Are stochastic point rainfall models able to preserve extreme flood
statistics?
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On November 26, 2007, the European Directive on the Assessment and Management of Flood Risks
entered into force requiring that all European Member States identify areas at risk of flooding. For these
areas, flood risk maps need to be drawn by 2013 and flood risk management plans are to be developed by
2015, where flood risk refers to “the combination of the probability of a flood event and of the potential
adverse consequences of human health, the environment, cultural heritage and economic activity
associated with a flood event” (Directive 2007/60/EC, 2007). An important aspect within the exercises to be
carried out by each Member State will thus be the correct assessment of the return periods of extreme
flood events.

A conventional approach, still frequently used, is to estimate flood discharge for individual precipitation
events of particular interest (e.g. Institute of Hydrology, 1999), these being a significant historical rainfall
event or a simulated design storm with given statistical properties (Wheater, 2002). The disadvantage of
such an approach is that the antecedent wetness state of the catchment is generally not properly
accounted for. This antecedent condition, however, determines the magnitude of Dunne runoff production
and therefore the fluvial response to each precipitation event, which means that the return period of a
flood event does not generally correspond to that of the causing storm event. This is also demonstrated in
Figure 1, from which it can be seen that extreme discharge events often result from less extreme rainfall
which must have fallen on a wet catchment. It follows that the conventional approach cannot be used to
provide flood frequency maps needed as input for flood risk maps. Continuous discharge modelling using
long term rainfall records overcomes the problem mentioned above, and a frequency analysis of the
obtained discharge time series enables the calculation of the requested probability of flood events.
Unfortunately, this approach is limited by the length of the available rainfall time series which hampers the
accurate modelling of very low frequency flood events. To circumvent this, one could consider using very
long stochastically modelled rainfall time series for the continuous simulation of streamflow (Boughton and
Droop, 2003).

Rainfall modelling can generally be classified into four categories (Onof et al., 2000): (1) meteorological
models involving complex sets of differential equations representing the physical processes controlling
precipitation and other weather variables; (2) stochastic multi-scale models describing the spatial evolution
of the rainfall process independently of scale; (3) statistical models which can allow for the modelling of
trends; and (4) stochastic process models which, although they make simple assumptions with respect to
the physical processes, enable the description of the hierarchical structure of the rainfall process with a
minimal set of model parameters. The latter stochastic process models, more specifically point-scale
Bartlett-Lewis rectangular pulse models, are the focus of this commentary.
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Rainfall modelling using Bartlett-Lewis rectangular pulse models

The Bartlett-Lewis rectangular pulse model was first developed by Rodriguez-lturbe et al. (1987). This
model showed some shortcomings with respect to preserving the zero depth probabilities. To solve this, a
modified version of the model (i.e. the Modified Bartlett-Lewis (MBL) model) was introduced by Rodriguez-
lturbe et al. (1988). Further developments of the model structure were introduced by Onof and Wheater
(1994) in order to improve the reproduction of extreme rainfall events (further referred to as the Modified
Bartlett-Lewis Gamma (MBLG) model). In all of these models, storms are assumed to arrive according to a
Poisson process (with rate A). Within each storm, rectangular cells, which may be overlapping, arrive
according to another Poisson process (rate 3). The duration of the activity of the corresponding storm is
modelled by an exponential distribution with parameter y. The depth of a cell follows an exponential
distribution (parameter 1/y,) and its duration is modelled from an exponential distribution with parameter
1. In both modified versions of the Bartlett-Lewis model, n is sampled for each storm from a two-
parameter gamma distribution with shape parameter o and scale parameter 1/v. B and y are scaled
proportionally to the cell duration through the dimensionless parameters « (=B/n) and ¢ (=y/n). For the
MBLG, the parameter L, is furthermore modelled through a gamma distribution having a shape parameter
p and scale parameter 3. The MBL is thus defined by 6 parameters {A,u,,0,V,k,0}, whereas the MBLG is
characterized by 7 parameters {A,a,v,k,0,p,0}. Both models are generally fitted through minimizing the
error between, on the one hand, analytically calculated moments and covariances of the depth distribution,
and zero depth probabilities, all at different aggregation levels, and on the other hand, the corresponding
observed values of these statistics.

Several empirical studies have been performed in which Bartlett-Lewis models were fitted to rainfall time
series in Great Britain (Onof and Wheater, 1993, Glasbey et al., 1995, Cameron et al., 2000), Ireland (Khaliq
and Cunnane, 1996), Belgium (Verhoest et al., 1997), South Africa (Smithers et al., 2002), Austria (Bogner et
al., 2001), the Netherlands, Gibraltar, Italy (Marani and Zanetti, 2007), Australia (Gyasi-Agyei and Willgoose,
1999) and the United States (Velghe et al., 1994, Marani and Zanetti, 2007). Generally, these studies report
a good performance of the model with respect to simulating the first and second order statistics of rainfall
depth at different levels of aggregation. The modified versions of the Bartlett-Lewis model seem to
preserve the zero depth probabilities although a too severe clustering of rain events was observed
(Verhoest et al. 1997, Vandenberghe et al. 2010b). With respect to the reproduction of extreme values, it
was found that the modified Bartlett-Lewis models generally underestimate the extreme values, especially
for lower aggregation levels (Verhoest et al.,, 1997, Cameron et al., 2000) and for return periods greater
than the length of the data set (Onof and Wheater, 1993). Based on a modelling study with Belgian data,
the MBLG demonstrated similar problems, even though it was designed to improve the reproduction of
extreme events. Cowpertwait (1998) attributed this shortcoming of the modelling exercises to the
calibration procedure in which higher-order properties were not included in the fitting procedure.

In the case study discussed below, MBL and MBLG models fitted against Belgian data (observed at Uccle),
as described in Verhoest et al. (1997), are used. A detailed analysis of their first and second order statistics,
the internal storm structure, the dependence between storm characteristics (duration, intensity and
volume) and extreme value representation can be found in Verhoest et al. (1997) and Vandenberghe et al.
(2010b). Table 1 presents the first to fifth order non-centered moments of hourly rainfall data, calculated
for the observed 105 year rainfall time series at Uccle and for both 1001 year modelled time series. From
this Table, it can be seen that both models preserve the first two moments fairly well, but underestimate
the higher moments.

The deviations observed in the Table are partly due to the fact that only first and second order moments (at
10 minute and 24 hour aggregation levels) were used in the calibration of both models. Including the higher
order moments in the calibration could have solved this problem. Unfortunately, only the analytical
expressions for the third-order moment of the original non-modified Bartlett-Lewis model are available
(Wheater et al., 2006, p.419). Analytical expressions for the third-order moments, valid for the modified



Bartlett-Lewis models, have yet not been published (Onof et al., in preparation). Note that the calculation
of the analytical higher-order moments is not tractable.

With respect to the preservation of the extreme rainfall statistics, it can be seen from Figure 2 that both
MBL and MBLG models underestimate the extreme events at an hourly time scale, but overestimate the
extreme events at a 24 hour time scale. As mentioned before, this problem was already identified in the
literature.

INSERT FIGURE 2A and 2B HERE
Flood probability modelling

Flood probability maps can be obtained from 2-dimensional hydraulic simulations which are forced by
extreme discharge events at the upper boundary. Such boundary conditions are generally obtained from
observations, or from hydrological model simulations. In the latter case, simple (generally lumped)
hydrological models, such as the Probability Distributed Model (PDM, Moore, 2007), are often used by
water managers. Of course, in order to have reliable flood probability maps, the extreme discharge events
used should preserve the extreme flood statistics at the upstream boundary.

In order to illustrate the applicability of Bartlett-Lewis-based rainfall time series for extreme discharge
modelling, the PDM is applied to a Flemish watershed (Grote Nete catchment, see Cabus (2008) for a
detailed analysis of the PDM applied to several Flemish catchments). This conceptual model simulates river
discharge through coupling of a non-linear reservoir (representing the soil moisture storage) with linear
reservoirs (representing subsurface and surface storage). In the exercise below, this model is forced by 105
year hourly rainfall observed at Uccle and 1001 year MBL- and MBLG-simulated rainfall data.

Figure 3 shows the extreme value analysis based on yearly modelled maximal discharge. The discharge
extremes calculated from the observed Uccle rainfall clearly demonstrate a Fisher-Tippet Type | extreme
value or Gumbel distribution, whereas both modelled rainfall time series follow a Typell or Fréchet
distribution. Both rainfall models result in too high a probability of occurrence for extreme discharge
events. For instance, a 50-year extreme flood event, as modelled with the observed rainfall, is assigned a
20-year return period when modelled using the MBLG rainfall time series. If the approach of continuous
modelling, in which these Bartlett-Lewis modelled rainfall series are applied, were used to develop flood
risk maps, areas which are too large would be assigned too high a risk.

INSERT FIGURE 3 HERE

Pinpointing the problem

As can also be inferred from Figure 1, the reason for extreme discharge events should not always be sought
in the occurrence of extreme rainfall events. Improving the models with respect to reproducing the
extreme rainfall therefore should not necessarily have a positive impact on extreme discharge modelling.
The antecedent moisture condition of the catchment greatly determines the rainfall-runoff process,
indicating that the sequence of historical rainfall events prior to the flood should also be looked at. When
studying the discharge as well as the rainfall time series in a time frame around each of the extreme flood
events, some peculiar phenomena are often observed (as demonstrated for one flood event in Figure 4):
some very long cells of moderate to high rainfall intensities were observed which preceded or caused the
flood event. Note that this will often lead to extreme events at coarser time scales, e.g. at the daily time
step: when analysing the rainfall events causing the extremes at the daily scale, the overestimations of the
Bartlett-Lewis models can be attributed to the occurrence of such unrealistic rainfall cells, whereas, at the
hourly time scale, the annual maxima do not generally result from these model shortcomings.



The occurrence of these unrealistic rainfall cells results from the fact that the n parameter, which is
randomly drawn from a gamma distribution, was assigned an extremely low value (Wheater et al. 2006).
Consequently, the probability of randomly sampling a cell of very long duration is very high (its expected
value is n'!). Through the scaling parameter ¢, the expected duration of the storm activity, i.e. (n¢)?,
becomes very large. Within this storm, however, rainfall cells arrive with a low expected rate (i.e. kn). If a
moderate to high cell intensity, independently drawn from another exponential distribution, is assigned to
one of these long-lasting cells, an unrealistic rainfall cell is generated. Although these cell intensities are not
exceptional, and do not therefore lead to any hourly extremes, their long duration leads to distorting the
extremes at coarser time-steps such as daily aggregation levels. Nonetheless, these rare events are
responsible for the overestimation of the extreme floods.

This problem is also found (although to a lesser extent) when the skewness is included among the statistics
used to fit the model (analytical moments will be made available in Onof et al. (in preparation)). Both MBL
and MBLG models were recalibrated including the third order moment in the cost function to be
minimized, and the resulting models are referred to as MBL_3 and MBLG_3. Table 1 summarizes the
statistics obtained for these models. It is found that, especially for the MBLG_3 model, the third and higher
order moments are better represented than before. As can be seen from Figure 2, lower extreme values
are observed, leading here to a more severe underestimation at the hourly aggregation level than was
originally the case with the MBL and MBLG models is obtained, whereas at the daily scale, the
overestimation of the extremes is reduced somewhat. That the results are not as good as those obtained by
Cowpertwait (1998) for the Neyman-Scott model when skewness was used in the calibration, is a
consequence of a problem that has been overlooked in the calculation of the moments of the MBL/MBLG
and is investigated by Onof et al. (in preparation).

In Figure 5, an extraction of an MBLG_3-modelled rainfall time series is displayed. As can be seen, the
simulated series is still hampered with the unrealistic simulation of long rain cells. When the time series are
used to force the PDM, overestimations of the extreme discharges, although lesser in extent, are again
observed, as is demonstrated in Figure 3.
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Future improvements?

Several options exist to prevent the occurrence of these extreme rainfall cells. One way to solve the
problem is through incorporating a dependence structure between the cell duration and its intensity. Evin
and Favre (2008) suggested modelling this dependence using copulas. Their reasoning was based on the
negative dependence between storm duration and intensity as observed by De Michele and Salvadori
(2003), which was also present in the Uccle data (Vandenberghe et al., 2010a). Unfortunately, the impact of
introducing such dependence in the model was not analysed with respect to extreme rainfall modelling, nor
has it been assessed in a rainfall-runoff modelling framework. Improving the Bartlett-Lewis model structure
through implementing a copula would be worth testing, and its merit with respect to extreme rainfall
modelling and the preservation of extreme discharge statistics should be investigated in detail.

An alternative solution to the problem could be to restrict 1 to values larger than a predefined threshold.
Wheater et al. (2006) implemented a “restricted eta version” applying a threshold of 0.1 and found in some
preliminary results that the problem of the generation of extremely large and therefore unrealistic rainfall
cells was indeed largely resolved. To assess the impact of such restriction approach on the extreme
discharge simulations, all parameter values as calibrated in Verhoest et al. (1997) were maintained in both
MBL and MBLG models, and n was prevented from having values less than 0.9 (for n = 0.9, 99.5% of all
generated cells have a duration less than 6 hours) instead of 0.1 (as this restriction still results in too many



long lasting cells, i.e. at n=0.1, almost 10% of the cells last more than 24 hours). Figure 3 reveals that
truncating the gamma distribution for n to values larger than 0.9 has a positive effect on the simulation of
the extreme discharge events: the modelled extreme discharge now almost follows the observed Gumbel
distribution. This intervention in the model does not, however, seem to have a large impact on the rainfall
statistics (see Table 1): generally lower values for all moments are obtained. With respect to the modelling
of extreme rainfall, an improvement at the daily scale is found (Figure 2b); yet, at the hourly aggregation
level, large underestimations remain (Figure 2a). However, the restricted models used were not optimized,
but rather, the exercise performed was intended to demonstrate that the shortcoming of the models for
preserving extreme flood events can almost completely be assigned to the generation of unrealistic rainfall
cells, and that through a simple intervention in the model, this inadequacy can be eliminated. Further
research should focus on recalibrating the restricted models, in which the threshold value for n is included
as an additional parameter. Therefore, analytical expressions for the different moments, covariances and
zero depth probability will be derived (Onof et al., in preparation) and more advanced calibration methods,
which may include multi-objective optimizations of moments and extreme behaviour, could be applied.

Conclusion

In our opinion, current research with respect to stochastic rainfall modelling is still too focussed on the
reproduction of rainfall time series, and would benefit from examining the ability of these models to
reproduce extreme discharge events when combined with a rainfall-runoff model. Because of the filtering
effect of the non-linear transformation, the adequate reproduction of rainfall statistics at a range of time
scales is relevant to the quality of the generated streamflows.

On the basis of the study reported here, a restriction should be put on the length of the individual rain cells.
This could be obtained by restricting the value of n to values larger than a predefined threshold value, as
suggested by Wheater et al. (2006). Preliminary results, obtained with a non-optimized model, show
promising results, but further work is needed to calibrate the model with the threshold as an additional
parameter. Alternatively, a copula-based dependence structure between cell durations and intensities
could be examined for its ability to reproduce the extreme behaviour of rainfall and discharge.

Once this shortcoming of current Bartlett-Lewis rectangular pulse models has been solved, these models
possess the potential for generating long time series of rainfall which can be used as input to hydrologic
and hydraulic models for flood probability mapping, making them very suitable for use in flood risk
mapping as required by the European Commission. To further optimize their applicability in this respect, it
is worth exploring whether including extreme statistics of both rainfall (Wheater et al., 2006) and modelled
discharge in the calibration of the models could improve their performance for hydrological applications.
This would involve looking beyond the analytical expressions of descriptive statistics to a Monte Carlo
based approach to model fitting.
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Table 1. First to fifth order moments of the hourly precipitation time series and corresponding modelled
discharge time series for 105 year observed rainfall at Uccle, and 1001 year MBL and MBLG modelled
rainfall using non-restricted and restricted models.

mean variance 3rd moment 4th moment 5th moment

Data series used (mm/h) (mm?%/h?) (mm3/h3) (mm*/h%) (mm>/h°)
Precipitation

Observed 0.0919 0.2220 1.5837 24.8835 594.2728
MBL 0.0925 0.2092 1.2332 17.0239 427.6917
MBLG 0.0921 0.2106 1.2142 13.3704 212.5212
MBL_3 0.0923 0.2315 1.2951 13.0503 192.4415
MBLG_3 0.0916 0.2378 1.4592 16.7188 280.4437
Restricted MBL 0.0899 0.1980 1.0974 12.8870 243.8037
Restricted MBLG 0.0907 0.1990 1.0870 11.6286 184.7337
Modelled discharge per unit of catchment area

Observed 0.0338 1.41E-03 2.42E-04 8.15E-05 3.70E-05
MBL 0.0342 1.94E-03 2.10E-03 7.51E-03 3.61E-02
MBLG 0.0341 4.,55E-03 3.04E-02 3.33E-01 3.98E+00
MBL_3 0.0340 1.42E-03 3.29E-04 2.23E-04 2.86E-04
MBLG_3 0.0336 1.42E-03 3.71E-04 2.93E-04 4.04E-04
Restricted MBL 0.0322 1.14E-03 1.90E-04 6.70E-05 3.59E-05

Restricted MBLG 0.0329 1.21E-03 2.22E-04 9.75E-05 7.13E-05




List of figures

Figure 1. Scatterplot of the return periods of corresponding observed rainfall and yearly extreme discharge
events for the Grote Nete catchment (Belgium) modelled with the Probability Distributed Model (PDM).

Figure 2. Comparison of annual maximal precipitation frequency curves based on 105-year observed rainfall
and 1001 year Bartlett-Lewis modelled rainfall. (a) hourly precipitation, (b) 24 h aggregation level.

Figure 3. Comparison of annual maximal discharge frequency curves calculated from modelled discharge
time series using 105-year observed rainfall and 1001 year Bartlett-Lewis modelled rainfall.

Figure 4. MBLG-modelled rainfall time series and corresponding discharge response for the extreme
discharge event of June 17.

Figure 5. MBLG_3-modelled rainfall time series displaying a long rainfall cell.



