-a concentrations.(A) 0.2µm,
total phytoplankton assemblage;(B) >20µm size fraction. Error
bars indicate one standard deviation.

3 Results

3.1 Plankton assemblages

Total chlorophyll and the>20µm chlorophyll size fraction
both increased in all treatments over the course of the ex-
periment (Fig. 1). Final day total chlorophyll was lowest in
the control treatment, higher in the high temperature treat-
ment, and higher still in the high iron treatment. However,
total chlorophyll-a was by far highest in the high iron, high
temperature (combined treatment) (Fig. 1a). There were sig-
nificant main effects for both variables and significant inter-
action between both variables on the final day of the experi-
ment (allp <0.001). On the final day of the experiment, the
>20µm size fraction constituted the majority of total chloro-
phyll, from 57% in the control treatment to 63 and 64% in the
high temperature and iron treatments respectively, and 76%
in the combined treatment (Fig. 1b).

Nanophytoplankton abundance was also significantly
greater in all three experimental treatments over controls by
the end of the experiment (allp <0.001; Fig. 2a). Both high
temperature and iron treatments had significant but relatively
minor main effects on nanophytoplankton abundance, and
there were also significant interactions between these vari-
ables, with final abundances in the combined treatment more
than double any other treatments. We also observed signifi-
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Fig. 2. Phytoplankton assemblages.(A) Nanophytoplankton abun-
dance estimated by flow cytometry;(B) Total diatom abundance es-
timated by light microscopy;(C) Map of relative similarities among
initial and final day diatom assemblages plotted by day and treat-
ment using non-metric multidimensional scaling (MDS). The map
illustrates relative distances between samples and thus the axes are
without absolute scale. (�) Initial phytoplankton assemblages, (•)
control, (

N

) high temperature, (◦) high iron and (4) high tempera-
ture, high iron combined treatment. Error bars indicate one standard
deviation.

cant main effects for both variables and interactions between
temperature and iron on total diatom abundance at the end of
the experiment (Fig. 2b,p <0.001). Final diatom abundance
was lowest in controls, double the control abundance in the
final high temperature treatment, and more than four times
the control abundance in the final high iron treatment. Final
diatom abundance in the combined treatment was more than
triple that of any other treatments and was more than an or-
der of magnitude greater than the abundance observed in the
final control treatment.
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The phytoplankton pigment data indicated that the fi-
nal assemblage in all treatments was dominated by di-
atoms (as indicated by fucoxanthin; Fuco) rather than hapto-
phytes such asPhaeocystis antarctica(as indicated by 19′-
hexanoyloxyfucoxanthin; 19-hex; Fig. 3). Final ratios of
19-hex/Chl-a declined from initial values in all treatments,
and only were a fraction of final Fuco concentrations (both
normalized to HPLC-based chlorophyll-a). Since Fuco pig-
ments are found in both diatoms and haptophytes (but pre-
dominantly diatoms in the Ross Sea; DiTullio et al. 2003),
and 19-hex pigments are primarily indicative of haptophytes,
this result suggests that the major contributors to Fuco pig-
ments in the phytoplankton community were diatoms. Ele-
vated Fuco: Hex ratios were measured in the two iron treat-
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Fig. 4. Photosystem II efficiency (Fv /Fm) measured over the course
of the experiment in all four treatments.

ments and were consistent with the decrease in the Hex:Chl-
a observed in those treatments (Fig. 3c). These data suggest
the preferential stimulation of diatoms following Fe addition.
The significant increase in the Fuco:Hex ratio in the com-
bined treatment is corroborated by microscope-based counts
of total diatom abundance (Fig. 2b). The diatom community
itself changed significantly over the course of the experiment
(p=0.01, Fig. 2c, Table 1). Samples significantly grouped
according to either iron concentration or temperature based
on whole community measurements of similarity (p=0.01).

Microscopic diatom cell counts showed a community shift
from initial dominance byChaetocerossp. andNitzschiasp.,
to a final assemblage largely dominated byCylindrotheca
sp. andThalassiosirasp. in all treatments (Table 1). The
large chain-forming, heavily-silicified diatomsChaetoceros
sp. andFragilariopsis sp. were also relatively important
contributors to total diatom numbers in the final samples.
For all of these dominant genera, a general pattern was ob-
served in which higher temperature alone increased their
abundance significantly above the control values, and iron
addition alone increased their numbers equally or even more.
However, by far the highest final cell abundances for all four
dominant species were seen in the combined high iron, high
temperature treatment. For example, finalCylindrotheca
sp. cell numbers in the combined treatment were 8, 16 and
70 times higher than in the high iron, high temperature, and
control treatments, respectively (Table 1).

Photosynthetic efficiency (Fv/Fm) was measured on each
day of the experiment and was consistently highest in the two
high-iron treatments (Fig. 4).Fv/Fm increased steadily from
days 0–3 from 0.44 to∼0.6 in both high iron treatments.
Fv/Fm remained at this level for the remainder of the experi-
ment in the high iron treatment. In the high iron, high temper-
ature treatment,Fv/Fm peaked at day 3 and steadily declined
to initial levels by the end of the experiment. TheFv/Fm in
both treatments without added iron slowly and consistently
declined over the course of the experiment to 0.33 on the
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Table 1. Phytoplankton community composition based on microscopic counts. All values are in cells mL−1. Numbers in parentheses
indicate one standard deviation.

T0 Control High High High Iron,
Iron Temp High Temp

Chaetocerossp. 5.8 (0.5) 100.0 (26.3) 101.0 (17.9) 99.4 (21.4) 309.7 (102.1)
Pseudo-nitzschiasp. 0.3 (0.3) 12.7 (12.1) 29.7 (14.0) 40.9 (16.5) 48.3 (37.7)
Corethronsp. 2.8 (1.3) 21.4 (3.2) 22.3 (4.9) 21.7 (10.4) 39.6 (17.6)
Fragilariopsissp. 3.2 (1.7) 66.6 (22.4) 157.3 (15.1) 87.9 (23.5) 365.4 (86.4)
Coscinodiscussp. 0.3 (0.4) 1.5 (1.1) 1.9 (3.2) 3.1 (1.4) 1.2 (2.1)
Nitzschiasp. 7.8 (3.3) 21.4 (10.7) 22.3 (6.7) 18.6 (4.8) 19.8 (11.4)
Rhizosoleniasp. 0.3 (0.2) 2.2 (1.1) 5.6 (3.2) 2.5 (0.5) 7.4 (3.7)
Cylindrothecasp. 0.4 (0.1) 61.0 (33.3) 502.3 (117.5) 269.7 (81.8) 4261.1 (262.2)
Silicoflagellate sp. 0.2 (0.1) 0.0 0.6 (1.1) 2.2 (0.5) 1.2 (2.1)
Thalassiosirasp. 0.0 0.9 (1.6) 782.2 (35.9) 49.9 (12.3) 1056.6 (113.6)
Asteromphalussp. 0.0 0.3 (0.5) 0.6 (1.1) 1.5 (2.7) 1.2 (2.1)

final day. The effects of temperature and iron individually
as well as the interaction between these two variables were
significant on the final day of the experiment (allp <0.001).

Microzooplankton abundance followed different trends
than those observed for the phytoplankton community
(Fig. 5a). Final microzooplankton abundance was higher in
the two low-iron treatments, with the highest abundance ob-
served in the high temperature treatment. Microzooplankton
abundances declined between the beginning of the experi-
ment and day 4 in the two high-iron treatments, and ended
significantly lower when compared to the two low-iron treat-
ments (p <0.001). All main effects and interactions for mi-
crozooplankton abundance were significant on the final day
of the experiment (p <0.001). Microzooplankton commu-
nity composition was also significantly different across the
four treatments (Fig. 5b, Table 2). Microzooplankton com-
munities grouped significantly according to both temperature
and iron (bothp=0.01), indicating that communities at differ-
ent temperatures and communities exposed to different iron
concentrations were significantly different in their composi-
tion. Six microzooplankton taxa were identified as being im-
portant contributors to observed changes in community com-
position: Oxyphysissp., Protoperidiniumsp., Gyrodinium
sp.,Litonotussp. and two species of scuticociliate (Table 2).

3.2 Dissolved and particulate nutrients

Dissolved nutrient concentrations declined with increased
phytoplankton biomass in all treatments over the course of
the experiment (Fig. 6). The greatest decreases in NO−

3 ,
PO3−

4 and SiOH4 all occurred in the combined treatment
by the final day of the experiment. There were significant
main effects and interactions for temperature and iron on all
three final day dissolved nutrient concentrations (p <0.001).
Total dissolved iron concentrations were considerably lower
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Table 2. Initial and final day microzooplankton community composition based on microscopic counts. All values are in cells L−1. Numbers
in parentheses indicate one standard deviation. Taxa that were identified as important contributors to community composition by the BEST
procedure (PRIMER v.6) are highlighted in bold.

T0 Control High High High Iron,
Iron Temp High Temp

Codonellopsissp. 175 (55) 50 (10) 3 (6) 7 (12) 3 (6)
Cymatocylissp. 22 (8) 50 (17) 13 (15) 17 (12) 3 (6)
Coxliellasp. 23 (23) 10 (10) 0 0 0
Didiniumsp. 28 (15) 3 (6) 3 (6) 0 3 (6)
Strombidiumsp. 1485 (510) 1110 (319) 785 (160) 1614 (766) 1857 (791)
Protoperidiniumsp. 1 387 (118) 153 (162) 136 (32) 165 (285) 191 (65)
Gyrodiniumsp. 1 1024 (380) 602 (182) 613 (167) 506 (330) 433 (174)
Oxyphysissp. 2853 (368) 3794 (340) 2731 (408) 6234 (1618) 2983 (416)
Scuticociliate sp. 1 436 (135) 209 (181) 42 (72) 58 (101) 0
Eutinntinnussp. 926 (221) 1767 (373) 1337 (416) 2232 (132) 1938 (75)
Katodiniumsp. 810 (159) 976 (335) 911 (733) 1018 (369) 509 (258)
Protoperidiniumsp. 2 1366 (608) 4054 (574) 2295 (299) 6515 (1616) 2813 (396)
Gyrodiniumsp. 2 401 (220) 441 (112) 70 (64) 148 (131) 0
Scuticociliate sp. 2 320 (164) 99 (87) 0 58 (101) 0
Litonotussp. 153 (136) 155 (152) 0 0 0

Table 3. Average production ratios calculated based on initial and final particulate nutrient concentrations and p-values obtained from the
modified two-way ANOVA analysis. Numbers in parentheses indicate one standard deviation.

Control High High High Iron, Main Main Interaction
Iron Temp High Temp Effect Iron Effect Temp

4 POC/PON 7.58 (0.22) 6.72 (0.12) 7.69 (0.23) 7.73 (0.05)< 0.001 < 0.001 < 0.001
4 POC/POP 128 (14.8) 141 (6.6) 117 (9.3) 186 (5.6) < 0.001 0.11 < 0.001
4 PON/POP 17.0 (2.34) 20.9 (1.12) 15.2 (0.76) 24.1 (0.77)< 0.001 0.68 < 0.001
4 BSi/POC 0.17 (0.01) 0.12 (0.00) 0.21 (0.01) 0.13 (0.01)< 0.001 < 0.001 < 0.001
4 BSi/PON 1.25 (0.06) 0.80 (0.04) 1.62 (0.02) 1.00 (0.06)< 0.001 < 0.001 < 0.001
4 BSi/POP 21.1 (1.86) 16.7 (0.40) 24.6 (0.39) 24.1 (1.11)< 0.001 < 0.001 < 0.001

in all treatments on the final day of the experiment than on
the initial day, including the two treatments enriched with
1 nM iron at the beginning of the experiment (Fig. 6h). Final
dissolved iron concentrations were lower in the control and
high temperature treatments than the high iron and combined
treatments, but since replicates were combined to obtain suf-
ficient volume for the measurements, we were unable to de-
termine if these differences were significant. The largest in-
creases in particulate nutrient concentrations consistently oc-
curred in the combined treatment, although effects of single
factors were also significant (p <0.001). There was a dis-
crepancy between the amount of phosphate drawdown and
particulate organic phosphorus production in all treatments.
This result may have been due to production of dissolved
organic phosphorus, which was not measured in the experi-
ment. Interactive effects of temperature and iron were sig-
nificant for all four particulate nutrients (carbon, nitrogen,
phosphorus and biogenic silica).

Average production ratios were calculated for each treat-
ment based on initial and final nutrient concentrations (Ta-
ble 3). There were significant main effects observed for iron
and significant interactions between variables observed for
all production ratios calculated (p <0001). The C:P and N:P
ratios were significantly higher in the two treatments with
added iron, especially the combined treatment (p <0.001).
BSi:C and BSi:N ratios on the other hand were higher in the
two treatments without iron, especially the high temperature
treatment (p <0.001). C:N and BSi:P ratios were similar in
all the treatments but slightly lower in the high iron bottles.
Significant interactive effects were observed for all ratios cal-
culated (allp <0.001).
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Fig. 7. Biogenic sulfur parameters over the course of the experiment. Average values for(A) DMS, (B) DMSPd, (C) DMSPp, and(D)
DMSPp:PON. Error bars indicate one standard deviation.

3.3 Dimethylsulfide and dimethylsulfoniopropionate

DMS concentrations showed only relatively small changes
between the start of the experiment and day 4. By the fi-
nal day, DMS levels in the high temperature and combined
treatments were approximately 3- and 4-fold higher than the
control (Fig. 7a). Individually, both variables had a signif-
icant effect on DMS levels on the final day and a signif-
icant interactive effect between the two variables was also
observed (allp <0.001). DMSPd levels in all treatments
were slightly lower at the end of the experiment than the ini-
tial concentration, with the combined treatment showing the
greatest decline followed by the high temperature treatment
(Fig. 7b). However, none of the changes in DMSPd concen-
trations were significant.

DMSPp concentrations increased throughout the course
of the incubation with largest increases observed between
days 4 and 7 (Fig. 7c). DMSPp levels were highest in the
combined treatment followed by high iron and high temper-
ature treatments. In all cases, the changes in the variables
had significant effects (p <0.001) on DMSPp levels both in-
dividually and synergistically. With respect to DMSPp:Chl-
a ratios, while no change was observed in the control or
high temperature treatments relative to starting conditions
(Fig. 7d), there was a significant decrease in the high iron

treatment and a synergistic decrease in the combined treat-
ment on the final day (bothp <0.001). In the case of
DMSPp:PON ratios, values in the high temperature treatment
were higher than control on both sampling days although
temperature had no significant effect (Fig. 7e). Conversely,
the addition of iron caused a significant decline (p <0.001)
in DMSPp:PON ratios, with a significantly higher decrease
observed in the high temperature treatment when normalized
to PON.

A recent study (Kiene et al., 2007) has noted that sam-
ples preserved using the Kiene and Slezak (2006) method
can underestimate DMSPt whenPhaeocystissp. is present.
Although it is not known quantitatively by how much the
DMSPp levels will be underestimated (del Valle et al., 2009;
Rellinger et al., 2009), this finding could impact the DMSPp
results obtained during the experiment. While the phyto-
plankton community was dominated by diatoms and addi-
tion of iron caused the dominance of diatoms to increase
(Fig. 3), the differences in DMSPp concentrations cannot be
considered significant as a result of presence of even a minor
amount ofPhaeocystissp. This underestimation will also
result in an underestimation of the decreases in DMSPp:Chl-
a and DMSPp:PON ratios. Moreover, the observed trends in
DMS and DMSPd also remain robust since these two param-
eters are unaffected by the preservation problem.
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4 Conclusions

Previous studies of interactive effects of iron limitation with
other factors influencing phytoplankton assemblages have
focused largely on co-limitation effects with macro- and mi-
cronutrients (Bertrand et al., 2007; Leblanc et al., 2005)
or light intensity (Boyd et al., 2001; Sunda and Huntsman,
1997). Temperature has also been recognized to play an im-
portant role in setting upper limits on physiological rate pro-
cesses in plankton (Eppley, 1972; Goldman and Carpenter,
1974), and the interactions of temperature with other envi-
ronmental variables such as risingpCO2, altered irradiance
and nutrient utilization have been examined in a few field
and lab studies (Feng et al., 2009; Goldman, 1979; Hare
et al., 2007; Lomas and Glibert, 1999; Rose et al., 2009).
Temperature has also been hypothesized to constrain growth
of heterotrophic protists relative to phototrophic protists at
the extreme low temperatures characteristic of polar regions
(Rose and Caron, 2007).

Warmer temperatures have been shown to cause large
dominance shifts in experimentally manipulated plankton
communities from other high-latitude regimes such as the
Bering Sea and the North Atlantic (Feng et al., 2009; Hare et
al., 2007; Noiri et al., 2005; Rose et al., 2009). The combi-
nation of increased iron and temperature was observed to re-
sult in shifts in phytoplankton community composition dur-
ing the SEEDS study in the western subarctic Pacific, but
only at the highest temperature examined (18◦C; Noiri et al.,
2005). Noiri et al. (2005) did not report interactive effects of
temperature and iron on other physiological and biochemical
factors, and did not examine potential changes in food web
dynamics during their experiments.

We consistently observed nonlinear, synergistic effects of
iron and temperature on phytoplankton abundance, phyto-
plankton physiology and nutrient drawdown in our experi-
ments. These enhancement effects of both variables together
were much greater than simply additive, and so could not
have been predicted based on the effects of temperature and
iron measured individually. The increase in nanophytoplank-
ton abundance in the high iron, high temperature treatment
was more than double the increase in either the high iron
or high temperature treatments, and greater than the additive
effects of those single-variable treatments combined. Sim-
ilar results for total diatom abundance were observed, with
the final day abundance in the high temperature, high iron
treatment again far exceeding the additive effects of the two
variables examined individually.

Increased temperature at high iron concentration appeared
to also bring on nutrient limitation earlier in the experiment.
Fv/Fm values were nearly identical for both high-iron treat-
ments during the initial days of the experiment and rapidly
increased to∼0.6 which is expected upon alleviation of iron
limitation (Green et al., 1994). However, the high iron, high
temperature treatment peaked on day 3 and consistently de-
creased for the remainder of the experiment. Since phyto-

plankton growth rates generally increase with increased tem-
peratures, the earlyFv/Fm peak and decline was most likely
due to the more rapid utilization of added iron and the ear-
lier onset of iron limitation. This trend was not observed
when temperatures were increased in the absence of iron ad-
dition; decreases inFv/Fm in the high temperature treatment
occurred at a nearly identical rate as those in the control treat-
ment.

Determination of the exact physiological mechanisms re-
sponsible for these non-linear impacts of combined iron in-
creases and warming will require further investigation. In
general though, physiological iron/temperature synergisms
should perhaps not be surprising. Iron plays a central role
in many cellular catalytic reactions involved in pathways
like photosynthesis and nitrogen assimilation (Hutchins and
Fu, 2008), and many of these enzymatic reactions also have
a recognized sensitivity to temperature (Raven and Geider,
1988). Since both iron availability and temperature are crit-
ical controls on many of the same biochemical pathways,
iron/temperature “co-limitation” may be a common physi-
ological feature of marine phytoplankton.

Our observations of iron stimulation of phytoplankton
abundance and photosynthetic rates, as well as growth of
large diatoms relative to other phytoplankton taxa, are con-
sistent with previous results for bottle incubations and iron
enrichment in polar waters with high silicic acid concentra-
tions. Several mesoscale iron enrichment experiments have
been conducted in Southern Ocean waters to date (Boyd et
al., 2000; Coale et al., 2004; Gervais et al., 2002). An
immediate stimulation ofFv/Fm followed by a time-lagged
increase in chlorophyll-a was observed during all three
Antarctic iron enrichment experiments (SOIREE, EisenEx
and the SoFex high-Si south patch). A taxonomic shift to
large (microplankton-sized) diatoms was observed during
SOIREE. During EisenEx and the SoFex south patch, the ini-
tial community dominance by diatoms was unchanged by the
addition of iron, although authors noted that high iron con-
centrations in EisenEx favored growth of microphytoplank-
ton relative to nano- and picophytoplankton assemblages.

Our study also points to the possibility of interactive ef-
fects of iron and temperature on plankton community ele-
mental stoichiometry (Fig. 6). These suggest that patterns
and ratios of nutrient drawdown in the future Ross Sea could
be altered by changes in both iron supply and temperature,
in addition to other recognized factors such as shifts in dom-
inant taxa (Arrigo et al., 1999). Additionally, both iron and
temperature had individual effects on community stoichiom-
etry. For instance, the decrease in Si:N uptake ratios ob-
served in the south patch during SoFeX (Coale et al., 2004)
was similar to results for the high iron treatments obtained
in our study. Similar trends have also been observed in other
Southern Ocean in situ fertilization experiments (Boyd et al.,
2000) as well as in other Fe-limited ecosystems (Hutchins
and Bruland, 1998).
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Bulk community measurements such as ours cannot distin-
guish between physiologically-driven shifts in the elemental
ratios of individual species, and stoichiometry changes due
to taxonomic shifts in the community, but both are possible.
Diatom cellular Si quotas have been shown to be inversely re-
lated to nutrient-limited growth rates (Martin-Jezequel et al.,
2000), such as the Fe-limited conditions found in our control
treatments. Using single cell synchrotron X-ray fluorescence
analyses, Twining et al. (2004) showed that Fe-induced de-
creases in Si:P ratios of the dominant diatomFragilariopsis
spp. were due to reduced cellular Si quotas following the
first Fe enrichment of the south patch during SoFex. Follow-
ing the second Fe infusion, cellular Si:P ratios of the same
species were still lower than in the unfertilized control re-
gion, but this was now due to increased cellular P quotas and
unchanged Si content. Clearly, the nature of the relationship
between cellular silicification and iron availability is com-
plex (Bucciarelli et al., 2009), and needs further investiga-
tion.

In our experiment increasing temperature alone appeared
to result in more heavily silicified diatom cells, with signif-
icant increases observed in BSi:C, BSi:N and BSi:P. Addi-
tionally, greater Si drawdown and BSi production were ob-
served in the high temperature treatment relative to the high
iron treatment, although both total chlorophyll and total di-
atom abundance were lower. This may have been a direct
response to temperature and could indicate that warming of
the Ross Sea in the absence of iron supply may lead to in-
creased silica drawdown. Blank et al. (1986) found that Si
incorporation increased 7.5 times over a 10◦C increase in
temperature in the diatomNavicula saprophilia. In contrast
though, Paasche (1980) showed that cellular Si quotas in two
species ofChaetocerosandRhizosoleniadecreased at higher
temperatures. Increases in silicic acid uptake rates with tem-
perature would make sense, if uptake is mediated mainly by
active enzymatic transport. However, recent evidence sug-
gests that at very high silicic acid concentrations (>30µM)
such as those in the Ross Sea, diatoms instead shift to a non-
saturable, diffusion-mediated uptake system (Thamatrakoln
and Hildebrand, 2008). Diffusion rates would be expected
to be much less affected by temperature increases than active
biological transport. In our experiment initial silicic acid lev-
els were near 80µM, and final concentrations were not less
than 45µM in any treatment, suggesting that temperature-
enhanced active uptake of silicic acid was probably not the
reason for the greater degree of silicification in the warmer
treatments.

Higher cellular Si quotas at elevated temperature could
have also been an indirect response to increased microzoo-
plankton grazing. Microzooplankton abundances were high-
est in the high temperature treatment by the end of the exper-
iment. Increased diatom cell wall silicification in response
to grazing pressure has been documented in the laboratory
(Pondaven et al., 2007), but not to our knowledge in natural
plankton assemblages.

Similarly, the results of this study point to changes in the
cycling of DMSP and DMS as result of increases in either
iron or temperature, and more critically, a synergistic effect
due to both iron and temperature. The observed increases in
DMSPp most likely resulted from increases in biomass since
the phytoplankton community structure showed shifts to-
wards increased diatom dominance (or a decrease in DMSP-
producing species). While the declines in DMSPp:Chl-a and
DMSPp:PON ratios also reflect this shift, it must be remem-
bered that addition of iron would affect all three parameters
individually. It would decrease DMSPp due to a reduction
in oxidative stress, alleviate any chlorosis that would result
from iron limitation, and increase nitrogen uptake (Allen et
al., 2008; Sunda et al., 2002).

Although increasing iron and temperature caused a slight
decline in DMSPd levels, those changes were quantitatively
equivalent to the observed increases in DMS. This observa-
tion suggests that the degradation of DMSP and, more im-
portantly, the relative importance of the DMS versus non-
DMS producing pathways will be affected by changing iron
and temperature regimes in a complex non-linear manner.
The changes in the both phytoplankton and microzooplank-
ton communities seen during the experiment will influence
changes in predator-prey interactions and the DMSP cycle
(Strom et al., 2003; Wolfe and Steinke, 1996; Wolfe et al.,
1997) as will variations in the presence of the DMSP-lyase
(either microbial or inPhaeocystissp.). Finally, although
uncertainities exist as to whether increasingpCO2 will in-
fluence DMS (Vogt et al., 2008; Wingenter et al., 2007), the
results of this experiment clearly show that increases in iron
and temperature will have an important impact on any cli-
mate feedback mechanism involving DMS.

The large changes in the microzooplankton community
in our experiments were somewhat unexpected. Boyd et
al. (2000) reported that ciliate abundances increased after
iron enrichment during SOIREE, but that microzooplankton
herbivory was primarily focused on the<20µm size frac-
tion. These authors suggested that microzooplankton were
unable to effectively graze the largeFragilariopsis kerguele-
nis that was favored at high iron concentrations. A similar
result was reported for EisenEx, in which microzooplankton
herbivory was focused on the pico- and nanophytoplankton
size fractions and the overall trophic dynamics in the iron
fertilization patch were believed to favor the growth of large
diatoms (Henjes et al., 2007). Rates of microzooplankton
herbivory have not been reported for SoFex. The exclu-
sion of mesozooplankton grazers in our bottle incubations
would be expected to significantly affect planktonic com-
munity structure. Removal of mesozooplankton could re-
duce top-down controls on larger microzooplankton, which
would increase grazing pressure on smaller microzooplank-
ton and heterotrophic flagellates. This type of trophic cas-
cade was reported for EisenEx, during which initial increases
in aplastidic dinoflagellates inside the fertilized patch were
eventually consumed by copepods (Henjes et al., 2007). We

Biogeosciences, 6, 3131–3147, 2009 www.biogeosciences.net/6/3131/2009/



J. M. Rose et al.: Synergistic effects of iron and temperature on Antarctic plankton 3143

do not have detailed information on microzooplankton size
distribution in our treatments but did group our counts into
<100µm and>100µm size classes. We observed decreased
abundance of large (>100µm) microzooplankton in all treat-
ments between the initial and final days of the experiment
(data not shown), suggesting that removal of mesozooplank-
ton grazers during our pre-screening process did not result in
net benefits to this portion of the community.

It is unlikely that the initial decreases in microzooplankton
abundance in the high iron treatments were due to direct inhi-
bition of microzooplankton growth by elevated iron concen-
trations. The amount of iron added to these experiments was
modest, and far below any conceivable toxicity threshold.
Iron concentrations greater than 1 nM can occasionally occur
naturally in the upper water column of the Ross Sea during
ice melt in early spring (Sedwick and DiTullio, 1997). Ad-
ditionally, the work by Twining et al. (2004, 2008) has sug-
gested that cellular iron requirements are significantly higher
for heterotrophic protists than for autotrophic protists. Based
on those results, a beneficial direct effect of iron addition on
the heterotrophic protistan assemblage could have been ex-
pected in our experiment instead of a negative one. Instead, it
seems more likely that the large changes in the diatom com-
munity composition observed over the course of the exper-
iment resulted in an algal assemblage that was less able to
be grazed by the initial microzooplankton community. The
diatom communities in both low iron treatments remained
diverse relative to the high iron treatments (Table 1). The
communities in the high iron treatments shifted from domi-
nance byNitzschiasp. andChaetocerossp. toThalassiosira
sp. in the high iron treatment andCylindrothecasp. in the
high iron, high temperature treatment. In particular, the very
long and narrow morphology of theCylindrothecamay have
been unpalatable to microzooplankton.

The microzooplankton assemblage at the beginning of the
experiment was relatively diverse, but dominated by small
heterotrophic dinoflagellates such asOxyphysissp. and small
species (∼20µm) within the generaProtoperidiniumand
Gyrodinium (Table 2). Heterotrophic dinoflagellates such
asProtoperidiniumare capable of feeding on phytoplankton
much larger than themselves using structures such as the pal-
lium (Jacobson and Anderson, 1986), and these species may
have been actively feeding on theNitzschiasp. andChaeto-
cerossp. that dominated the phytoplankton assemblage ini-
tially.

This experiment was conducted during austral summer,
with a diatom-dominated phytoplankton community that was
likely post-spring bloom. The community response to in-
creased iron and temperature would likely have been af-
fected by the season in which the experiment was performed.
For example, if the experiment had been conducted in early
spring, ambient iron concentrations may have been higher
(Sedwick et al., 2000), which could have resulted in a more
iron-replete initial community and the effects of iron addi-
tions may have been lessened. At the same time, if the
work had been conducted in early spring, ambient sea sur-
face temperature would have been lower and the effect of
increased temperature may have been greater. Additionally,
the early spring phytoplankton community in the Ross Sea
is generally dominated byPhaeocystis antarcticarather than
diatoms. We observed different effects of iron in particular
on theP. antarcticaand diatom fractions of the community
(Fig. 3a, b), suggesting that results observed for a community
dominated byP. antarcticamay have been very different.

The effects of increasedpCO2 and temperature on polar
ecosystems have been a major focus of research to date, but
it is important to remember that other physicochemical fac-
tors are also predicted to be affected by a changing climate.
The likelihood of changes in iron concentrations in combina-
tion with increased temperature highlights the importance of
multivariate experiments to identify potential interactive ef-
fects of multiple changing factors on future plankton assem-
blages. The experiments detailed here are an important first
step in examining the potential interactive effects of temper-
ature and iron concentration on phytoplankton assemblages
in the Ross Sea, Antarctica. The difference in the time scales
for bioassays and climate change limits the extent to which
bioassays can be predictive. However, it is clear from our
results that without concomitant increases in iron inputs, in-
creased temperature alone may have a smaller effect on phy-
toplankton assemblages. Finally, the potential interactive ef-
fects of temperature and iron together indicate that relatively
small inputs of iron could disproportionately benefit plank-
ton assemblages growing in a warmer future coastal Antarc-
tic ecosystem.
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