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Abstract

Background: DNA methylation plays a very important role in the silencing of tumor
suppressor genes in various tumor types. In order to gain a genome-wide
understanding of how changes in methylation affect tumor growth, the differential
methylation hybridization (DMH) protocol has been developed and large amounts of
DMH microarray data have been generated. However, it is still unclear how to
preprocess this type of microarray data and how different background correction
and normalization methods used for two-color gene expression arrays perform for
the methylation microarray data. In this paper, we demonstrate our discovery of a set
of internal control probes that have log ratios (M) theoretically equal to zero
according to this DMH protocol. With the aid of this set of control probes, we
propose two LOESS (or LOWESS, locally weighted scatter-plot smoothing)
normalization methods that are novel and unique for DMH microarray data.
Combining with other normalization methods (global LOESS and no normalization),
we compare four normalization methods. In addition, we compare five different
background correction methods.

Results: We study 20 different preprocessing methods, which are the combination
of five background correction methods and four normalization methods. In order to
compare these 20 methods, we evaluate their performance of identifying known
methylated and un-methylated housekeeping genes based on two statistics.
Comparison details are illustrated using breast cancer cell line and ovarian cancer
patient methylation microarray data. Our comparison results show that different
background correction methods perform similarly; however, four normalization
methods perform very differently. In particular, all three different LOESS normalization
methods perform better than the one without any normalization.

Conclusions: It is necessary to do within-array normalization, and the two LOESS
normalization methods based on specific DMH internal control probes produce more
stable and relatively better results than the global LOESS normalization method.

Background
Microarray technology has been used extensively in genetic and epigenetic studies over

the last ten years. Several microarray platforms are available including the single-channel

Affymetrix oligonucleotide arrays, the two-color (or two-channel) cDNA arrays, and

Agilent two color arrays. In the two-color use, which is the focus of this paper, two sam-

ples (or target genes) are labeled using two different fluorophores (usually a red fluores-

cent dye, Cy5, and a green fluorescent dye, Cy3) and hybridized simultaneously onto

each probe (or spot) of the array (or chip). Then the arrays are laser-scanned and images
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are processed to obtain the data for analysis [1]. In general, the log ratio Cy5 over Cy3 at

each probe is used as a measurement. With this microarray technology, studying thou-

sands of genes simultaneously becomes possible. For example, gene expression, copy

number variation, and methylation patterns have been widely studied using microarray

technologies. However, due to some experimental artifacts, random noise and systematic

variation do exist in such high throughput microarray experiments. Therefore, prepro-

cessing, such as background correction and normalization, is important to eliminate

technical bias in order to identify real biological variations.

Preprocessing gene expression microarray data obtained from two-color cDNA

microarray and single-color Affymetrix array have been extensively studied [2-4].

However, two-color methylation microarrays, especially the DNA methylation micro-

arrays generated based on the DMH protocol [5-7] with the Agilent technology [8],

have not been well studied. DNA methylation arrays are very different from gene

expression arrays. The differences mainly lie in the following two aspects. First, dif-

ferent materials are hybridized onto the array. For the gene expression array, it is

the mRNA that is reverse transcribed to cDNA. While for the DNA methylation

microarray, it is the DNA fragments selected based on the methylation-sensitive

restriction enzymes (MSRE) [5,7,9-11] or methyl-cytosine-specific antibody [12-15].

Second, they measure different biological phenomena, one measures gene expression,

or the mRNA levels, and another measures methylation signals. It has been recog-

nized that preprocessing methods for microarrays are platform specific and challen-

ging to automate [2,16]. It is still unknown whether gene expression array

preprocessing methods can be applied to the Agilent two-color methylation microar-

ray. If applied, it is not clear how different background correction and normalization

methods would perform.

After the image analysis, foreground and background intensities are estimated for

each probe (or spot), and these intensities are usually denoted as Rf, Gf, Rb, and Gb

respectively for the two channels (i.e., the red and green channels). The foreground

estimates (Rf and Gf) are the overall measurement of the intensity at each probe (spot)

in each channel. The background measurements (Rb, Gb) are usually an estimate of the

ambient signal around the round circle of each spot. This may be due to unequal dis-

tribution of hybridization solution, spatial bias [17], non-specific binding of labeled

samples to the array surface, or non-hybridized DNA not washed away [18]. Removing

these ambient signals around each probe and adjusting the foreground signals accord-

ingly is called background correction.

The traditional background correction for gene expression microarray data is to subtract

the background estimate from the foreground intensity. This may produce negative inten-

sities and lead to missing log ratios. Log ratios are highly variable at low intensity probes.

In order to avoid this problem, three strategies that have been proposed are summarized

in [18]: 1) avoid background correction [2,19]; 2) use a different image analysis software to

produce new background estimates, for example, the ‘morph’ background measurement

used in the Spot software (CSIRO, North Ryde, Australia) or the TV+L model proposed

by Yin et al. [20]; and 3) use statistical models to adjust the background estimate

[17,18,21,22]. With these three strategies, there are eight different background methods

and they have been compared using the two color cDNA gene expression array data as

shown in Ritchie et al. [18]. According to this comparison, the standard background
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correction (i.e., subtraction) performs far worse than other alternatives in that it produces

a larger number of false discoveries. Ritchie et al. [18] also shows that variance stabiliza-

tion methods perform best, especially the ‘normexp+offset’ method, which gives the lowest

false discovery rate. Whether these conclusions are valid in the methylation data generated

by the Agilent technology is still unknown. In addition, Ritchie et al. [18] only compare

background correction methods and do not demonstrate how normalization methods will

affect and interact with different background correction methods.

In order to obtain accurate measurements from microarray technology, we must

consider the random and systematic variation due to some experimental artifacts. Nor-

malization of microarray data is the process of removing or adjusting these systematic

biases that usually include intensity dependent bias, dye bias and spatial effects [2,4].

A commonly used normalization method is the intensity dependent LOESS normaliza-

tion that fits a locally weighted polynomial regression to the average of the red and

green intensities, that is, the LOESS curve [2,4]. This LOESS normalization generally

involves two steps [23]: (1) select probes (or genes) used to do normalization, and (2)

apply a LOESS or weighted LOESS to the data. The probes or genes that are normally

selected are all probes (genes), the housekeeping genes, the spike-in control probes,

and microarray sample pool control (MSP). Housekeeping genes have originally been

used for normalization because they are believed to have stable function and stable

gene expression values. However, it has been shown that they have large variability

between different samples and treatments [24,25]. Spike-in controls may be more

trustworthy, but not all microarray experiments have included spike-in controls.

Microarray sample pool controls [2] are designed for gene expression data normaliza-

tion, and their performance is still unknown for methylation data. To the best of our

knowledge, no probes or genes are selected specifically for normalizing DMH microar-

ray data.

In this paper, we demonstrate the identification of a set of probes that are specially

selected as internal control probes for the DMH protocol. Utilizing these DMH internal

control probes, we propose two LOESS normalization methods that are novel and unique

for the DMH methylation microarray data. Combining these two control probe LOESS

methods with other two standard normalization methods (global LOESS normalization

and no normalization), we compare four normalization methods. In addition, we also

compare five different background correction methods. Combining all these different

background correction and normalization methods results in 20 different preprocessing

methods for the DNA methylation microarrays. In order to see which preprocessing

method can best identify known methylated and housekeeping genes, all 20 methods are

compared using microarray data generated from breast cancer cell lines and ovarian

cancer patients.

Results
DMH microarray protocol and data sets

Microarray technologies have revolutionized our understanding of genetics and epige-

netics at molecular levels. In particular, they have made it possible to identify DNA methy-

lation (a type of epigenetic modification) patterns simultaneously in many specific regions

or even the whole genome. The differential methylation hybridization (DMH) protocol

[5-7] is capable of evaluating the methylation pattern of all CpG islands in the whole
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genome. This assay includes the following three steps. More details of the description of

the DMH protocols can be found in the literature [5-7,26].

1) Sonicating DNA sequences into 400-500 bp fragments, and then ligating these

fragments using linkers.

2) Digesting ligated DNA fragments using two MSREs, HpaII and HinpI, which

have the recognition cutting sites CCGG and CGCG respectively. If a DNA frag-

ment contains at least one recognition cutting site that is not methylated, it will be

restricted (i.e., cut), and will not be hybridized onto the microarray. Therefore, it

does not contribute to the final methylation signals.

3) Using the polymerase chain reaction (PCR) to amplify the unrestricted DNA

fragments and then hybridizing them onto microarrays.

The above three steps are done for both test (cancer patients or cell lines) and con-

trol (common normal references) samples. Then both samples are hybridized to the

array coupled with red or green fluorescent dyes. Here we use the Agilent 244K arrays

hybridized with the test samples (e.g., cancer cell lines) labeled with Cy5 (red dye, or

R) and a common normal reference labeled with Cy3 (green dye, or G). Two color

arrays produce both foreground, i.e., Rf and Gf, and background, i.e., Rb and Gb, inten-

sities. After some proper background correction and normalization based on Rf, Gf, Rb

and Gb, we obtain the true signals R and G. We use the base two log ratio of red over

green intensity, log2(R/G), as the observed methylation signal at each probe. This is

called the M value, that is, log2(R) - log2(G). The average is (log2(R) + log2(G))/2 and

is called the A value. The MA plot (with A values in the x-axis and M values in the

y-axis) is often used to examine dye bias before doing any normalization.

In this paper, we study 20 different preprocessing methods that are the combination of

five-background correction and four normalization methods. These comparisons are

done using two microarray data sets from 40 breast cancer cell lines and 26 ovarian can-

cer patients. For each array in these two data sets, we preprocess it with different back-

ground correction and normalization methods and then examine which preprocessing

method is better at identifying known methylated and non-methylated genes. For the

breast cancer cell line data, 30 known methylated genes [27-30] are used. For the ovarian

cancer data, 32 known methylated genes are selected [31]. For the non-methylated

genes, we use 47 known housekeeping genes selected from publicly available data [32].

Review of background correction methods

1) None: no background correction and simply let R = Rf and G = Gf.

2) Subtract: this is the traditional background correction method with the local

background estimate subtracted from the foreground estimate. That is, R = Rf - Rb

and G = Gf - Gb.

3) Edwards: in order to avoid the situation of local background estimates less than

foreground estimates, Edwards [17] proposes to subtract background (Rb and Gb)

from foreground (Rf and Gf) when their difference is larger than a certain threshold

d, otherwise, replace the subtraction by a smooth monotonic function. The detailed

formula is given as follows:
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R =
{

Rf − Rb Rf − Rb > d
d× exp[1− (Rb + d)/Rf ] otherwise

G =
{

Gf − Gb Gf − Gb > d
d× exp[1− (Gb + d)/Gf ] otherwise

4) Normexp: this method applies a normal-exponential (i.e., normexp) convolution

model to the local background and the true signal at the red and green channels

separately [18,22]. For example, at the red channel, let S be the unknown true sig-

nal, let B be the background noise that is not included in Rb, and let X = Rf-Rb be

the background-corrected observed intensity. According to the normexp model, S

~ exp(a) (i.e., an exponential distribution with mean a), B ~N(μ,s2) (i.e., a normal

distribution with mean μ and variance s2), and S and B are independent and addi-

tive. Therefore, we have X = S + B. We can derive the intensity function for S and

X, and then the conditional density of S|X. The estimate of the unknown true sig-

nal S is the conditional expectation E(S|X = x). The three key parameters, a, μ and

s2, can be estimated using a saddle-point approximation or the maximum likeli-

hood method [18,22]. The true signals in red and green channels, which are usually

denoted as R and G, can be obtained and their log ratio, log2(R/G), will be used as

the methylation signal at each probe.

5) Normexp+offset: this is the same as the Normexp method except that a small

positive offset is added to both channels to reduce the variance of low intensity log

ratio values. That is, the new log ratio value is equal to log2[(R+k)/(G+k)]. As used

in [18], we let k = 50.

Novel and existing normalization methods

The basic rationale of normalization is to remove or adjust for artifacts caused by

microarray technology rather than biological differences of the samples between

printed probes. In order to do so, it is helpful to normalize the data with some known

information, for example, some control probes that are known to be non-differentially

methylated. In this section, we first identify the probes that are known to be not differ-

entially methylated based on the DMH protocol, that is, probes with M = 0. DNA frag-

ments are restricted by two MSREs, HinpI and HapII, which have the recognition

cutting sites CGCG and CCGG respectively. If a DNA fragment contains at least one

cutting site that is not methylated, it will be restricted (i.e., cut), and will not be hybri-

dized onto the microarray. If a DNA fragment does not have any cutting sites, it will

not be digested by any MSREs and can be hybridized onto the array. If all the cutting

sites of a DNA fragment are methylated, this fragment will be saved for hybridization

onto the array. These three typical types of DNA fragments with examples are given in

Table 1.

If there is not any recognition cutting site within a long region around a probe, the

hybridization from two channels are supposed to be the same whether or not there is

methylation on the DNA fragment that is hybridized onto this probe. Therefore, theo-

retically the log 2 ratio of this probe methylation signal will be 0 (i.e., M = 0). In this

paper, we identified the probes around which there are no recognition cutting sites

within L = 900 base region. These probes are selected in the following way. For each
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probe, we check the regions that are L = 900 bases around the center of each probe.

That is, there are L/2 bases on each side of the center of the probe. Then we check

how many restriction cutting sites are around this probe within these L bases. If there

are no cutting sites (i.e., the sequences CGCG and CCGG), we claim that this probe is

a non-differential methylated internal control probe with M = 0. These internal control

probes are important because we can make full use of them to do normalizations.

Because the length of DNA fragments is about 400-500 bp, we use L = 900 bases

assuming that DNA fragments can be hybridized onto the methylated probes and

regions evenly. 199 probes, which have no recognition cutting sites around 900 bp, are

identified.

Similar to the LOESS normalization and composite LOESS normalization using con-

trol probes in the context of the gene expression microarray preprocessing, we intro-

duce the control and composite LOESS normalization for DMH methylation

microarray data. Combining with the standard LOESS normalization and the method

without any normalization, there are four normalization methods. Details about these

four normalization methods are described as below:

1) None: no normalization is done, and Mnew = Mobserved.

2) Global LOESS normalization: all the biological probes are used, and Mnew =

Mobserved -fLOESS(A).

3) Control LOESS normalization: We fit a LOESS curve only using the 199 control

probes, and for each M value which corresponds to an A value, we have Mnew =

M- fcontrol(A).

4) Composite LOESS normalization: This is to let the normalization curve to be a

weighted average of the global LOESS curve and the control probe LOESS curve.

That is, at each specific average intensity level A, the new normalized estimate is g

(A) = a* fcontrol(A) + (1-a) fall(A), and Mnew = Mobserved - g(A), where fall and fcontrol
are the global and control LOESS curve, and ‘a’ is defined as the proportion of

genes less than a given intensity A value [2].

In Figure 1, we show an example of the MA plot of an array that is fitted with three

different LOESS curves: global LOESS (blue line), composite LOESS (cyan line), and

control LOESS (red line). This figure shows that there are some differences among

these three LOESS curves, so the normalization based on these three LOESS curves

could be very different. In this Figure, the red dots are the 199 internal control probes

with M = 0 as their theoretical log ratio values according to our DMH protocol. As we

Table 1 Examples of three types of DNA fragments

Before MSRE digestion After MSRE digestion Probe signals

1). No MSRE cutting sites
ATCGTCCAGCCGATTTAAACCCGTATCGTA

Not being restricted/cut,
saved for hybridization

Contribute to the final
probe signals

2). All MSRE cutting sites are methylated
ATCGCmGCCACCGATTTCmCGGTACGCmGGGAA

Not being restricted/cut,
saved for hybridization

Contribute to the final
probe signals

3) At least one MSRE cutting site is not methylated
ATCGCGCCACCGATTTCmCGGTACGCGGGAAA

Being cut and will not be
hybridized onto the array

Do not contribute to
the final probe signals

The first column contains examples of three different types of DNA fragments before they are digested by MSREs. In this
column, all MSREs are underlined. “CmG” means there is methylation at this CG site, otherwise, “CG” simply means a
regular CG site and it has not been methylated. The second column contains the results after MSREs digestion. The third
column explains whether a type of DNA fragments can contribute to the final signals of the probe it covers.
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see that some probes have some unexpected large and small log ratios, this could be

due to some experimental artefacts. Therefore, we should preprocess the raw microar-

ray data first.

Comparison methods

All 20 different preprocessing methods as described are implemented using the

LIMMA package [4] of Bioconductor [33]. In order to compare the different back-

ground and normalization methods, we use the quantile regression method [34], which

identifies commonly hypermethylated genes in DMH microarray data. The basic idea

is that, for each CpG island we apply the quantile regression model [35] to the normal-

ized M values obtained from 20 different preprocessing methods. Then we use some

known methylated genes and 47 un-methylated housekeeping genes as positive and

negative controls to see which preprocessing method is better at identifying these two

different groups of genes (methylated and non-methylated). At each CpG island, we fit

a 75% quantile regression with the array (or cell line, patients) and probes as covari-

ates, that is, Map = arraya+probep + errorap,
P∑
p=1

probep = 0, all error terms are assumed

to be independent and distribution free. Both “array” and “probe” are fixed effects. For

each array (cell line or patient), we obtain a p-value from the quantile regression out-

put to indicate whether there is some hypermethylation signal at 75% quantile for each

array. The methylation score given to each CpG island is the count of the number of

cell lines with p-value less than a certain threshold p0, where we let p0 = 0.05, 0.04,

0.03, 0.02 and 0.01. At each p-value threshold p0, we have an integer methylation score

n for each CpG island. The range of n is from 0 to N, where N is 40 and 26 for breast

cancer cell line data and ovarian cancer data respectively. There are in total of Nm and

Figure 1 MA plot of one array with three LOESS curves. The blue line is the LOESS curve based on all
biological probes. The red dots are 199 internal control probes. The red line is the LOESS curve obtained
only using these internal control probes. The cyan line is the weighted LOESS curve (i.e., composite LOESS)
curve based on both all biological probes and 199 internal control probes.
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NHK methylation scores for known methylated genes/CpG islands (Nm = 30 for breast

cancer data, Nm = 32 for ovarian cancer) and housekeeping genes (NHK = 47)

respectively.

In order to see if known methylated genes and housekeeping genes are identified

correctly, we use two different statistical measurements for known methylated genes

and housekeeping genes. One is the statistics of mean difference of methylation scores

of two groups of genes divided by their variance. That is,
x̄m − x̄HK√

s2m/Nm + s2HK/NHK
, where

x̄HK, x̄HK, s2m and s2HK are the mean and variance of methylation scores for known

methylated genes and housekeeping genes respectively, we call this measurement “T.

stat”. Another measurement is the area under the Receiver Operating Characteristic

(ROC) curve, and we call it “AUC”. For each preprocessing method, the AUC is calcu-

lated according to the false positive and true positive rates defined in the following

way. At each methylation level C0 that ranges from 0 to N, the false positive rate is the

ratio of the number of un-methylated housekeeping genes/CpG islands with methyla-

tion scores greater than or equal to C0 and the total number of housekeeping genes

(NHK), and the true positive rate is the ratio of the number of known methylated

genes/CpG islands with methylation scores greater than or equal to C0 and the total

number of known methylated genes (Nm). For both T.stat and AUC, the larger a statis-

tical measurement is, the better a processing method is.

Comparison results

For each of the two data sets, we choose five p-value cutoffs, 0.05, 0.04, 0.03, 0.02, and

0.01. At each p value cutoff point, we calculate the two statistical measurements: “T.

stat”, that is, mean difference of methylation scores of two groups divided by their var-

iance, and “AUC”, that is, the AUC of a ROC curve, for each of the 20 preprocessing

methods. The results are listed in Tables 2, 3, 4 and 5 for breast cancer cell lines

(Tables 2 and 3) and ovarian patients data (Tables 4 and 5). In each of these four

tables, there are 3 underlined colored bold numbers indicating the 3 largest scores of

20 different processing methods. In Table 2, that is, the T.stat measurement of breast

cancer data, 13 out of 15 underlined bold numbers belong to the control LOESS

method. The other two belong to the composite LOESS method. In Table 3, that is,

the AUC measurement of breast cancer data, 10 out of 15 bold numbers belong to the

control LOESS method; the other 5 belong to the composite LOESS method. In Table

4, that is, the T.stat measurement of ovarian cancer data, 10 out of 15 bold numbers

belong to the control LOESS method. The other five belong to the LOESS method. In

Table 5, that is, the AUC measurement of ovarian cancer data, 6 out of 16 bold num-

bers belong to the control LOESS method; the other 10 belong to the LOESS method.

These summaries mean that control LOESS is a relatively better normalization method

in all 3 tables except in Table 5, that is, the AUC measurement for ovarian cancer

data. Note that there are 16 rather than 15 underlined bold numbers in Table 5

because there are two measurements that are tied for the third largest numbers. In

addition, tables 2 and 3 show control LOESS normalization without background cor-

rection is slightly better in breast cancer cell line data, while tables 4 and 5 show that
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the combination of background subtraction and control LOESS work slightly better

than the others.

In order to further compare the performances of different normalization and back-

ground correction methods, at each p-value cutoff point we calculate the average of

each statistical measurement for each normalization method (across five different back-

ground correction methods) and for each background correction method (across four

different normalization methods). The average scores are plotted in Figure 2 (for breast

cancer data) and Figure 3 (for Ovarian cancer data). In each of these two figures, two

plots in the top panel are used to compare four different normalization methods using

measurements T.stat and AUC. Two plots in the bottom panel are used for the com-

parisons of five different background correction methods using measurements T.stat

and AUC. Both Figures 2 and 3 show that there are more differences among normali-

zation methods than among background correction methods. If we ignore the LOESS

normalization method, that is, the blue line in plots A and C of Figures 2 and 3, we

can see that the performance of the other three normalization methods can be ranked

in the following order in both breast cancer and ovarian cancer data: control LOESS

(red curve) is better than composite LOESS which is better than “none” (i.e., without

any normalization). The global LOESS normalization method is less efficient than the

composite LOESS method in breast cancer data, but it is better than the composite

LOESS method in ovarian cancer data, in which control LOESS and global LOESS

Table 2 Breast cancer T.stat measurement table

(1): p < 0.05 none sub edwards normexp normexp50

none 4.879 4.896 4.880 6.010 6.065

LOESS 6.037 5.786 5.783 5.875 5.923

composite 6.872 6.410 6.423 6.508 6.598

control 7.753 6.516 6.738 6.797 6.771

(2): p < 0.04 none sub edwards normexp normexp50

none 4.747 4.871 4.855 6.012 5.889

LOESS 5.725 5.928 5.951 5.579 5.711

composite 6.565 6.230 6.279 6.426 6.716

control 7.570 6.371 6.622 6.691 6.959

(3): p < 0.03 none sub edwards normexp normexp50

none 4.665 4.766 4.761 5.484 5.758

LOESS 5.621 5.534 5.544 5.367 5.377

composite 6.602 6.330 6.305 6.065 6.629

control 7.110 6.573 6.865 6.730 6.966

(4): p < 0.02 none sub edwards normexp normexp50

none 4.237 4.457 4.444 5.488 5.493

LOESS 5.134 5.184 5.109 4.980 5.063

composite 6.385 6.049 6.026 5.953 6.335

control 6.734 6.471 6.673 6.504 6.695

(5): p < 0.01 none sub edwards normexp normexp50

none 4.094 4.318 4.304 5.207 5.260

LOESS 5.063 4.966 4.938 4.651 4.796

composite 6.252 6.040 6.080 5.566 5.927

control 6.662 6.484 6.694 6.435 6.398

Each row is for one p-value cutoff point. Within each row, the first column contains a p-value cutoff point; the second
column contains a sub-table of 20 numbers corresponding to the T.stat measurement results of 20 preprocessing
methods. The underlined bold numbers are the top 3 largest numbers in each sub-table of the second column.
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have similar performance. Plots B and D in both Figures 2 and 3 show that the differ-

ence between different background correction methods is not very much, their differ-

ence is much smaller than the differences among four normalization methods.

Conclusions and Discussion
In this paper, we compare four normalization and five background correction methods.

There are more differences among normalization methods than background correction

methods. Among four normalization methods, the result of no normalization performs

the worst in that both statistical measurement scores are the smallest in both data sets.

Therefore, it is necessary to do normalization. The control LOESS and composite

LOESS normalization methods provide relatively stable results in both data sets when

the p value threshold changes. However, the LOESS normalization results are more

variable across different p-value cutoff points. On the other hand, the differences

among background correction methods are relatively small. Our comparison results

show that even though some background correction methods are slightly better than

others, the differences are much smaller than the differences among normalization

methods. With appropriate normalization, the need for background-corrected DMH

methylation data might be obviated. This conclusion is consistent with the findings of

[8], which are about the gene expression microarray data. That is, differentially

expressed genes are most reliably detected when background is not subtracted. It is

Table 3 Breast cancer AUC measurement table

(1): p < 0.05 none sub edwards normexp normexp50

none 0.779 0.782 0.781 0.841 0.842

LOESS 0.852 0.842 0.841 0.868 0.861

composite 0.864 0.849 0.849 0.868 0.872

control 0.896 0.854 0.859 0.869 0.875

(2): p < 0.04 none sub edwards normexp normexp50

none 0.773 0.775 0.774 0.848 0.830

LOESS 0.846 0.855 0.855 0.851 0.854

composite 0.856 0.844 0.846 0.867 0.882

control 0.896 0.849 0.854 0.866 0.883

(3): p < 0.03 none sub edwards normexp normexp50

none 0.763 0.771 0.771 0.815 0.830

LOESS 0.851 0.836 0.836 0.841 0.835

composite 0.862 0.852 0.850 0.860 0.884

control 0.877 0.861 0.868 0.869 0.879

(4): p < 0.02 none sub edwards normexp normexp50

none 0.738 0.751 0.751 0.818 0.826

LOESS 0.826 0.823 0.816 0.818 0.832

composite 0.866 0.837 0.834 0.854 0.873

control 0.866 0.853 0.854 0.864 0.871

(5): p < 0.01 none sub edwards normexp normexp50

none 0.736 0.730 0.730 0.810 0.796

LOESS 0.844 0.820 0.817 0.814 0.837

composite 0.868 0.851 0.852 0.826 0.857

control 0.871 0.871 0.872 0.861 0.863

Each row is for one p-value cutoff point. Within each row, the first column contains a p-value cutoff point; the second
column contains a sub-table of 20 numbers corresponding to the AUC measurement results of 20 preprocessing
methods. The underlined bold numbers are the top 3 largest numbers in each sub-table of the second column.
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also consistent with the conclusion of [36], which claims that background correction is

generally needed to remove bias, but appropriate normalization obviates the need for

mock experiments.

The housekeeping genes used as non-methylated genes are selected from publicly avail-

able data [32] using the following criteria. First, there is one and only one CpG island asso-

ciated with this gene. We use this criterion because there could be several CpG islands

associated with one housekeeping gene, in this case we cannot determine the methylation

signal of such housekeeping gene. Second, there are at least three probes and at least one

probe is in the promoter region according to the annotation provided by Agilent. We use

this standard because methylation signals at CpG island with small number of probes are

not reliable according to our previous work [26]. Third, the CpG island associated with a

housekeeping gene will have a methylation score less than or equal to N/2 (that is, half of

the number of arrays) in all 20 preprocessing methods and in the data of both breast and

ovarian cancer. We choose housekeeping genes in this way to avoid any bias due to pre-

processing methods and cancer types. Housekeeping genes could have large variability

between different samples and treatments [24,25], especially in cancer tumor or cell lines.

For example, some housekeeping genes may have abnormally high or low expression and/

or methylation level in breast cancer but not in ovarian cancer.

In Table 2 of the ovarian cancer methylation review paper [31], 49 genes are sum-

marized as hypermethylated genes. In our comparisons, we only use 32 of them. The

Table 4 Ovarian cancer T.stat measurement table

(1): p < 0.05 none sub edwards normexp normexp50

none 4.451 4.618 4.618 4.033 4.406

LOESS 5.834 5.968 6.055 5.629 5.605

composite 5.138 5.159 5.159 5.112 5.311

control 5.834 6.166 6.083 5.703 5.623

(2): p < 0.04 none sub edwards normexp normexp50

none 4.489 4.629 4.629 4.249 4.348

LOESS 5.814 5.734 5.828 5.501 5.538

composite 5.157 5.385 5.261 5.177 5.059

control 5.738 6.193 6.106 5.627 5.440

(3): p < 0.03 none sub edwards normexp normexp50

none 4.645 4.548 4.548 4.589 4.452

LOESS 5.681 5.890 5.890 5.618 5.532

composite 5.316 5.491 5.491 4.977 4.885

control 5.657 5.803 5.781 5.554 5.520

(4): p < 0.02 none sub edwards normexp normexp50

none 4.761 4.614 4.652 4.389 4.560

LOESS 5.758 5.862 5.888 5.503 5.128

composite 5.315 5.255 5.242 4.848 4.953

control 5.621 5.873 5.912 5.602 5.627

(5): p < 0.01 none sub edwards normexp normexp50

none 4.834 4.662 4.699 4.196 4.298

LOESS 5.330 5.416 5.416 5.033 4.903

composite 5.304 5.114 5.126 4.769 4.559

control 5.736 5.924 5.893 5.381 5.371

Each row is for one p-value cutoff point. Within each row, the first column contains a p-value cutoff point; the second
column contains a sub-table of 20 numbers corresponding to the T.stat measurement results of 20 preprocessing
methods. The underlined bold numbers are the top 3 largest numbers in each sub-table of the second column.
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other 17 genes are excluded for one or more of the following reasons: (1) there is no

corresponding CpG island in our methylation microarray data, (2) the corresponding

CpG island has less than 3 probes, (3) the corresponding CpG island does not cover

the promoter or first exon region of this gene according to the annotation provided by

Agilent, or (4) there are several CpG islands corresponding to this gene, and it is diffi-

cult to select one.

The effectiveness of a normalization method depends on whether or not its assump-

tion is valid. The LOESS normalization assumes that each array has a larger number of

probes (or genes) that are not differentially methylated (expressed), or there is an

approximately equal number of positive and negative log ratios. It also requires that a

certain number of probes with these characteristics should cover a full range of intensi-

ties [37]. However, these assumptions could fail in the breast cancer cell line methylation

data since cell lines usually have more methylation than patients. This might be one

main reason that the control LOESS normalization and composite LOESS normalization

are better (i.e., provide more stable results) than the global LOESS normalization for

some p-value cutoff values in the breast cancer cell line data, but not in the ovarian can-

cer data. In addition, copy number variations may occur in cancer patient tumor and

cell lines. This may be one of the reasons that those internal control probes may have

unexpected large or small log ratios. However, it is unlikely that the log-ratios of all

Table 5 Ovarian cancer AUC measurement table

(1): p < 0.05 none sub edwards normexp normexp50

none 0.758 0.754 0.754 0.732 0.742

LOESS 0.802 0.812 0.819 0.820 0.823

composite 0.764 0.771 0.771 0.782 0.796

control 0.805 0.826 0.820 0.811 0.803

(2): p < 0.04 none sub edwards normexp normexp50

none 0.755 0.750 0.750 0.744 0.748

LOESS 0.809 0.798 0.807 0.817 0.823

composite 0.767 0.785 0.779 0.791 0.788

control 0.808 0.832 0.827 0.810 0.802

(3): p < 0.03 none sub edwards normexp normexp50

none 0.761 0.750 0.750 0.765 0.754

LOESS 0.811 0.822 0.822 0.819 0.816

composite 0.781 0.792 0.792 0.780 0.772

control 0.802 0.817 0.816 0.802 0.802

(4): p < 0.02 none sub edwards normexp normexp50

none 0.765 0.755 0.758 0.748 0.757

LOESS 0.840 0.821 0.828 0.823 0.798

composite 0.783 0.776 0.776 0.767 0.777

control 0.791 0.807 0.809 0.808 0.811

(5): p < 0.01 none sub edwards normexp normexp50

none 0.767 0.772 0.776 0.741 0.751

LOESS 0.806 0.800 0.800 0.803 0.794

composite 0.781 0.773 0.773 0.767 0.760

control 0.802 0.816 0.815 0.794 0.791

Each row is for one p-value cutoff point. Within each row, the first column contains a p-value cutoff point; the second
column contains a sub-table of 20 numbers corresponding to the AUC measurement results of 20 preprocessing
methods. The underlined bold numbers are the top 3 largest numbers in each sub-table of the second column.
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A: Normalization (T.stat)

B: Background Correction (T.stat)

C: Normalization (AUC)

D: Background Correction (AUC)

Figure 2 Breast cancer mean differences of different normalization and background correction
methods. The two plots in the top panel are the results of comparing four normalization methods using
two statistical measurements. The two plots in the bottom panel are the results of comparing five
background correction methods using two statistical measurements.

A: Normalization (T.stat)

B: Background Correction (T.stat)

C: Normalization (AUC)

D: Background Correction (AUC)

Figure 3 Ovarian cancer mean differences of different normalization and background correction
methods. The two plots in the top panel are the results of comparing four normalization methods using
two statistical measurements. The two plots in the bottom panel are the results of comparing five
background correction methods using two statistical measurements.
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those 199 internal probes will be affected, so copy number variations may not affect the

validity of our results.

In this paper, we did not compare with the Agilent Feature Extraction Software [38]

because it has been shown that it does not outperform the LOESS normalization [8].

Although the internal control probes we identified are mainly used for preprocessing

DMH data in this paper, the ideas of our methods can be useful for preprocessing data

generated from other methylation microarray and sequencing protocols [10,11,39,40]

that use methylation sensitive or insensitive enzymes to digest DNA fragments.
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