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Abstract. Rainfall regimes became more extreme over
the course of the 20th century, characterised by fewer and
larger rainfall events. Such changes are expected to con-
tinue throughout the current century. The effect of changes
in the temporal distribution of rainfall on ecosystem carbon
fluxes is poorly understood, with most available information
coming from experimental studies of grassland ecosystems.
Here, continuous measurements of ecosystem carbon fluxes
and precipitation from the worldwide FLUXNET network of
eddy-covariance sites are exploited to investigate the effects
of differences in rainfall distribution on the carbon balance
of seasonally water-limited shrubland and forest sites. Once
the strong dependence of ecosystem fluxes on total annual
rainfall amount is accounted for, results show that sites with
rainfall distributions characterised by fewer and larger rain-
fall events have significantly lower gross primary productiv-
ity, slightly lower ecosystem respiration and consequently a
smaller net ecosystem productivity.

1 Introduction

During the 20th century, precipitation intensity and the fre-
quency of large rainfall events increased (Easterling et al.,
2000; Trenberth, 2011). There was a globally consistent
increase in metrics of rainfall extremes (Tank and Konnen,

2003; Karl et al., 1996; Peterson et al., 2008; Alexander et al.,
2006). Anthropogenic climate change is expected to inten-
sify this shift towards fewer, larger rainfall events (Trenberth
et al., 2003). For the 21st century, general circulation models
predict little change in total rainfall, but an increase in the fre-
quency of heavy rainfall events (Tebaldi et al., 2006). Many
regional climate change projections anticipate increased sea-
sonality in precipitation (Manabe and Wetherald, 1987), and
consistently drier summers over entire regions (e.g., southern
and central Europe:Rowell and Jones, 2006).

While the impacts of differences in total rainfall amount
on terrestrial ecosystem productivity have been studied for
a range of ecosystems and climate regions (Wu et al.,
2011; Huxman et al., 2004b), the ecological implications of
changes in the temporal structure of rainfall, i.e. a shift to-
wards fewer and larger rainfall events, have received less at-
tention; results have so far been inconclusive (Jentsch et al.,
2007). Almost all experimental field studies manipulating
rainfall amount or distribution have been conducted on an-
nual plant communities or perennial grasslands (Knapp et al.,
2002; Miranda et al., 2009), because of the difficulty of per-
forming manipulation experiments on taller canopies (excep-
tions includeVolder et al., 2010; Limousin et al., 2010; Mis-
son et al., 2010). Despite the potential impact of changes in
temporal patterns of rainfall distribution on shrublands and
forests, data for these ecosystems is sparse. There are even
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few remote sensing studies that address this issue (Fang et al.,
2005; Good and Caylor, 2011).

Studies on grassland ecosystems indicate that increases
in rainfall variability may exert as strong a control on fu-
ture biogeochemical cycles as changes in total rainfall, at-
mospheric warming or increases in atmospheric carbon diox-
ide concentrations (Knapp et al., 2002; Weltzin et al., 2003).
It is clear that the “repackaging” of rainfall and its “trans-
lation” into soil moisture available for uptake by plants is
strongly influenced by the temporal distribution of rainfall
events (Heisler-White et al., 2008; Loik et al., 2004), but
there is no clear consensus on the impact of varying rain-
fall distributions on the productivity of different ecosystems.
From an ecohydrological point of view, the optimal distribu-
tion of rainfall event size and frequency for a given biogeo-
chemical process is expected to vary with total rainfall quan-
tity, and to depend on the details of the processes of intercep-
tion, run-off, drainage and evapotranspiration (Rodŕıguez-
Iturbe et al., 2001; Porporato et al., 2001; Laio et al., 2001).
The effects on these processes of changes in the temporal pat-
tern of delivery of rainfall, including feedbacks on transpira-
tion and soil water balance via altered stomatal conductance,
will depend on soil water retention properties and ecosystem
type as well as total annual rainfall amounts, making pre-
diction and modelling difficult.Knapp et al.(2008) propose
a conceptual model, hypothesising that greater rainfall vari-
ability will increase soil water limitation in mesic systems
but decrease stress in xeric systems, because increased soil
water content variability will be unfavourable for normally
unstressed mesic systems but favourable for predominantly
stressed xeric systems.

The effects of changes in rainfall variability are likely to
differ between ecosystems because of variations in canopy
structure, rooting depth and the ability of some dominant
species to tolerate water stress (Porporato et al., 2001). In
particular, the effects of changes in rainfall variability on net
ecosystem productivity (NEP) will depend on the magnitude
and timing of changes of gross primary productivity (GPP)
and ecosystem respiration (RE). There is evidence that the
response timescales of microbial soil respiration and plant
photosynthesis to rain pulses can be quite different (Williams
et al., 2009; Huxman et al., 2004b; Scott et al., 2006); the
relative timing as well as magnitudes of these changes will
most likely vary between ecosystems (in this paper, we con-
sider both RE and GPP to be positive, and use the term
net ecosystem productivity, NEP, to refer to the difference
NEP = GPP− RE ).

In this study, we focus on relationships between rain-
fall and ecosystem fluxes in seasonally dry shrublands and
forests. These ecosystems are characterised by periods of
pronounced summer drought, and the primary limitation on
plant productivity is water availability, with water supply
from precipitation significantly smaller than plant demand
(as measured by potential evapotranspiration). Plants in
these climatic regions have developed a range of adaptations

to the intermittency of water supply and long periods of
drought, including drought-deciduousness (e.g. someQuer-
cusspecies), sclerophyllous leaf habits, stomatal regulation
(Zavala and de la Parra, 2005; David et al., 2007; Rambal,
1992), and tap roots to exploit water reserves in deeper soil
layers (Schenk and Jackson, 2002; Moreno et al., 2005; Ram-
bal, 1984). Although not necessarily higher in diversity than
grasslands at the level of species counts, these communi-
ties are physiologically and ecohydrologically more com-
plex: woody perennials have more extensive root systems
than grasses, allowing them to access water from different
soil layers, characterised by different temporal responses to
rainfall events. In addition, the combination of species of
several different life habits opens up possibilities for complex
inter-species interactions. These interactions and species-
dependent adaptations to water stress make it unlikely that
a simple model of the effects of changes in rainfall distribu-
tion will serve for these mixed communities.

One approach to addressing these difficult questions is
to exploit the continuous eddy covariance measurements of
surface-atmosphere exchanges of carbon dioxide, water, and
energy now being made at hundreds of research sites glob-
ally (Baldocchi, 2008). Flux tower data allow direct quan-
tification of NEP and its decomposition into GPP and RE
(Reichstein et al., 2005) and make it possible to analyse re-
lationships between ecosystem fluxes and rainfall charac-
teristics across ecosystem types and sites in a robust way.
Here, we use FLUXNET data to examine the relationship be-
tween temporal patterns of rainfall distribution and ecosys-
tem fluxes in seasonally water-limited shrubland and forest
ecosystems. We address four questions.

1. How does the distribution of rainfall event size influence
ecosystem fluxes in shrublands and forests, independent
of total rainfall amounts?

2. How does the influence of differences in rainfall distri-
bution compare to the influence of differences in total
rainfall amount?

3. Do drier and wetter shrublands and forests differ in sen-
sitivity to these factors?

4. How do these patterns differ for GPP, RE and the result-
ing NEP?

2 Material and methods

2.1 Site and data selection

In order to compare the effects of differences in the tempo-
ral distribution of rainfall on carbon fluxes of ecosystems in
different states of water stress, we require reliable ecosystem
flux and rainfall data from sites of varying ecosystem com-
position and climate types. We make use of the FLUXNET
La Thuile dataset (http://www.fluxdata.org), which contains
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eddy covariance and meteorological measurements at 30-min
temporal resolution from 966 site-years at 253 sites. NEP
flux data are gap-filled and partitioned into GPP and RE us-
ing common standardised algorithms (Moffat et al., 2007;
Papale et al., 2006; Reichstein et al., 2005). From the avail-
able sites, we identified ecosystems experiencing a climate
with a dry season by selecting sites based on their Köppen
climate classification (Kottek et al., 2006). We included sites
in the Northern Hemisphere with arid/semi-arid (BSh, BSk),
Mediterranean (Csa, Csb) and sub-tropical (Cfa) climates.
From those sites, we selected shrubland, woody savanna, de-
ciduous broadleaf, evergreen and mixed forest sites that had
not been recently disturbed or heavily managed. We then
eliminated site-years that did not contain a sufficient propor-
tion of high quality data: specifically, we retained only those
site-years where at least 80 % of the half-hourly data were ei-
ther original or gap-filled with high confidence (as indicated
by the quality flags provided in the La Thuile dataset). This
site selection process yielded the 28 sites and 85 site-years
displayed in Table1.

2.2 Annual rainfall amounts

We are interested in the impact of variations in the tempo-
ral distribution of rainfall, so need to control for the effect
of overall variation in total rainfall, constructing models for
the effect of variations in total rainfall on ecosystem fluxes,
then using residuals of fluxes with respect to these models
to analyse the effects of variations in rainfall distribution.
We thus first examine the effect of variations in total an-
nual rainfall amount (Ptot, mm yr−1) on annual ecosystem
fluxes (GPP, RE, and NEP, g C m−2 yr−1). We separate and
exclude frozen precipitation from total annual liquid rainfall
by counting only precipitation where the three-day moving
mean screen air temperature is above freezing.

It is not immediately clear what might be the best model
to use to capture the variability due to total rainfall amount,
since there is significant spread in the flux data. The
most straightforward approach is to use a piecewise-constant
model, with one flux value for “dry” sites and one for “wet”
sites, using the mean flux values for each group of sites as
unbiased estimators of the group flux values. The stratifi-
cation into “dry” and “wet” sites is chosen to maximise the
variance in fluxes (both GPP and RE) explained by the split
(Table2). Although this approach to modelling effects due
to total rainfall amount is simplistic, by optimising the parti-
tion into “dry” and “wet” sites we are able to explain a greater
proportion of the variance in fluxes than, for example, a more
complicated exponential model fitted using a nonlinear least
squares approach. The ecosystem flux residuals with respect
to this simple piecewise-constant model show no linear cor-
relation with the total annual precipitation amount (data not
shown, but all slopes near zero and p-values greater than 0.4).

The only possible disadvantage to this optimisation ap-
proach is that it partitions the sites rather unevenly, with only

10 sites and 21 site-years in the “dry” group as compared to
18 sites and 64 site-years in the “wet” group. This is a conse-
quence of the smaller variance of ecosystem fluxes for larger
precipitation totals compared to smaller totals. From that per-
spective, the uneven distribution into “dry” and “wet” groups
may be viewed as an advantage, since it eliminates a poten-
tial source of spurious within-group variability, although it
does mean that sample sizes for comparing effect sizes in the
“dry” group are rather small (Sect.2.3). An ancillary benefit
of using a split into “dry” and “wet” sites that maximises the
variance explained by the overall precipitation amount effect
is that it removes a potentially arbitrary choice for a division
into drier and wetter sites.

2.3 Temporal structure of rainfall

We next examine the effect on ecosystem carbon fluxes of
differences in the temporal distribution of rainfall through-
out the year. In order to compensate for differences in overall
annual rainfall amount, we consider residuals of ecosystem
fluxes with respect to our piecewise-constant flux/total rain-
fall model (Sect.2.2), denoted by1GPP,1RE and1NEP,
all measured in g C m−2 yr−1. For NEP, we consider resid-
uals with respect to the difference of our models for GPP
and RE, in keeping with the definition of NEP above, i.e.
1NEP =1GPP –1RE. We hypothesise that at least some
proportion of these flux residuals can be explained by differ-
ences in the distribution of rainfall through the year, in par-
ticular the degree to which the precipitation regime is char-
acterised by “extreme” rainfall, i.e. large rainfall events sep-
arated by long periods of dryness.

We characterise the temporal distribution of rainfall events
using two measures. The first is the annual mean daily rain-
fall intensity, i.e. the annual mean rainfall amount for days
with rain, in mm d−1, denoted byI . For a given total rainfall
amount, rainfall regimes characterised by fewer and larger
rainfall events will have largerI than regimes with lighter,
more “continuous” rainfall. The second measure is the pro-
portion of total annual rainfall amount due to days whose
daily rainfall is greater than the 95th percentile of daily rain-
fall, denoted byR95. This statistic is commonly defined in
terms of the climatological distribution of daily rainfall, (e.g.
Alexander et al., 2006), but since we do not have detailed cli-
matology information for our sites, we instead define anR95
statistic based on each site-year’s distribution of daily rain-
fall. The resulting statistic carries much the same informa-
tion as the standardR95 statistic, in that larger values of the
statistic indicate rainfall less evenly distributed throughout
the year, with larger and more widely spaced rainfall events.

The principal difference between our pragmatic single-
year definition ofR95 and the climatologically based one is
that, in a long-term climatic time series, years are likely to
exist without large rainfall events, meaning that the baseline
precipitation distribution used for the calculation of theR95
statistic would have a smaller 95th percentile (compared to

www.biogeosciences.net/9/1007/2012/ Biogeosciences, 9, 1007–1024, 2012



1010 I. Ross et al.: Rainfall extremes and ecosystem fluxes

Table 1. Study sites. Shown are FLUXNET site identifiers, site locations, years of data available and count of data site-years for each site,
IGBP ecosystem classification (CSH: closed shrubland, DBF: deciduous broadleaf forest, EBF: evergreen broadleaf forest, ENF: evergreen
needleleaf forest, MF: mixed forest, SAV: savanna, WSA: woody savanna), Köppen climate classification (Kottek et al., 2006; BSh: hot semi-
arid; BSk: cold semi-arid; Cfa: humid subtropical; Csa: hot-summer Mediterranean; Csb: warm-summer Mediterranean), site elevation (m),
climatological annual rainfall (mm), climatological annual mean air temperature (Ta, ◦C) and site description reference.

Site Lat., Lon. Years # IGBP K̈oppen Elev Prec Ta Reference

ES-LMa 39.94◦ N, 5.77◦ W 2004–2006 (3) SAV Csa 260 691 16.2Casals et al.(2009)
FR-Pue 43.74◦ N, 3.60◦ E 2001–2006 (6) EBF Csa 270 930 13.6Rambal et al.(2003)
IL-Yat 31.35◦ N, 35.05◦ E 2002, 2006 (2) ENF BSh 650 266 18.5Grünzweig et al.(2003)
IT-Col 41.85◦ N, 13.59◦ E 1998 (1) DBF Cfa 1550 1240 7.7 Valentini et al.(1996)
IT-Cpz 41.71◦ N, 12.38◦ E 1997, 2001–2004, 2006 (5) EBF Csa 68 811 14.8Garbulsky et al.(2008)
IT-Lec 43.30◦ N, 11.27◦ E 2006 (1) EBF Cfa 314 396 15.4 Chiesi et al.(2011)
IT-Non 44.69◦ N, 11.09◦ E 2001, 2002 (2) DBF Cfa 25 916 13.9Reichstein et al.(2003)
IT-PT1 45.20◦ N, 9.06◦ E 2003, 2004 (2) DBF Cfa 60 659 14.5Migliavacca et al.(2009)
IT-Ro1 42.41◦ N, 11.93◦ E 2002–2006 (5) DBF Csa 235 852 15.6Rey et al.(2002)
IT-Ro2 42.39◦ N, 11.92◦ E 2002–2004 (3) DBF Csa 224 862 14.8Tedeschi et al.(2006)
IT-SRo 43.73◦ N, 10.28◦ E 2000, 2003, 2004, 2006 (4) ENF Csa 4 702 15.4Chiesi et al.(2005)
PT-Esp 38.64◦ N, 8.60◦ W 2004, 2006 (2) EBF Csa 95 660 16.0Pereira et al.(2007)
PT-Mi1 38.54◦ N, 8.00◦ W 2005 (1) EBF Csa 250 479 15.9Pereira et al.(2007)
US-Blo 38.90◦ N, 120.63◦ W 2000–2004 (5) ENF Csa 1315 1379 12.3Goldstein et al.(2000)
US-Dk3 35.98◦ N, 79.09◦ W 2002–2004 (3) MF Cfa 163 1060 14.7Pataki and Oren(2003)
US-KS2 28.61◦ N, 80.67◦ W 2004–2006 (3) CSH Cfa 3 1931 22.3Powell et al.(2006)
US-Me2 44.45◦ N, 121.56◦ W 2004, 2005 (2) ENF Csb 1253 368 6.8Law et al.(1999)
US-Me3 44.32◦ N, 121.61◦ W 2004, 2005 (2) ENF Csb 1005 451 8.5Vickers et al.(2009)
US-Me4 44.50◦ N, 121.62◦ W 1999, 2000 (2) ENF Csb 922 641 8.3Law et al.(2001)
US-MMS 39.32◦ N, 86.41◦ W 1999, 2001–2005 (6) DBF Cfa 275 1054 12.3Schmid et al.(2000)
US-MOz 38.74◦ N, 92.20◦ W 2005, 2006 (2) DBF Cfa 219 878 14.9Gu et al.(2006)
US-SO2 33.37◦ N, 116.62◦ W 2004–2006 (3) WSA Csa 1394 530 13.8Lipson et al.(2005)
US-SO3 33.38◦ N, 116.62◦ W 2005, 2006 (2) WSA Csa 1429 454 15.9Lipson et al.(2005)
US-SO4 33.38◦ N, 116.64◦ W 2004–2006 (3) CSH Csa 1429 485 14.7Lipson et al.(2005)
US-SP2 29.76◦ N, 82.24◦ W 2002, 2003 (2) ENF Cfa 50 1070 20.6Clark et al.(2004)
US-SP3 29.75◦ N, 82.16◦ W 2001–2004 (4) ENF Cfa 50 992 19.8Clark et al.(2004)
US-SRM 31.82◦ N, 110.87◦ W 2004–2006 (3) WSA BSk 1120 303 19.0Scott et al.(2009)
US-Ton 38.43◦ N, 120.97◦ W 2002–2006 (5) WSA Csa 177 573 17.4Ma et al.(2007)

Table 2. Precipitation groups defined by a partition into “dry”
and “wet” sites that optimises the flux variance explained by a
piecewise-constant model of the effect of differences in total annual
rainfall amount across all 28 sites.

Group Dry Wet

Number of sites 10 18
Number of site-years 21 64
Precip. range (mm) ≤725 >725
Mean precip.± SD (mm) 393± 155 906± 243

the distribution in a single year that does have large rainfall
events). We would thus find largerR95 values for the years
considered in this case than we do using the “single year”
R95 statistic used here, since more of the rainfall in a year
with large rainfall events would occur beyond the 95th per-
centile of the reference distribution. In general, it is impossi-
ble to say what impact this would have on the results of our

study, since statistics for a long climatic reference period are
not available to us for most of our sites. For some sites, it
is possible that the years that we examine have an anoma-
lously high number of large rainfall events compared to the
long-term climate, while for other sites the years that we ex-
amine may have less large rainfall events than the long-term
distribution.

In order to examine the effects that our choice ofR95
statistic might have, the best that we can do is to consider
the impact of our definition ofR95 based on data from single
years in the context of sites where we have multiple years of
data. Figure1 shows differences betweenR95 values cal-
culated in two different ways, first using all of the avail-
able years of data for each site together to calculate the 95th
percentile of daily rainfall, then calculated using single site-
years of data. Although this approach gives only a rough in-
dication of the likely effects of using a single year-basedR95,
we can gain some idea of whether the definition ofR95 that
we use is reasonable. The results shown in Fig.1 broadly
conform to our expectations: there is some spread in the
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Fig. 1. Differences betweenR95 statistics calculated based on a daily rainfall distribution derived from all precipitation data available for
each site andR95 values calculated for each site year separately. Points show values for individual site-years; vertical lines highlight the
range of differences for each site. Sites are colour-coded by the IGBP ecosystem type: grey – CSH, green – DBF, blue – EBF, black – ENF,
magenta – MF, orange – SAV, red – WSA.

differences between the two calculation methods, but there
is not a notable asymmetry, i.e. theR95 values based on all
site-years of data for each site are not very much different
from those calculated using a single year of data in each case
(the mean difference across all sites and years is−1.4 %).
Although only a heuristic guide, we feel that this justifies
the form of theR95 statistic that we use in the remainder of
the paper, calculated based on single site-years of data. This
allows us to use a consistent statistic across all sites, inde-
pendent of the number of years of data we have for the site.

Within each precipitation group defined in Table2 and
for all sites together, standardised residuals of ecosystem
fluxes with respect to our piecewise-constant flux/total rain-
fall model were related to indices of rainfall distribution us-
ing linear regression. Rainfall indices were calculated from
daily time series of rainfall amounts for each site-year, using
a daily rainfall threshold of 5 mm to define days with rain.

There are two distinct potential types of variability in the
flux residuals that we must address: inter-site spatial vari-
ability and intra-site temporal variability. We present three
distinct analyses to examine these different types of variabil-
ity, one combining inter-site spatial and intra-site temporal
variability, one isolating inter-site spatial variability and the
third isolating intra-site temporal variability at sites where
sufficient data exists.

For the analysis of combined spatio-temporal variability,
we consider standardised flux residuals,Z1GPP, Z1RE and
Z1NEP, and rainfall predictors,ZI andZR95, where the stan-
dardised score for a variableX taking valuex is defined as

ZX =
x −µX

σX

. (1)

HereµX andσX are respectively the population mean and
standard deviation ofX, here calculated across values for all
site-years.

To isolate the inter-site spatial variability, we consider the
same ecosystem flux residuals and precipitation distribution
predictors as for the combined spatio-temporal analysis, but
standardise the data in a different way. We use mean values
of all the site-years available for each site, then standardise
these site-level values using the across-site mean and stan-
dard deviation. This isolates between-site gradients and re-
moves within-site, year-to-year variation. We denote these
site-level standardised variables asZ

(S)
X , for a variableX, one

value per site. We then use these site-level standardised val-
ues to perform the same kind of regression analysis as for the
combined spatio-temporal variability case.

We have enough sites (28, in total) that we can draw some
conclusions concerning the inter-site spatial variability, but
the situation regarding temporal variability within sites is

www.biogeosciences.net/9/1007/2012/ Biogeosciences, 9, 1007–1024, 2012
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much less hopeful. Out of the 28 sites, we have only 8 with
four or more years of data and 13 sites with only one or two
years of data (Table1). Considering just the sites with four
or more years of data, we can calculate, for example, pre-
cipitation intensity calculated for each year at each site, and
use the site-level mean across years and standard deviation
across years to produce standardised values. In the analysis
of intra-site temporal variability below, we denote these stan-
dardised values byZ(T )

X for a variableX, one value per site
per year. The intention here is to remove the inter-site spatial
variability and isolate intra-site anomalies.

2.4 Biometeorological conditions

Rainfall distribution is strongly linked to other meteorologi-
cal and hydrological variables. In particular, there are strong
relationships with mean annual vapour pressure deficit, VPD
(kPa), annual incoming solar radiation,RG (kJ yr−1), and
soil water status. We present results below (Sect.3.4) that
relate these quantities to the measures of rainfall intermit-
tency we use. In order to provide a homogeneous mea-
sure of soil water storage across sites, including those where
soil water content was not directly measured, we charac-
terise soil moisture status using the mean daily relative soil
water deficit (WD, %), defined asWD =

∑365
i=1 WDi /365,

where WDi is the relative soil water deficit for dayi of
the year, WDi = 1− (θi − θmin)/(θmax− θmin); hereθi is the
mean daily soil water content (mm), andθmin andθmaxare the
annual minimum and maximum mean daily soil water con-
tent (mm), all taken from the upper layer of a simple bucket
model driven by daily meteorological and radiation inputs
(Reichstein et al., 2002).

3 Results

3.1 Annual rainfall amounts

As expected, there is a strong relationship between total rain-
fall and both GPP and RE (Fig.2a and b). Because the rate of
increase of GPP with total rainfall amount is greater than the
rate of increase of RE, NEP also increases with total rainfall
amount (Fig.2c).

We find that the relationship between ecosystem fluxes
and total annual rainfall amounts is mostly simply treated
using a simple piecewise-constant model that assigns a sin-
gle flux value to all “dry” sites and a different value to all
“wet” sites (modelled values are shown as horizontal lines
in Fig. 2). Although a simplistic approach, this model, us-
ing an optimal partition of sites into “dry” and “wet”, serves
to explain a larger fraction of the variance in ecosystem flux
values than either a simple linear regression or a exponential
model (Table3).

Table 3. R2 values for different models relating ecosystem fluxes
to total annual rainfall amounts (all three models contain the same
number of parameters, so these values are directly comparable be-
tween models).

GPP RE

Linear 0.28 0.21
Exponential 0.33 0.25
Piecewise constant 0.48 0.40

3.2 Temporal structure of rainfall

We first present an analysis of the joint spatio-temporal vari-
ability in our data. We consider regressions of standardised
ecosystem flux residuals,Z1GPP, Z1RE and Z1NEP, onto
ZI (Fig. 3a–c and upper half of Table4). Overall, nega-
tive correlations are observed between ecosystem flux resid-
uals and rainfall intensity: regressions between standardised
ecosystem flux residuals andZI are significant at the 5 %
level for GPP for all sites together and for “dry” sites and
“wet” sites alone, and for RE, for all sites together and for
“wet” sites. This appears to indicate that, after controlling
for overall variations in annual rainfall amount, ecosystem
fluxes are reduced at sites with rainfall regimes characterised
by greaterI .

The regressions againstZR95 displayed in Fig.3d–f and
the lower half of Table4 show similar behaviour to those
in terms ofZI : there is a significant dependence of ecosys-
tem flux residuals on the intermittency of the rainfall regime,
here as measured by the proportion of total rainfall due to
the upper tail of daily rainfall events. Sites with greaterR95
have both smaller GPP (significant at the 5 % level for all
site-years together, and for “dry” sites and “wet” sites alone)
and RE (significant at the 5 % level for all site-years together
and for “wet” sites alone). The relative strengths of the GPP
and RE residual dependence onR95 are such that there is a
significant linear regression between NEP residuals andR95
(significant at the 5 % level for all site-years together, and for
“dry” sites and “wet” sites alone).

We next seek to determine how much of the total variabil-
ity exhibited in Fig.3 and Table4 is due to spatial varia-
tions between sites and how much is due to intra-site tempo-
ral variability.

Figure4 and Table5 show equivalent results to Fig.3 and
Table4, but based on regressions between site-level standard-
ised residuals,Z(S)

X , thus isolating variability due to inter-site
spatial effects. The results of this analysis are broadly similar
to those of the combined spatio-temporal variability analysis.
There are significant negative correlations between standard-
ised precipitation intensity andR95 and ecosystem flux resid-
uals, indicating that sites whose rainfall regimes on average
are characterised by fewer and larger rainfall events, for the
same mean total rainfall amount, have less gross primary
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Fig. 2. Relationship between total annual rainfall and(a) GPP,(b)
RE, and(c) NEP. Each point represents a single site-year (“dry”
sites as squares, “wet” as circles, colour-coded by the IGBP ecosys-
tem type: grey – CSH, green – DBF, blue – EBF, black – ENF,
magenta – MF, orange – SAV, red – WSA). Horizontal lines show
the piecewise-constant model values for fluxes of the “dry” (black)
and “wet” (grey) groups of sites; for NEP, the lines show the dif-
ferences between the GPP and RE models. Model parameters and
standard errors for the site-year fits are shown at the top of the GPP
and RE panels. Rectangles cover the range of interannual variability
for each site.

productivity and less ecosystem respiration, with the relative
sizes of these effects being such that there is also a negative
correlation between rainfall distribution measures and NEP.

The picture for intra-site temporal variability, as mea-
sured by regressions between per-site temporally standard-
ised quantitiesZ(T )

X , is much less clear. Unfortunately, al-
though there appear to be effects of the type that we would
expect (smaller ecosystem fluxes for greaterZ

(T )
I or Z

(T )
R95

),
the lack of data renders most of these regressions very weak.
Table6 shows a few of the more significant regression re-
sults. In most cases, there is a negative correlation between
changes in the rainfall distribution predictors and ecosystem
fluxes, but the results are too weak to draw any substantive
conclusions.

3.3 Relative effect sizes

Having demonstrated that, after accounting for overall differ-
ences in rainfall amount, there remains a significant effect on
ecosystem fluxes due to differences in rainfall distribution,
most of which should apparently be ascribed to inter-site spa-
tial variation, a natural question is to ask what proportion of
the variability in ecosystem fluxes is due to differences in
rainfall distribution compared to the portion of the variabil-
ity due to overall rainfall differences.

We can most easily assess this difference by comparing
ecosystem flux variations due to differences in rainfall distri-
bution to the difference in fluxes assigned to the “dry” and
“wet” precipitation groups by our piecewise-constant total
rainfall amount model:

GPPwet−GPPdry = 851g C m−2 yr−1

REwet−REdry = 620g C m−2 yr−1

NEPwet−NEPdry = 231g C m−2 yr−1

These inter-group flux differences can then be compared to
the11SD values in Tables4, 5 and6, which show the changes
in ecosystem fluxes associated with a one standard deviation
change in theZI or ZR95 predictor variables. In each case,
the appropriate standard deviation is used, i.e. for the com-
bined spatial and temporal variability in Table4, the standard
deviation is across all site-years, for the inter-site spatial vari-
ability in Table5, the standard deviation is across site mean
values (means across the available data years for each site),
and for Table6, the standard deviation is calculated sepa-
rately for each site across the available years of data for the
site. The aim here is to provide an indication of the vari-
ability in ecosystem fluxes associated with typical variations
in rainfall distribution: in this context, regression slopes can
be thought of as the change in ecosystem flux values associ-
ated with a change of one standard deviation in the predictor
variable. We use the appropriate ecosystem flux standard de-
viations to convert these slopes back into indicative changes
in fluxes for comparison between the different types of vari-
ability that we consider.
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Table 4. Slopes, intercepts (both with standard errors in parentheses) andR2 values for linear regressions between standardised ecosystem
flux residuals and precipitation variables, for all site-years and for precipitation groups defined in Table2. Regressions significant at the 5 %
level are indicated in bold. Since all values are standardised, all values in the table are unitless, except for column11SD, which shows the
change in ecosystem flux (g C m−2 yr−1) associated with a one standard deviation change in the predictor variable,ZI or ZR95.

x y Group Slope Intercept R2 11SD

All −0.33 (0.10) 0.00 (0.10) 0.11 −125
Z1GPP Dry −0.54 (0.23) −0.29 (0.25) 0.23 −205

Wet −0.30 (0.12) 0.05 (0.12) 0.09 −115

All −0.27 (0.11) 0.00 (0.11) 0.07 −89
ZI Z1RE Dry −0.40 (0.21) −0.21 (0.23) 0.17 −131

Wet −0.27 (0.13) 0.05 (0.13) 0.06 −87

All −0.18 (0.11) 0.00 (0.11) 0.03 −35
Z1NEP Dry −0.37 (0.25) −0.20 (0.27) 0.10 −74

Wet −0.14 (0.13) 0.02 (0.12) 0.02 −27

All −0.40 (0.10) −0.00 (0.10) 0.16 −152
Z1GPP Dry −0.83 (0.24) 0.87 (0.31) 0.39 −315

Wet −0.56 (0.14) −0.19 (0.12) 0.21 −213

All −0.26 (0.11) −0.00 (0.11) 0.07 −85
ZR95 Z1RE Dry −0.42 (0.25) 0.44 (0.33) 0.13 −139

Wet −0.40 (0.16) −0.14 (0.13) 0.10 −132

All −0.33 (0.10) −0.00 (0.10) 0.11 −67
Z1NEP Dry −0.88 (0.24) 0.92 (0.32) 0.42 −176

Wet −0.40 (0.15) −0.14 (0.13) 0.11 −81

Table 5. Slopes, intercepts (both with standard errors in parentheses) andR2 values for linear regressions between site-level standardised
ecosystem flux residuals and precipitation variables, for all sites and for precipitation groups defined in Table2. Regressions significant at
the 5 % level are indicated in bold. Since all values are standardised, all values in the table are unitless, except for column11SD, which
shows the change in ecosystem flux (g C m−2 yr−1) associated with a one standard deviation change in the predictor variable,ZI or ZR95.

x y Group Slope Intercept R2 11SD

All −0.50 (0.17) −0.00 (0.17) 0.25 −185

Z
(S)
1GPP Dry −0.89 (0.31) −0.50 (0.32) 0.51 −331

Wet −0.48 (0.24) 0.13 (0.23) 0.20 −178

All −0.38 (0.18) −0.00 (0.18) 0.14 −124

Z
(S)
I

Z
(S)
1RE Dry −0.60 (0.35) −0.33 (0.36) 0.27 −197

Wet −0.40 (0.26) 0.11 (0.25) 0.13 −131

All −0.33 (0.18) −0.00 (0.18) 0.11 −62

Z
(S)
1NEP Dry −0.72 (0.42) −0.41 (0.44) 0.27 −134

Wet −0.25 (0.24) 0.06 (0.22) 0.07 −47

All −0.40 (0.18) 0.00 (0.18) 0.16 −150

Z
(S)
1GPP Dry −0.70 (0.33) 0.71 (0.42) 0.37 −263

Wet −1.02 (0.32) −0.55 (0.25) 0.39 −381

All −0.20 (0.19) 0.00 (0.19) 0.04 −66

Z
(S)
R95

Z
(S)
1RE Dry −0.24 (0.37) 0.26 (0.48) 0.05 −78

Wet −0.69 (0.39) −0.38 (0.30) 0.16 −227

All −0.45 (0.17) 0.00 (0.17) 0.21 −85

Z
(S)
1NEP Dry −0.99 (0.30) 0.95 (0.38) 0.58 −185

Wet −0.83 (0.31) −0.45 (0.24) 0.31 −154
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Fig. 3. Standardised annual ecosystem flux residuals (Z1GPP, Z1RE andZ1NEP) versusZI (a, b, c) andZR95 (d, e, f). Each point
represents a single site-year (“dry” sites as squares, “wet” as circles, colour-coded by the IGBP ecosystem type: grey – CSH, green – DBF,
blue – EBF, black – ENF, magenta – MF, orange – SAV, red – WSA). Lines show linear regressions significantly different from zero at the
5 % (thick lines) or 10 % (thin lines) level, solid lines for the “dry” (black) and “wet” (grey) groups separately and dashed lines for the whole
data set. Rectangles cover the range of interannual variability for each site.
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Fig. 4. Site-level standardised annual ecosystem flux residuals (Z
(S)
1GPP, Z

(S)
1RE andZ

(S)
1NEP) versusZ(S)

I
(a, b, c)andZ

(S)
R95

(d, e, f). Each
point represents mean conditions for a single site (“dry” sites as squares, “wet” as circles, colour-coded by the IGBP ecosystem type: grey –
CSH, green – DBF, blue – EBF, black – ENF, magenta – MF, orange – SAV, red – WSA). Lines show linear regressions significantly different
from zero at the 5 % (thick lines) or 10 % (thin lines) level, solid lines for the “dry” (black) and “wet” (grey) groups separately and dashed
lines for the whole data set.
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Table 6. Slopes, intercepts (both with standard errors in parentheses and p-value for the slope) andR2 values for linear regressions between
single-site standardised ecosystem flux residuals and precipitation variables, for all regressions withp ≤ 0.15. Regressions significant at the
5 % level are indicated in bold. Since all values are standardised, all values in the table are unitless, except for column11SD, which shows
the change in ecosystem flux (g C m−2 yr−1) associated with a one standard deviation change in the predictor variable,ZI or ZR95.

Site x y Slope Intercept R2 11SD

FR-Pue Z
(T )
R95

Z
(T )
1GPP −0.75 (0.33) [p = 0.09] 0.00 (0.30) 0.56 −157

FR-Pue Z
(T )
R95

Z
(T )
1RE −0.71 (0.35) [p = 0.11] 0.00 (0.32) 0.51 −84

IT-Cpz Z
(T )
R95

Z
(T )
1NEP −0.90 (0.22) [p = 0.02] 0.00 (0.20) 0.80 −33

IT-SRo Z
(T )
I

Z
(T )
1GPP −0.92 (0.28) [p = 0.08] 0.00 (0.24) 0.84 −204

IT-SRo Z
(T )
I

Z
(T )
1RE −0.90 (0.31) [p = 0.10] 0.00 (0.27) 0.81 −131

US-SP3 Z
(T )
I

Z
(T )
1RE −1.00 (0.05) [p < 0.01] 0.00 (0.05) 0.99 −88

US-SP3 Z
(T )
R95

Z
(T )
1RE −0.89 (0.32) [p = 0.11] 0.00 (0.28) 0.79 −79

US-Ton Z
(T )
I

Z
(T )
1NEP 0.77 (0.37) [p = 0.12] 0.00 (0.33) 0.60 49

US-Ton Z
(T )
R95

Z
(T )
1RE −0.93 (0.21) [p = 0.02] 0.00 (0.19) 0.87 −91

Summary results are shown in Table7. Although we do
not claim that the approach taken here can give more than a
rough idea of the relative effect sizes for ecosystem flux vari-
ations due to differences in overall rainfall amount compared
to differences in rainfall distribution, it is clear from Table7
that increases inI or R95 have a consistently negative im-
pact on ecosystem fluxes. This impact is smaller than the
impact of differences in overall rainfall amount (as measured
by the flux differences between the “dry” and “wet” groups),
but is of a similar order of magnitude. For instance, for GPP,
the impact of a one standard deviation change inR95 on the
inter-site (S) variation is−185 g C m−2 yr−1, as compared to
a total rainfall amount effect size of 851 g C m−2 yr−1. For
both GPP and RE, the effect sizes for changes in rainfall dis-
tribution are around 15–20 % of the size of those for differ-
ences in overall rainfall amount, indicating that differences
in the distribution of rainfall, in terms of changes in the num-
ber and size of rainfall events and the lengths of periods of
drought, can have a significant effect on ecosystem fluxes
in the ecosystems that we consider here. The results in Ta-
ble 7 are those for all sites; if we consider the “dry” sites or
“wet” sites alone, the rainfall distribution effect sizes tend to
be larger for dry sites than for wet sites (see column11SD
in Tables4 and5). For drier sites, as defined by annual to-
tal rainfall, variations in rainfall distribution thus contribute
more strongly to variations in ecosystem carbon balance than
at wetter sites, a result consistent with observations (Harper
et al., 2005).

3.4 Biometeorological conditions

Figure 5 shows mean biometeorological conditions for the
two precipitation groups. Drier sites experience greater
soil water deficit, atmospheric vapour pressure deficit and

Table 7. Ecosystem flux effect sizes for total rainfall amount differ-
ences (P ) and differences in rainfall distribution measures (precip-
itation intensityI andR95), for combined spatio-temporal (S +T ),
spatial (S) and temporal (T ) regressions. All effect sizes are mea-
sured in g C m−2 yr−1 and regression-based values are for all sites
together (forS +T andS), using the regression slope and the appro-
priate standard ecosystem flux standard deviation. Only effect sizes
from regressions significant at the 5 % level are shown, and val-
ues in parentheses for the temporal regressions are indicative values
from single sites.

I R95

P S +T S T S +T S T

GPP 851 −125 −185 – −152 −150 –
RE 620 −89 −124 (−88) −85 – (−91)
NEP 231 – – – −67 −85 (−33)

incoming radiation than wetter sites. These biometeorolog-
ical variables were all significantly correlated with theR95
statistic (Fig.6). Mean daily relative soil water deficit, mean
annual vapour pressure deficit and mean incoming radiation
all increase in precipitation regimes characterised by fewer
and larger rainfall events.

4 Discussion

4.1 Rainfall variability and ecosystem fluxes

For the shrubland and forest sites considered here, rainfall
regimes characterised by fewer and larger rainfall events,
irrespective of total rainfall amount, have a negative im-
pact on ecosystem fluxes. The effects of changes in rainfall

www.biogeosciences.net/9/1007/2012/ Biogeosciences, 9, 1007–1024, 2012



1018 I. Ross et al.: Rainfall extremes and ecosystem fluxes

D
ry

W
et

0 50 100 150 200 250
WDd (% d−1)

a
D

ry
W

et

0 2 4 6 8 10 12 14 16

Mean VPD (hPa)

b

D
ry

W
et

0 20 40 60 80

Incoming radiation (kJ y−1)

c

Fig. 5. Average biometeorological conditions for the different pre-
cipitation groups:(a) soil water deficit,(b) vapour pressure deficit,
(c) incoming radiation (standard errors are shown).

distribution appear to be slightly greater at drier sites (total
annual rainfall≤725 mm). By examining the variability of
ecosystem fluxes associated with typical spatial and tempo-
ral variations in total rainfall amount and rainfall distribution
indices, we found that variations in rainfall distribution have
a smaller but still considerable effect on ecosystem fluxes
compared to variations in overall rainfall amount.

For drier sites, our results apparently contradict the con-
ceptual model ofKnapp et al.(2008). Their model implies
that rainfall regimes characterised by fewer and larger rain-
fall events are expected to have a negative impact on NEP
in mesic ecosystems, but a positive impact in xeric ecosys-
tems. They argue that soil water fluctuations are amplified by
decreasing precipitation frequency and increasing precipita-
tion intensity, and that these larger fluctuations in soil water
content will cause mesic systems to spend more time in con-
ditions of water stress and xeric systems less (Knapp et al.,
2008, Fig. 5). Previous observational studies have provided
some evidence in support of this model in grassland ecosys-
tems:Knapp et al.(2002) found that increasing precipitation
interval decreased soil moisture and ANPP in a mesic grass-
land andThomey et al.(2011) found results consistent with a
slight modification ofKnapp et al.’s model in an arid to semi-
arid grassland, althoughHeisler-White et al.(2008) observed
the opposite effect in a semi-arid grassland.

It is likely that the discrepancy between these grassland
studies and our results are due to differences in soil-plant-
water interactions in the vegetation types considered. Grass-
land species are generally shallow-rooted and consequently
sensitive to changes in water content in upper soil layers.

In dry climates, grasses have a short growing season (gen-
erally triggered by intense rainfall) and are highly sensitive
to short rain pulses. Trees and shrubs, in contrast, rely more
on year-round water availability.Knapp et al.’s model of soil
water storage is a bucket model with a single shallow layer.
In xeric ecosystems, such a model will necessarily lead to
an increase in water content in the uppermost soil layer un-
der rainfall regimes characterised by fewer and larger rainfall
events, thus reducing water stress for shallow-rooted plants.
Plants with deeper roots may respond to infrequent heavy
rainfall events rather differently and may not benefit from
short-term changes in soil moisture in the upper soil layers
in the way predicted byKnapp et al.’s model. In fact, the
response of vegetation to rain events is likely to be highly
dependent on plant life form, which is itself a function of cli-
mate and soil conditions (Sala and Lauenroth, 1985; Schenk
and Jackson, 2002; Ogle and Reynolds, 2004; Viola et al.,
2008). In dry climates,Porporato et al.(2001) found that
there is an intermediate rainfall frequency at which drought
stress is minimum, and that this optimal frequency depends
on plant and soil properties (see alsoRodŕıguez-Iturbe et al.,
2001andLaio et al., 2001). An increase or decrease in pre-
cipitation frequency from this optimum at constant total rain-
fall will increase drought stress.

Given the number of different factors affecting productiv-
ity in these woody ecosystems and the complexity of the in-
teractions between the factors, the prospects for introducing
a conceptual model to serve as an alternative to the model
of Knapp et al.(2008) appear poor. TheKnapp et al.(2008)
model is appropriate for arid and semi-arid grassland ecosys-
tems where soil-water-plant interactions are relatively simple
because of the restriction of the vegetation to shallow-rooted
species of low stature. In woody ecosystems, soil-water-
plant interactions are potentially much more complex, with
multiple vegetation layers with different rooting depths and
consequently different responses to changes in precipitation
regime.

Much work has been done in physiological and gap mod-
elling of seasonally dry forests in the Mediterranean – in par-
ticular, Zavala and de la Parra(2005) coupled a physiolog-
ical model of a single Mediterranean tree species (Quercus
ilex) with a stochastic model of rainfall variability and soil
moisture based on the ideas ofRodŕıguez-Iturbe and Porpo-
rato (2004). They considered variations in rainfall regime
relevant to our considerations here, but the results of these
modelling efforts are difficult to interpret in a fashion that
would allow us to offer a “schematic” model to compare with
Knapp et al.’s grassland model, despite the fact thatZavala
and de la Parra’s model is an effort to build a more analyti-
cally tractable ecosystem model to help answer just the type
of question we are addressing. A further impediment to pre-
senting a conceptual model based on such work is that the
applicability of the extensive work done on Mediterranean
forests and savanna ecosystems to other regions of the world
is uncertain.
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Fig. 6. Relationships betweenR95 and(a) mean soil water deficit,
(b) mean annual vapour pressure deficit,(c) total incoming radia-
tion. Details as for Fig.3.

As far as our results for shrubland and forest ecosystems
are concerned, a recent remote sensing study associating
fractional woody cover with precipitation across Africa is
of interest: Good and Caylor(2011) found that more fre-
quent, less intense rainfall consistently led to a higher frac-
tion of woody cover for a given amount of total rainfall,
for a range of total rainfall amounts, a result more consis-
tent with our results than with the hypothesis ofKnapp et al.
(2008). AlthoughGood and Caylor’s study is concerned with

vegetation in Africa rather than the Northern Hemisphere re-
gions we consider here, it is striking how consistent is the
relationship between woody fraction and precipitation distri-
bution across the whole range of African climates.

Of the factors that we have not considered here, perhaps
the most important is variation in soil texture and type be-
tween sites. The response of soil respiration to rainfall events
is strongly dependent on soil type (Inglima et al., 2009), and
in many of the drier sites considered here, there may be ad-
ditional geochemical carbon fluxes associated with the pres-
ence of calcareous substrates (Kowalski et al., 2008; Serrano-
Ortiz et al., 2009).

4.2 Secondary factors

In general, we observe that rainfall regimes characterised by
fewer and larger rainfall events, are correlated with increases
in soil water deficit (Fig.6a), atmospheric vapour pressure
deficit (Fig.6b), and incoming solar radiation (Fig.6c). The
effects on atmospheric vapour pressure deficit and incom-
ing radiation both arise because less frequent rainfall corre-
sponds to longer drought periods.

It thus appears that under such rainfall conditions, not only
is soil water availability lower, but atmospheric water de-
mand is greater. These hydrological factors are more limiting
in drier climates, so we expect them to have a greater effect
on ecosystem processes for drier sites than for wetter sites
(Fig. 5a and b). Indeed, there is evidence that high vapour
pressure deficit plays a strong role in controlling stomatal
conductance and photosynthetic efficiency in conditions of
soil water limitation (Aires et al., 2008; Siam et al., 2008).

Water limitation in drier climates also prevents plants from
making effective use of the generally higher radiation lev-
els seen in conditions of infrequent intermittent rainfall. At
wetter sites, biological activity is more likely to be limited
by other constraints such as soil nutrient or light availability
(Huxman et al., 2004a). In addition, excess light produc-
ing photo-oxidative damage may contribute a supplementary
stress factor for vegetation at drier sites (Mart́ınez-Ferri et al.,
2000).

Because of its direct and overriding influence on plant
function, most ecohydrological studies have focused on the
effect of rainfall variability on ecosystems via its control
on soil water content (Eamus et al., 2006; Eagleson, 2002;
Rodŕıguez-Iturbe and Porporato, 2004). However, atmo-
spheric water demand and incoming solar radiation are po-
tentially important secondary factors that should be also
taken into account. Further experimental and modelling stud-
ies will be needed to disentangle the effect of these different
factors.

4.3 Differential ecosystem flux responses

Our results show that the influence of variations in rainfall
distribution is generally stronger for GPP than RE, leading to
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a decrease in NEP for rainfall regimes with fewer and larger
rainfall events. Studies in a mesic grassland have previously
observed a decrease in both leaf photosynthetic carbon gain
and soil respiration as a result of more intermittent rainfall
patterns (Knapp et al., 2002; Fay et al., 2002; Harper et al.,
2005), while Fay et al.(2008) reported increases in leaf-level
photosynthesis and decreases in soil respiration due to in-
creased rainfall event size for levels of total rainfall ranging
from 400 to 1000 mm yr−1. These studies did not provide
information concerning the relative sensitivity of these indi-
vidual processes to variations in rainfall pattern, so it is not
possible to reconstruct the dependence of overall ecosystem
carbon flux on precipitation frequency for these sites.

It is likely that the greater sensitivity of GPP compared to
RE to changes in precipitation frequency is due to a com-
bination of contributions from the factors described in Sec-
tion 4.2, i.e. GPP is affected by concurrent increases in soil
water stress, atmospheric vapour pressure deficit and excess
radiation. RE is indirectly affected by these factors, through
its dependence on GPP (Migliavacca et al., 2011), but is more
directly responsive to changes in soil moisture. Moreover,
increases in air temperature associated with decreased pre-
cipitation frequency may even provide a positive influence
on RE, partially compensating for the decrease in RE due to
decreased soil water content (Davidson et al., 1998). Other
studies in arid and semi-arid ecosystems have observed dif-
fering responses of GPP and RE to rainfall pulse size (Hux-
man et al., 2004b; Potts et al., 2006; Arneth et al., 2006;
Williams et al., 2009). The structure of respiration response
has been attributed to the high sensitivity of soil microbes to
rainfall events following drought conditions (Inglima et al.,
2009; Misson et al., 2006; Xu et al., 2004; Lee et al., 2004;
Jenerette et al., 2008), although the relationship between
pulse size and duration of active soil respiration seems to sat-
urate at moderate event sizes (Huxman et al., 2004b; Spon-
seller, 2007), perhaps due to exhaustion of labile carbon
sources. The response of vascular plant photosynthetic ac-
tivity to rainfall events is generally of longer duration than
the response of microbial respiration, with both the magni-
tude of the response (Ignace et al., 2007; Chen et al., 2009;
Williams et al., 2009; Scott et al., 2006) and the duration of
physiological activity (Huxman et al., 2004b; Williams et al.,
2009) increasing following larger rainfall pulses.

The differential responsiveness of respiration and photo-
synthesis to discrete rainfall events seen in the studies re-
ported above leads to variations in NEP with changes in pre-
cipitation intensity and distribution independent of total rain-
fall amount, moderated by other factors, such as temperature,
light availability, initial soil water content or canopy con-
ditions (Schwinning and Sala, 2004). Arneth et al.(2006)
found remarkable plasticity in canopy photosynthetic pa-
rameters in response to intermittent dry periods during the
rainy season in a semi-arid woodland. Ultimately, any de-
coupling between GPP and RE can only be temporary be-
cause, at larger temporal and spatial scales, respiration fluxes

are controlled by substrate supply (Campbell et al., 2004;
Janssens et al., 2001; Reichstein et al., 2003; Misson et al.,
2007).

5 Conclusions

We have shown that more intermittent rainfall regimes, char-
acterised by fewer and larger rainfall events, can have a
strong negative effect on both GPP and NEP of woody
ecosystems, particularly in drier climates, independent of to-
tal rainfall amount. Future amplification of the hydrological
cycle caused by global warming may thus pose a threat to
the productivity and sustainability of shrubland and forest
ecosystems in these climates. Increased rainfall variability
will add a supplementary constraint to the more commonly
known limitation imposed by an expected future decrease in
total annual or seasonal rainfall in these regions (Gao and
Giorgi, 2008; Giorgi and Lionello, 2008).

Here, we consider only annual quantities for a subset of
climate conditions and ecosystem types. FLUXNET sites
archive continuous time series data collected at a temporal
resolution of 30 min, a level of detail that should permit more
sophisticated analysis of the questions addressed here, in-
cluding a comprehensive cross-site examination of the phas-
ing of GPP, RE and NEP changes following rainfall pulses.
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