WEBINAR | P-HIL Simulation
for Power Systems and Power Electronics Applications

WEBINAR OUTLINE

REAL -TIME SIMULATION

HARDWARE-IN-THE-LOOP (HIL)

- Hardware-in-the-loop (HIL) testing utilizes real-time simulation to connect and test actual hardware devices with simulation of the rest of the systems and test environments
- This allows users to perform realistic closed-loop tests without the need for testing on a real system
- While HIL typically refers to setups with low-voltage level signal connections, power hardwarein-the-loop (PHIL) can be employed for higher power testing

DUT Examples

- **Controllers**
	- SCADA, EMS, DMS, Microgrid controllers
	- Power electronics controllers
	- Vehicle ECU
- Intelligent Electronic Devices
	- Protection devices
	- "Smart" sensors

POWER HARDWARE-IN-THE-LOOP (PHIL)

- Power hardware-in-the-loop (PHIL) involves in creating a virtual power interface between the digital simulation and devices under test
- Typically, the power interface involves power amplifiers (voltage and/or current), which must be selected carefully depending on the application
- PHIL setup is more complex and typically much costlier due to cost of amplifier and sensing hardware

Device Under Test (DUT)

ACTUAL SYSTEM PV, Wind Farms, Motors, Loads, Controllers, Protective relays

DUT Examples

- Power converters (inverters, rectifiers, power supplies)
- Electric machines and drives
- Microgrid switch and PCC
- Batteries including BMS
- Electrical drivetrain for EV
- Vehicle charger

TRADEOFFS BETWEEN TESTBEDS

- Test fidelity depends on purpose of testing, model validity and test setup. For Power Testbed, fidelity depends on equipment used and \bullet similarities between that and the real installation.
- Test coverage depends on purpose of testing and flexibility of running various 'what-if' scenarios. Pure simulation does not allow testing of real devices; but with good models, it is a powerful tool for design studies. CHIL provides the best coverage for testing control systems, such as micorgrid controller, allowing fault scenarios, transitions and dispatch scenario functional testing.
- PHIL can provide good balance between test fidelity and test coverage at a cost that is lower than full-system testing.

BENEFITS OF PHIL

- PHIL allows developers to test a wider range of device characteristics than analog benches or dynos with less maintenance and setup time
	- Allowing robustness of the hardware under test over a wider variation of parameters, test conditions and faults
- In addition to interacting with the hardware, PHIL testing allows incorporation of real-world communication networks (Modbus, DNP3, 61850, etc.)
	- Allowing incorporation of real-world delays, latencies, cyber-events into the system-level validation
- PHIL creates a robust, flexible and reliable test platform
	- Allowing validation of complex, system-level, dynamic interactions between multiple devices, at-power, without costly field demonstration or detailed device models
	- Enabling tests that are not feasible or too risky to do with the real system (e.g. fault on feeder, overspeed on motors etc.)

TYPICAL PHIL SETUP

- Amplifier
- Real-time simulator with inputs and outputs
- Sensors for feedback to simulator
- Real-time models along with interface algorithms, filtering, compensation, protection, etc.

Voltage and Current Feedback

AMPLIFIERS

• Amplifier selection is technical and is extremely sensitive to the application

Sample Specifications

- Application : Motor / Grid / Inverter
- Power rating
- Number of phases
- Capabilities : AC / DC / AC-DC
- Type : 2Q / 4Q and Linear / Switching
- Nominal voltage, current and peak current
- Nominal frequency
- Frequency range
- Frequency resolution
- Output Impedance
- Harmonic distortion
- Amplifier slew rate
- Amplifier control type : Analog Out / SFP
- Feedback Measurement : Internal / External
- Parallel or series connection capabilities
- Amplifier size and weight
- Price range

- 2Q amplifiers only generate power requires additional sink (loads) for some applications
- 4Q amplifiers generates and absorbs power more flexible and common now-a-days
- Not all amplifier can absorb 100% power

Linear vs. Non-linear

And a newest one!! You will hear about it later

OTHER CONSIDERATIONS FOR PHIL TESTING

• Interface algorithms

Ideal Transformer Model (ITM), Damping Impedance Method (DIM), Transmission Line Model (TLM), Partial Circuit Duplication (PCD), Time-variant First-order Approximation (TFA) [2]

- Filtering and compensation
	- Noise due to sensors, EMI/EMC can create issues in interfacing – introducing filters create unwanted delay and attenuation
	- Compensation algorithms often required to mitigate filtering effects
- Stability analysis
	- Closed loop PHIL system, including simulation, amplifier, sensors, can become unstable for certain operating conditions
	- Instability may damage equipment or result is loss of

simulation fidelity
[2] W. Ren, M. Steurer, T. L. Baldwin, <u>Improve the Stability and the Accuracy of Power Hardware-in-the-Loop</u> Simulation by Selecting Appropriate Interface Algorithms, IEEE/IAS Industrial & Commercial Power Systems Technical Conference, 2007.

PHIL STABILITY ANALYSIS

- Example shown here is based on ITM inter
- Stability depends on :
	- Ratio of load power to short-circuit pover
	- Type of load
	- Damping of source impedance
	- Power amplifier bandwidth
	- Simulator's sampling frequency
	- Use of current feedback filter
- Various methods for stabilization for ITM can be found in [3]

Determining the best interface and stabilization methods to ensure system stability and maximum accuracy must be done on a case-by-case basis

[3] A. Viehweider, G. Lauss, L. Felix, Stabilization of Power Hardware-in-the-Loop simulations of electric energy systems, Elsevier Simulation Modelling Practice and Theory, August 2011.

 $Z1 = L/R$

 $V1$

Step2

Laboratories

PHIL EXAMPLE – INVERTER TESTING

- Multi-inverter islanding detection test platform [4]:
	- Efficient testing of a large number of island configurations simply by changing the distribution circuit model in the real-time simulator
	- Detailed models for the smart inverters are no longer required ("black box" approach)
	- Validation of islanding detection capability of the inverters with advanced grid support functio**hxa (WNAR, ESWCaSPS**tc.)

[4] A. F. Hoke, A. Nelson, S. Chakraborty, F. Bell, M. McCarty , An Islanding Detection Test Platform for Multi-Inverter Islands Using Power HIL, IEEE Transactions on Industrial Electronics, Oct. 2018.

PHIL Test Setup for Multi-inverter Islanding Detection Test

PHIL EXAMPLE – ADMS TESTBED

- Flexible testbed for Advanced Distribution Management System (ADMS):
	- Model large scale distribution systems for evaluating ADMS applications
	- Integration of real-time phasordomain and electromagnetic transient simulations along with communication protocols
	- Integration of distribution system hardware and distributed energy resources for CHIL and PHIL experimentation
	- Multi-time scale, multi-platform test setup involving actual power and control hardware

Figure source: NREL (from 2018 ISGT presentation)

PHIL EXAMPLE – MICROGRID TESTBED

- [5]:
	- Real -time models of an electrical distribution network in OPAL -RT platform
	- Real-time network-simulator-in-theloop (NSIL) models in OMNET++
	- Physical power hardware, including a simplified microgrid controller, power meters, a smart PV inverter, and a battery storage inverter, interconnected using PHIL techniques
- Cyber-physical testbed for microgrid [5]:

 Real-time models of an electrical

distribution network in OPAL-RT

platform

 Real-time network-simulator-in-the-

loop (NSIL) models in OMNET++

 Physical power hardware, • Sample case studies demonstrated how communication delays could impact microgrid controller performance and the operation of the power grid

THANK YOU!

• Contact:

Sudipta Chakraborty, Ph.D. Director - Energy Systems OPAL -RT Corporation, USA Email: sudipta.chakraborty@opal -rt.com

- Discover OPAL -RT's extensive resource center featuring:
	- Technical paper
	- Presentation
	- Videos
	- Product manual
	- www.opal[-rt.com/resource](http://www.opal-rt.com/resource-center/)-center/
- Follow us on social media \mathbf{f} \mathbf{v} in

