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Abstract

Background: Nucleosome distribution along chromatin dictates genomic DNA accessibility and thus profoundly
influences gene expression. However, the underlying mechanism of nucleosome formation remains elusive. Here,
taking a structural perspective, we systematically explored nucleosome formation potential of genomic sequences
and the effect on chromatin organization and gene expression in S. cerevisiae.

Results: We analyzed twelve structural features related to flexibility, curvature and energy of DNA sequences. The
results showed that some structural features such as DNA denaturation, DNA-bending stiffness, Stacking energy, Z-
DNA, Propeller twist and free energy, were highly correlated with in vitro and in vivo nucleosome occupancy.
Specifically, they can be classified into two classes, one positively and the other negatively correlated with
nucleosome occupancy. These two kinds of structural features facilitated nucleosome binding in centromere
regions and repressed nucleosome formation in the promoter regions of protein-coding genes to mediate
transcriptional regulation. Based on these analyses, we integrated all twelve structural features in a model to
predict more accurately nucleosome occupancy in vivo than the existing methods that mainly depend on
sequence compositional features. Furthermore, we developed a novel approach, named DLaNe, that located
nucleosomes by detecting peaks of structural profiles, and built a meta predictor to integrate information from
different structural features. As a comparison, we also constructed a hidden Markov model (HMM) to locate
nucleosomes based on the profiles of these structural features. The result showed that the meta DLaNe and HMM-
based method performed better than the existing methods, demonstrating the power of these structural features
in predicting nucleosome positions.

Conclusions: Our analysis revealed that DNA structures significantly contribute to nucleosome organization and
influence chromatin structure and gene expression regulation. The results indicated that our proposed methods
are effective in predicting nucleosome occupancy and positions and that these structural features are highly
predictive of nucleosome organization.
The implementation of our DLaNe method based on structural features is available online.

Background
In an eukaryotic nucleus, chromosomes are organized in
condensed chromatin structures. The genomic DNA
sequence wraps on a histone octamer to form primary
repeating units of chromatin, termed nucleosomes. In

many species, each nucleosome core particle consists of
roughly 147 base pairs [1], which facilitates the storage
and organization of long eukaryotic chromosomes.
Nucleosome distribution on genomic DNA sequences
can greatly affect gene transcription, DNA replication
and reparation, by modulating the accessibility of under-
lying DNA sequences to various regulatory factors [2].
However, how nucleosome organization is established
has not been well understood.
Besides a multitude of factors, including chromatin

remodelers [3-5] and specific DNA-binding proteins [6,7],
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intrinsic DNA sequence preferences have been the focus
of recent experimental and bioinformatical studies, which
concern how and to what extent sequence features contri-
bute to nucleosome organization [8-14]. In particular, AT-
and GC-riched dimeric and trimeric motifs were first
identified by the pioneer work of Trifonov [15]. Subse-
quently, several studies delineated periodicity and
sequence patterns associated with nucleosomal sequences
[8,10,11]. Specifically, G + C content can explain ~50% of
the variation of nucleosome occupancy in vitro [10]. Com-
putational methods based on such sequence compositional
features have been proposed to predict nucleosome occu-
pancy [8,9,12-14]. However, it has been demonstrated that
DNA sequence preferences for certain sequence motifs
are not the major determinants of nucleosome organiza-
tion [16,17], which raise a question about the role of the
structural variability of DNA sequences in the formation
of nucleosomes [10,18-20].
To address this question, several studies have been

geared toward structural properties of DNA sequences
and the conformation mechanism of nucleosomes. Some
physicochemical properties in nucleosomal DNA data-
bases, such as tilt for DNA-protein complex and helical
twist, have been identified to be significant for nucleosome
binding [21]. Based on the roll-and-slide model, Tolstoru-
kov et al. found that slide of adjacent base pairs contribu-
ted predominately to DNA super-helical pitch and roll of
neighboring base pairs accounts for DNA curvature [22].
Miele et al. introduced dinucleotide-dependent DNA flex-
ibility and intrinsic curvature to the analysis of nucleo-
some occupancy [20]. Morozov et al. used a DNA elastic
energy function to build a biophysical model of sequence
dependence of nucleosome formation [23]. The bendabil-
ity of dinucleotides in the crystal structures of DNA
duplexes was also analyzed within nucleosomal DNA frag-
ments [24,25]. Analysis of nucleosome crystal structures
showed that the behaviors of base pairs, puckering of
ribose rings and related backbone torsion jointly represent
the major structural variations of nucleosomal DNA
sequences [26]. These studies suggested that there might
exist many structural features related to nucleosome for-
mation. Therefore, it is imperative to systematically ana-
lyze different structural properties and identify structural
features that contribute to nucleosome formation and
more importantly, to understand to what extent nucleo-
some organization is inherently hardwired in these struc-
tures of genome sequences. Furthermore, it is desirable to
exploit those structural features that are characteristic of
nucleosome occupancy and formation to develop effective
novel methods for predicting nucleosome positioning.
We systematically investigated twelve structural fea-

tures related to intrinsic flexibility, curvature and energy
of DNA sequence, and analyzed their relation with
nucleosome occupancy, chromatin organization and

transcriptional regulation across the entire S. cerevisiae
genome. By focusing on centromere and promoter
regions, we further inquired into the underlying struc-
tural mechanisms of nucleosome organization and tran-
scriptional regulation. To assess their predictive power
for nucleosome organization, we combined these struc-
tural features in a linear model for predicting nucleosome
occupancy. Further, we introduced a novel strategy to
locate nucleosomes by detecting peaks of structural pro-
files, and developed a meta predictor to integrate infor-
mation from different structural features, which
significantly outperformed the existing sequence-based
methods. We also constructed an alternative, hidden
Markov model (HMM) for predicting nucleosome posi-
tions using the structural features, confirming the effec-
tiveness of these structural features in locating
nucleosomes. Our results shed lights on the recent
debate on the role of sequence preference in nucleosome
organization [9,27,28], indicating that DNA structures
are important factors for determining nucleosome
organization.

Results
Structural features correlate with global nucleosome
occupancy
To decipher the code of intrinsic chromatin organization
from a structural perspective, we examined a dozen
thermo-physical features of DNA sequences, listed in
Table 1. According to different structure models derived
from biochemical experiments, these features characterize
various structural aspects of DNA sequences, including
flexibility, curvature and folding energy. In particular, the
propeller twist angle scale is calculated by X-ray crystallo-
graphy of 60 kinds of different DNA oligomers, to capture
the conformational flexibility of dinucleotides [29]. The B-
DNA twist measures the mean twist angles in B-DNA
[30]. As enzyme Dnase I is inclined to bind to the minor
groove and to cut DNA that is bent, Dnase I cutting fre-
quencies measure the bendability of DNA sequences [31].
Protein-induced deformation reflects the deformability of
the DNA helix changed by proteins [32]. Protein-DNA
twist describes the DNA variability [32]. The DNA-bend-
ing stiffness is regarded as the translational positioning of
nucleosomes [33]. The model of base-stacking energy is
derived from approximate quantum mechanical calcula-
tions on crystal structures, measuring dinucleotide base-
stacking energy [34]. DNA denaturation is quantified by
the melting temperature of helix denaturation [35]. A-phi-
licity represents the free energy required for transition
from B- to A-DNA conformation [36], and Z-DNA is
related to the free energy required for transition from B-
to Z-DNA transitions [37]. Duplex disrupt energy reflects
the stability of a DNA duplex [38]. Duplex free energy is
calculated as the transition enthalpy of the melting
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behavior of different duplex [39]. Although these struc-
tural models are based on dinucleotide or trinucleotide
parameters, several studies have proven that these struc-
tural features are in fact not exactly the same as the
nucleotide information and offer additional thermo-physi-
cal information [40-42]. These structural features capture
long-range interactions which are beyond short local
sequence features [43], and are complementary to each
other [40]. Typically, these features have been shown to be
effective in promoter prediction and have revealed differ-
ences in information content of delineating promoter
regions [42,44]. Here we studied these structural features
and their impact on chromatin organization in model spe-
cies S. cerevisiae.
These structural features are classified into two

classes, positively correlated (upper part) and negatively
correlated features (lower part)
First, we computed and compared the structural pro-

files of all these 12 structural features on 1,000 well-
positioned nucleosomes and 1,000 nucleosome-depleted
sequences [45] (see Methods). The results show that
nucleosome-enriched sequences have different structural
characteristics from that of nucleosome-depleted
sequences. Based on their relationship with nucleosome
occupancy, we can classify these structural features into
two categories. As shown in Table 1 the first class of
features are positively correlated with nucleosome occu-
pancy. For each feature in this class, the calculated
structural values along nucleosome sequences are
greater than that along nucleosome-depleted sequences.
In contrast, the structural features in the second class
show negative correlations with nucleosome occupancy.
Take DNA denaturation as an example, this feature cap-
tures the temperature at which DNA strands are half
denatured and DNA regions with a low denaturation

value denaturate more easily than regions with a higher
value [35,44]. Therefore, this feature can measure the
stability of a double DNA strand. The results reveal that
nucleosome-enriched DNA sequences denature at a
higher temperature than nucleosome-depleted DNA
sequences. In contrast, we observe that the duplex free
energy of nucleosome sequences is evidently lower than
that of nucleosome-depleted sequences. It is well known
that DNA sequences with a low free energy is more
stable than that with a high free energy [39,44]. That is
to say, a DNA segment in nucleosome is more stable
than nucleosome-depleted sequences [20].
Furthermore, we directly compared the calculated pro-

files of the individual structural features and in vitro
experimental nucleosome occupancy data [9] along the
whole genome of S. cerevisiae. Here, we plot the results
around two benchmark loci. Figure 1 shows four repre-
sentative features on chromosome 3 around CHA1 pro-
moter. In the figure, the values for the experimental data
represent the nucleosome coverage along the sequence; a
peak represents the position where a nucleosome is
potentially located, while a valley region corresponds to a
nucleosome-depleted sequence. The results of the other
features and the results on another well characterized
region surrounding HIS3 promoter on chromosome 15
are respectively included in Additional file 1: Figures S1
and S2.
We observe in Figures 1(A) and 1(B) that the peaks and

valleys for the positively related DNA denaturation and
Propeller twist align well with the experimental nucleo-
some signals, both of which share very similar patterns
with experimentally determined nucleosome occupancy.
Figures 1(C) and 1(D) compare the profiles of negatively
related structural features with the experimental nucleo-
some occupancy. As shown, the patterns of the actual

Table 1 Twelve structural features of DNA sequences, and genome-wide correlation coefficients between in vitro and
in vivo experimental nucleosome occupancies [9,45] and structural profiles of 12 features

Structural features Description Pearson correlation

In vitro [9] In vivo [9] In vivo [45]

Propeller twist [29] The angle of the two aromatic bases in a base pair. 0.82 0.67 0.35

DNA denaturation [35] The ability of DNA to denature. 0.77 0.61 0.34

DNA-bending stiffness [33] The anisotropic flexibility of DNA. 0.72 0.56 0.35

Bendability [31] The trinucleotide bendability. 0.63 0.51 0.15

Duplex disrupt energy [38] DNA duplex energy. 0.57 0.40 0.21

Stacking energy [34] Energy scale of dinucleotide base-stacking energy scale. -0.80 -0.63 -0.35

Z-DNA [37] The ability to be covered from B-to Z-DNA -0.78 -0.61 -0.36

Duplex free energy [39] The thermodynamic energy content. -0.74 -0.57 -0.33

Aphilicity [36] The free energy values for a transition from B- to A-DNA form. -0.69 -0.54 -0.27

Protein-DNA twist [32] The ability to be deformed by protein. -0.52 -0.42 -0.16

B-DNA twist [30] The mean twist angles in B-DNA. -0.17 -0.11 -0.08

Protein-induced deformation [32] The ability to be changed by proteins. -0.09 -0.06 -0.02

Gan et al. BMC Bioinformatics 2012, 13:49
http://www.biomedcentral.com/1471-2105/13/49

Page 3 of 15



nucleosome occupancy and the profiles of structural fea-
tures are rather opposite. Specifically, the local valleys of
the structural profiles correspond well to the peaks of
experimental nucleosome signals. As a support to the
above finding, the plot shows that nucleosome-enriched
sequences indeed have different structural patterns from
nucleosome-depleted sequences. In eukaryotic cells, pro-
moter regions are normally less likely to be occupied by
nucleosome, making them more accessible to the tran-
scription machinery [46,47]. The structural profiles we
computed agree very well with this finding. For positively
related features, deep valleys are located in the promoter
regions, while peaks are observed for negatively related
features. Taken together, these comparative results show
that these structural patterns correlate to different
degrees with the experimental nucleosome occupancy.
To quantify the power of structural features for cap-

turing nucleosome occupancy signals, we analyzed the
correlation between the structural profile of each feature
and experimental nucleosome occupancy along the
whole genome of S. cerevisiae. Specifically, we collected
one in vitro [9] and two in vivo [9,45] genome-wide
nucleosome occupancy datasets as reference. The Pear-
son correlation coefficients, listed in Table 1 confirmed
the results of our classification of the structural features
that we studied. The result on nucleosome formation
energy agreeed with the previous results from different
models [20,23], showing that nucleosome-energy is
highly correlated with nucleosome occupancy. Further-
more, we analyzed other structural features related to
DNA flexibility and intrinsic curvature in order to iden-
tify the features that contribute the most to nucleosome

formation. Among the structural features we studied,
Propeller twist, DNA denaturation and DNA-bending
stiffness are the most positively correlated with nucleo-
some occupancy, and Stacking energy, Z-DNA and
Duplex free energy are the most negatively correlated
features. The close correlations between these structural
features and nucleosome occupancy imply that these
features are important factors of in vitro and in vivo
nucleosome organization. Meanwhile, unlike in vitro
situation, in vivo nucleosome occupancy data is less cor-
related with the structural features, suggesting that
nucleosome organization may also be influenced by the
action of additional external factors like DNA binding
proteins and chromatin remodelers [48].
Since these features capture different aspects of nucleo-

some occupancy, we thus examined to what extent these
features are correlated with each other. We calculated
the pairwise Pearson correlation coefficients of these 12
features. The results, presented in Additional file 1: Table
S1, show that there are close correlations among DNA
denaturation, DNA-bending stiffness and energy-related
features. Features measuring energy (Duplex free energy,
Duplex disrupt energy, Stacking energy and Stabilizing
energy of Z-DNA) are highly correlated with each other.
Propeller twist, Aphilicity and other features are less cor-
related. These results demonstrate that these twelve fea-
tures capture different structural dimensions of DNA
sequence and have unequal capability for capturing
nucleosome occupancy.
Previous analyses have shown that the G + C content

is one of the most important features, which can explain
approximately 50% the variation of in vitro nucleosome
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Figure 1 Calculated structural profiles (red line) and in vitro experimental nucleosome occupancy (black line) in a 3 kb region around
CHA1 promoter of S. cerevisiae (Chr. 3). Shown are two positively correlated features (A) DNA denaturation and (B) Propeller twist, and two
negatively correlated features (C) Duplex free energy and (D) Z-DNA.
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occupancy [10]. To understand whether the effectiveness
of these structural features that we studied depends on
the G + C content, we studied the correlation of these
structural features with the G + C content on the whole
genome and in promoter and genic regions. As shown
in Additional file 1: Table S2, the G + C content is cor-
related with some of the structural features, such as
Aphilicity, Bendability, DNA-bending stiffness and the
energy-related features. However, the corresponding
Pearson correlation coefficients are not proportional to
their performance of predicting nucleosome occupancy
and positions. For example, although the Bendability
and Duplex disrupt energy are highly correlated with
the G + C content, they are not effective in capturing
nucleosome occupancy (Table 1). Meanwhile, the corre-
lation in the nucleosomedepleted promoter regions is
higher than that in the nucleosome-enriched gene
regions. All these results indicate that the effectiveness
of these structural features is just marginally related to
the G + C content, suggesting that the G + C content
may be less important than we have thought [49] and
some of the structural features may capture information
of nucleosome occupancy beyond the G + C content.

Structural features and nucleosome occupancy in
centromere region
To analyze whether intrinsic encoding of nucleosome
occupancy varies across different types of chromosomal
regions, we next focused on two representative kinds of
local genomic regions, nucleosome-enriched centromere
region and nucleosome-depleted promoter region. The
centromere of a eukaryotic chromosome, which accom-
modates sites for segregation during mitosis and meiosis,
is one of the essential parts of chromosome. Previous
research revealed that a centromere region has high
nucleosome occupancy [8]. A key question is what deter-
mines the nucleosome occupancy over centromere
regions.
We analyzed all centromere regions in the S. cerevisiae

genome. Unlike the centromeres of other eukaryotes
with long and highly repetitive DNA sequence, S. cerevi-
siae centromeres are short (about 120 bp). However, they
still possess distinct signatures. Based on the experimen-
tally determined nucleosome locations [45], we found
that there exists a stable nucleosome around each of the
centromere regions, and the average offset between a
nucleosome and a centromere is less than 20 bp. We
further analyzed the structural features around centro-
mere regions. In order to find some common structures
of centromere regions, we calculated the average struc-
tural profiles of all centromere regions in the S. cerevisiae
genome. Figure 2 shows two representative structural
features and experimental nucleosome occupancy data
around the centromere region [45]. As shown in Figure 2

(A), the DNA denaturation value over the centromere is
higher than that over other region, implying that the
DNA sequence denatures harder at the centromere. For
features that negatively correlate with nucleosomes, there
exist evident valleys over the centromere regions (Figure
2(B)). Overall, the structural profiles are highly correlated
with nucleosome occupancy around the centromere
regions. These structural features to some extent dictate
the high nucleosome occupancy over centromere region
and enhance the stability of histone-DNA interactions
[8].

Structural features and nucleosome occupancy in
promoter regions and the effect on gene expression
Our analysis indicated that different genomic regions
have distinct structural properties, which may dictate
nucleosome occupancy patterns specific to these regions.
Specifically, the regions upstream of transcription start
sites (TSS) have less DNA-bending stiffness and Propeller
twist, which may lead to more depletion of nucleosome
than the corresponding downstream regions. Several
independent studies further revealed that nucleosome
depletion in promoter regions was related to gene regula-
tion [2,19,45]. Given the correlation between nucleosome
occupancy and the structural features we studied, varia-
bility in gene expression might be inherently hardwired
in structural properties of promoters. To investigate
whether genes with a similar expression pattern share
some chromatin structures, we categorized genes on the
basis of their expression levels and calculated the average
structural profiles of promoter regions of 5,015 high-con-
fidence transcripts of S. cerevisiae reported in [45,50].
Based on the experimentally determined nucleosome

data [45], we computed average nucleosome occupancy
with respect to different gene expression level. The result
in Figure 3(A) shows that the patterns of nucleosome
occupancy within upstream regions and downstream
regions of TSSs are antagonistic. The gene expression
level is negatively correlated with the degree of nucleo-
some occupancy at -1 nucleosome positions, but is posi-
tively correlated with that at +1 nucleosome positions. A
possible explanation is that the promoters of transcribed
genes need ordered nucleosome structures within the
coding regions, which perhaps increase residence time of
the Rpd3S complex [45]. Furthermore, we analyzed the
underlying relationship from a structural viewpoint. For
structural features positively correlated with nucleosome
occupancy, the structural values in regions upstream of
TSSs are negatively correlated with the gene expression
levels. The plot in Figure 3(B) indicates that highly
expressed genes maintain a low DNA denaturation ability
in the critical promoter regions, compared with the
higher stability of less active genes. In contrast, the struc-
tural profiles of negatively correlated features are
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completely opposite. As shown in Figure 3(C), highly
expressed genes preferentially have the Z-DNA structure
in the regions upstream of TSSs. As we used a sliding

window (100 bp) to smooth out the structural values,
there was a smoothing effect for the structural profile.
For the DNA denaturation, the smoothing effect

Figure 2 Computed average structural features (red line) and average in vivo experimental nucleosome occupancy (black line) of all
centromere regions in S. cerevisiae genome. Shown are the results on one positively correlated feature (A: DNA denaturation) and one
negatively correlated feature (B: Z-DNA).

Figure 3 Variation of gene expression correlates with local in vivo nucleosome occupancy and DNA structures. Plotted are the results in
the 500 bp region surrounding transcription start sites (TSS) of 5,015 differentially expressed genes. The 5,015 genes were grouped into 3 classes
by their expression level (EL): EL <1 (n = 759, black line), 1 ≤ EL <2 (n = 1,859, red line) and EL ≥ 2 (n = 2,397, blue line). (A) Average in vivo
nucleosome occupancy. (B) Average structural profiles of DNA denaturation. (C) Average structural profiles of Z-DNA.
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produced a small valley around +50 bp and a small peak
at +20 bp downstream of the big valley at -1 nucleosome
position. For the Z-DNA structure, the big peak (at -1
nucleosome position) of the structural profile led to a
small peak at +50 bp downstream of TSS, which was also
resulted from the smoothing effect. However, the overall
pattern of the structural profiles within promoter regions
was closely associated with gene expression activities.
These observations are in line with the view that promo-
ters of expressed genes possess specific structures, pre-
sumably to occlude nucleosome formation and permit
transcription factors binding. These findings imply the
potential of predicting nucleosome binding events and
expression patterns from secondary structures of DNA
sequence.

Structural features are highly predictive of nucleosome
occupancy
Intrigued by the high degrees of correlation of the 12
structure features with the experimental nucleosome
occupancy, we adopted the least angle regression method
(abbreviated as LARS) [51] to combine the structural fea-
tures in a linear model for predicting nucleosome forma-
tion potential. The LARS algorithm determines a linear
combination of the structural features by optimizing a lin-
ear model with a set of training data. In the model, the
coefficients of the features specify which features are used
and their relative weights in the combination, and the out-
put gives rise to the prediction to nucleosome occupancy.
Then we generated a structural feature-based nucleosome
occupancy prediction model. In our implementation, we
used the version of LARS in the R package [52]. Particu-
larly, we trained three linear models on chromosomes 1-9
using one in vitro dataset [9] and two in vivo datasets
[9,45] of nucleosome occupancy dataset, and applied the
resulting models to predict nucleosome occupancy on
chromosomes 10-16. The predicted nucleosome occu-
pancy and the in vitro data are highly correlated, with a
Pearson correlation coefficient of 0.88. For the in vivo
nucleosome occupancy, the correlations are respectively
0.75 and 0.42 on Kaplan et al’s dataset and Lee et al’s data-
set. The result shows the models based on these structural
features are highly predictive of in vivo and in vitro
nucleosome occupancy. However, the performance of
these structural features for predicting in vivo nucleosome
occupancy is not as good as for the in vitro nucleosome
occupancy. This result indicates that in vivo nucleosome
organization may also be influenced by other factors such
as DNA methylation, histone variants, chromatin remode-
lers and DNA-binding proteins [53].
To further evaluate the performance of our new inte-

grated models, we compared them with eight recent pub-
lished prediction models [2,9,10,14,20,25,45,54], part of
which were also used in Tillo and Hughes’s study [10].

As described in Table 2 most of the previous models
depended on sequence compositional information, such
as k-mers preference, periodic dinucleotides [2,9,14,54].
Tillo et al’s model and Lee et al’s model both combined
many kinds of features, such as G + C content, 4-mers
occurrence and a few structural features. Miele et al’s
model computed the sequence-dependant free energy of
nucleosome formation based on DNA flexibility and
intrinsic curvature [20]. Gabdank et al’s model utilized
the DNA bendability matrix to map nucleosomes on
genomic sequences [25]. Different from the previous
works, our model focused on systematically analyzing the
effectiveness of twelve kinds of structural features in cap-
turing nucleosome occupancy. Since the models that we
compared were not developed using the same set of data,
it is difficult to choose a benchmark dataset for evaluat-
ing their performance. In order to compare with the pre-
vious results, we used the same in vitro [9] and in vivo
[45] datasets as in Tillo and Hughs’s study [10]. The
comparison results are summarized in Table 2 showing
that the performance of our integrated model for in vitro
nucleosome occupancy is comparable with the models
devised by Kaplan et al [9] and Tillo et al [10]. For in
vivo nucleosome occupancy prediction, our model out-
performed the other existing models, except Lee et al’s
model. Besides structural features, Lee et al’s model also
included G + C content, 4-mers occurrence, and TFBSs,
which may lead to a slight better performance than our
model in vivo. However, our model significantly outper-
formed Lee et al’s model in predicting in vitro nucleo-
some occupancy. In addition to free energy and Propeller
twist, which were used in the previous studies, our mod-
els also assigned high weights to DNA denaturation,
DNA-bending stiffness, Stacking energy and Z-DNA,
indicating that they are effective in capturing nucleosome
occupancy. Specifically, the performance of our model is
better than that of the previous models based on the
energy or bendability. The difference of performance
may attribute to two factors. On one hand, the structural
features used in these methods are calculated by different
structural model. On the other hand, our combination
model of the structural features is effective. These results
reveal the importance of that these structural features in
capturing nucleosome occupancy. According to their
mutual correlations, the linear model combining these
complementary features can capture different structural
dimensions of DNA sequences, which may contribute to
the prediction of nucleosome occupancy.

Structural features are highly predictive of nucleosome
positions
So far we have observed that the profiles of structural
features we analyzed are well correlated with experimen-
tal nucleosome occupancy data. Take the propeller twist
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feature as an example, most nucleosome regions have a
peak in this profile and there is virtually no peak in
nucleosome-depleted regions. This indicates that the
structural properties are sufficiently distinct to allow
efficient prediction of nucleosome positions. We thus
developed a computational method, termed DLaNe, for
detecting peaks and valleys of structural profiles to
locate nucleosome positions. Specifically, for positively
correlated features, our method detects peaks along the
structural profiles to locate nucleosome; likewise, it
detects valleys for negatively related features. Mean-
while, as nucleosome positions are influenced not only
by high order chromatin structure [53], but also by
repulsive and attractive interactions between neighbor-
ing nucleosomes [55], we considered the effect of the
steric exclusion which prevents neighboring nucleo-
somes from overlapping in space [8] and dictates rela-
tively fixed lengths of linker DNA. In yeast, the average
length of nucleosome is about 147 bp, and the length of
linker DNA ranges approximately in 10-20 bp [56]. We
set the window size for nucleosome position prediction
at 165 bp to count for the distances between neighbor-
ing nucleosomes. In our analysis, we experimented with
different window sizes. The results showed that this par-
ticular window width performed the best. The detail of
our method is in Methods.
We applied our method to the S. cerevisiae genome. To

determine the predictive power of different structural fea-
tures, we validated our predicted nucleosome locations
against the genome-wide nucleosome position map from
Lee et al. [45], which provided 70,884 nucleosome posi-
tions at a 4 bp resolution from a tiling microarray. If a pre-
dicted nucleosome center is within L bp of a true site, we
took it as a correct prediction, where L is a parameter of
distance cutoff. To obtain a fair evaluation, we evaluated
predicted positions by different distance cutoffs. We used

six cutoff values, ranging from 10 bp to 60 bp with an
increment of 10 bp. As previous studies evaluated their
prediction accuracy in terms of sensitivity and specificity
[13,57], here we also adopted these criteria. Specifically,
sensitivity (Se) represents the fraction of experimentally
verified nucleosomes that are correctly predicted, and spe-
cificity (Sp ) is the fraction of correctly predicted nucleo-
somes out of all predictions. In addition, to compare the
performance of methods with different Se and Sp, a unified
F-measure was used, computed as 2·Se·Sp/(Se + Sp).
Since our method depends on a peak significance

threshold to identify peaks (see Method), whose center is
further used to determine nucleosome position, we firstly
examined whether the performance was influenced by
this parameter. A larger threshold means a more strin-
gent standard and more significant peaks to be detected.
Figure 4 shows the results for different thresholds. To
clearly show the effect of each threshold, we correspond-
ingly list the number of correctly predicted nucleosomes,
the number of reference nucleosomes [45] and the total
number of predicted nucleosomes in the legend. We pre-
sent these three counts at the cutoff L = 40 bp, and the
results for the other cutoff values are similar (not
shown). From these plots, we observe that both the sensi-
tivity and specificity decrease slightly as the threshold
increases. The reason is that increasing the threshold can
filter out more peaks and thus lower the total number of
prediction.
We then tested how well these structural features pre-

dict concrete positions of nucleosomes along the S. cere-
visiae genome. Each feature was individually utilized to
construct a DLaNe model. Table 3 reports the predic-
tion accuracies of all of the 12 structural features. The
experimental results reveal that the structural features
we considered can indeed be exploited to predict
nucleosome positions. Regardless of whether positively

Table 2 Genome-wide correlation coefficients between experimental nucleosome occupancies and nucleosome
occupancies predicted by different models

Prediction models Features used in a model Pearson correlation

In vitro
[9]

In vivo
[45]

Our integrated model (this
paper)

12 structural features in a linear model 0.88 0.42

Xi et al., 2010 [54] Position-dependant k-mer preferences (k up to 5) 0.618 0.34

Kaplan et al., 2009 [9] Position-dependant 5-mer preferences and periodic dinucleotide 0.89 0.34

Tillo and Hughes, 2009 [10] A linear model combining G + C content, propeller twist, slide and several 4-mer
occurrence

0.86 0.38

Yuan and Liu, 2008 [14] Periodic dinucleotide signals of linker and nucleosomal sequence 0.35 0.27

Gabdank et al.,2010 [24] Uses DNA bendability matrix 0.41 0.25

Miele et al., 2008 [20] Sequence-dependant free energy of nucleosome formation 0.38 0.22

Field et al., 2008 [2] Uses 5-mer preferences and periodic dinucleotide 0.74 0.39

Lee et al., 2007 [45] G + C content, 4-mer occurrence, TFBSs and several structural features 0.63 0.42

Gan et al. BMC Bioinformatics 2012, 13:49
http://www.biomedcentral.com/1471-2105/13/49

Page 8 of 15



or negatively correlated, the predictive accuracies of dif-
ferent features are generally consistent with their corre-
lations with nucleosome occupancy. DNA denaturation,
Propeller twist, Stacking energy and Z-DNA have the
highest performance among all features, while Protein
deformation and Protein-DNA twist have the lowest
performance.
Further, we evaluated the performance of our DLaNe

method by comparing it with three recent computa-
tional nucleosome prediction methods [8,14,54] and a
random model as a reference point. The Segal method
used a position-dependant first-order Markov chain to
locate nucleosomes [8]. The N-score method utilized
wavelet energy to identify a multi-resolution sequence
signature, and then applied a hidden Markov model
(HMM) to predict nucleosome locations [14]. We
obtained all highly stable nucleosome positions (stability
scores larger than 0.2) predicted by the Segal method
and predictions of N-score. The NuPoP method was
built upon a duration HMM [54]. As suggested, we ran
NuPoP with its fourth order Markov model to predict
nucleosome positions [54]. For the random model, we
randomly selected the same number of non-overlapping
nucleosome positions from each chromosome as in the
reference map [45]. All nucleosome positions predicted
by different methods were equally validated by the gen-
ome-wide reference nucleosome positions [45]. Limited
by space, we unbiasedly included the best and the worst
predictive structural features in this comparison. Perfor-
mances under different distance cutoffs show that our

meta DLaNe achieves the highest sensitivity and F-mea-
sure (Figure 5). Table 3 shows the detailed comparison
with cutoff L = 35 bp. For the most informative features
such as Z-DNA and DNA denaturation, the number of
correct predictions from DLaNe is almost twice of that
of N-score, and about 25% more than that of the Segal
method. The F-measure of DLaNe, except the feature
Protein deformation, is always higher than that of other
methods. Specially, the F-measure of the meta DLaNe,
which combines six top-performing features, is 28.45%
higher than that of the Segal model, 36.71% higher than
that of NuPoP, about 50% higher than that of N-score
and Random method. These comparisons reveal that
DLaNe method is very effective in locating nucleosome
positions.
To determine the factors that make the meta DLaNe

perform better than other methods, we also applied the
HMM approach to locate nucleosomes using the struc-
tural profiles of the six top informative features (see
Methods). The HMM model contained 16 hidden states:
15 nucleosome states and one linker state. We trained
the model on Chromosome 3 and applied it to predict
nucleosome positions by using Viterbi algorithm. As
shown in Table 3 the HMM model performs slightly
worse than the meta DLaNe, however, better than the
existing method which mainly based on sequence fea-
tures. Since this HMM method and the DLaNe are both
based on structural features, the results suggest that
these structural features are effective in capturing
nucleosome positioning information.

 Ps=0.3 (50030/70884/104161) 

 Ps=0.4 (49452/70884/102919)

 Ps=0.5 (47783/70884/99578)

 Ps=0.6 (43516/70884/93678)

Figure 4 Performance of our method DLaNe with different peak significance (Ps) values. Here we present the results of four thresholds at
six different distance cutoff values from 10 to 60. (A) Sensitivity. (B) Specificity.
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Discussion
It has been heatedly debated whether or not nucleosome
organization is primarily determined by genomic DNA
sequences [8,27,28]. By analyzing nucleosome occupancy

in yeast, Kaplan et al concluded that DNA sequence
preferences have a dominant role in nucleosome organi-
zation [9,27]. However, subsequent studies derived a dif-
ferent conclusion [16,17,28]. The main dispute is to
what extent sequence preferences dictate nucleosome
organization. In the current study, we systematically
investigated 12 structural properties of DNA sequences,
including flexibility, curvature and energy, as features
for nucleosome occupancy. We have identified some cri-
tically important structural features, such as DNA dena-
turation, DNA-bending stiffness, Stacking energy, Z-
DNA, Propeller twist and free energy, which are not
only highly correlated with in vitro nucleosome organi-
zation, but also accounted for much of the in vivo
nucleosome occupancy. The correlation analysis
between the 12 structural features and the G + C con-
tent of DNA sequences showed that the predictive
power of these structural features just marginally related
to the G + C content. Besides sequence compositional
preferences, such as the G + C content, these structural
features can also capture long range interactions that
are invisible in local sequences.
Our study provided some new structure-based per-

spectives on nucleosome organization and gene regula-
tion activities. Firstly, the genome-wide profiles of these
12 structural features are highly correlated with both in
vitro and in vivo nucleosome occupancy. Based on their
relation with nucleosome occupancy, these features are
classified into two categories, positively and negatively
correlated. The peaks of structural profiles for positively
correlated features well correspond to nucleosome
regions and the valleys match nucleosome-depleted
ones, while negatively correlated features are the oppo-
site. This suggests that structural properties of DNA
sequence would directly determine nucleosome occu-
pancy. These structural features differ in degrees of

 DLaNe-DNA Denaturation      DLaNe-Bendability      DLaNe-Z-DNA      DLaNe-Protein  deformation   

 DLaNe-Six features    Segal Model     NuPoP    N-score Model      Random Model

Figure 5 Performance comparisons of the new method DLaNe with three recently methods and the random method with different
distance cutoffs. (A) Sensitivity. (B) Specificity. (C) F-measure.

Table 3 Genome-wide performance comparison among
the Segal method, N-score, NuPoP, the Random method,
the HMM method, DLaNe based on twelve individual
structural features and the meta DLaNe method combing
six features with the cutoff L = 35

Structural features Prediction performance

Se Sp F-measure Improvement(%)

DNA denaturation 0.703 0.412 0.520 18.47

Propeller twist 0.699 0.409 0.516 17.68

DNA-bending stiffness 0.702 0.408 0.516 17.68

Duplex disrupt energy 0.625 0.394 0.483 10.21

Bendability 0.623 0.391 0.480 9.56

Z-DNA 0.702 0.411 0.518 18.23

Stacking energy 0.695 0.408 0.514 17.25

Duplex free energy 0.689 0.404 0.509 16.15

Aphilicity 0.675 0.403 0.505 15.09

B-DNA twist 0.654 0.384 0.484 10.34

Protein-DNA twist 0.652 0.381 0.481 9.67

Protein deformation 0.526 0.353 0.422 -3.66

Meta DLaNe method 0.734 0.457 0.563 28.45

HMM method 0.723 0.445 0.551 25.63

Segal method 0.474 0.408 0.439 0.00

NuPoP method 0.356 0.489 0.412 -6.04

N-score method 0.317 0.439 0.368 -16.05

Random method 0.346 0.346 0.346 -21.10

The accuracy of a predicted nucleosome position is measured by sensitivity
(Se), specificity (Sp) and F-measure. The improvement of F-measure is
computed by comparing with the performance of the pioneer method (Segal
method). For DLaNe method, the performance of all 12 structural features is
shown in two part, according to their relationship with nucleosome occupancy
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correlation with nucleosome occupancy. Secondly, the
analysis over centromere regions showed the structural
features of nucleosome-enriched sequence are very dif-
ferent from those of overall genomic sequence, suggest-
ing these structural features involve in chromatin
organization, acting as generator or repressor of nucleo-
some formation. Furthermore, differentially expressed
genes exhibit different nucleosome occupancy patterns
and chromatin structures in promoter regions. This
observation indicated that these structural features play
an important part in nucleosome organization and gene
regulation, implying that the former may bridge the gap
between nucleosome organization and gene expression.
Our findings illustrated the power of these structural

features in predicting nucleosome occupancy and posi-
tioning. We used the least angle regression method to
integrate all 12 structural features for predicting nucleo-
some occupancy. Besides those features such as the pro-
peller twist and free energy which overlap with previous
computational studies, we also find that the DNA dena-
turation, DNA-bending stiffness, Stacking energy and Z-
DNA are effective in capturing nucleosome occupancy.
These structural features capture more accurately in
vivo nucleosome occupancy than sequence composi-
tional features, consistent with a previous analysis which
indicated that a major sequence signaling in vivo is a
high-energy barrier rather than favorable sequence
motifs [48]. Furthermore, we proposed a novel computa-
tional method, DLaNe, to detect peaks (valleys) of struc-
tural profiles to locate nucleosome positions. Most of
these structural features have better performances than
the existing methods in locating nucleosomes. We
developed a meta DLaNe to integrate predictive power
of six top-performing features. Based on the profiles of
these structural features, we used a HMM model to
locate nucleosomes. Our meta DLaNe method and the
HMM model are more accurate than three recently pro-
posed computational methods in locating nucleosomes,
showing effectiveness of secondary structures in captur-
ing nucleosome positioning signal. Our prediction
method is a new addition to the arsenal of nucleosome
positioning prediction.

Methods
Data used
We downloaded the experimental nucleosome occu-
pancy data measured in recent studies [9,45,58]. In
these works, based on the susceptibility of nucleosome-
depleted sequences to MNase, MNase assay was used
for the digestion of genomic sequences. Then, microar-
ray [45,58] or massive parallel sequencing [9] techniques
were adopted to determine nucleosome occupancy. The
data of Lee et al. covered the whole S. cerevisiae genome
at a higher resolution (4 bp) [45]. Kaplan et al. used

parallel sequencing to determine genome-wide nucleo-
some occupancy [9]. The nucleosome intensity signals
from these studies were represented as log ratio between
nucleosomal DNA and genomic DNA, showing nucleo-
somes as peaks of about 150 bp long, surrounded by
lower values corresponding to nucleosome-depleted
regions. From these studies, the experimental nucleo-
some occupancy data were collected. We identified
1,000 well-positioned nucleosome and 1,000 nucleo-
somedepleted positions and extracted corresponding
genomic sequences [58]. For genome-wide comparison
of structural profiles and the patterns of nucleosome
occupancy, we respectively used the experimentally
derived in vitro nucleosome occupancy dataset from
Kaplan’s study [9] and in vivo data from Lee’s study
[45].
The complete S. cerevisiae genome (May 2006 build)

and the genome annotation were downloaded from Sac-
charomyces Genome Database (SGD) [59]. To evaluate
our prediction method, we compared it with three
recent computational methods [8,14,54], whose pre-
dicted nucleosome positions were collected from their
websites [8,14] or generated by the program [54]. All
predictions were validated by the same reference dataset,
a genome-wide atlas of nucleosome positions [45].

Calculating structural profile
We analyzed a comprehensive list of structural features
related to flexibility, curvature and energy of DNA
sequences, including Aphilicity [36], B-DNA twist [30],
Bendability [31], DNA-bending stiffness [33], DNA
denaturation [35], Duplex free energy [39], Duplex dis-
rupt energy [38], Propeller twist [29], Protein-DNA twist
[32], Protein deformation [32], Stacking energy [34] and
Z-DNA [37]. For each feature, a corresponding struc-
tural model has been constructed by specific experimen-
tal technique. A detailed discussion of these features can
be found in [42,44].
We calculated the structural profiles of the above 12

features on S. cerevisiae genome. The calculation of a
structural profile was divided into two steps. First, we
converted each DNA sequence into a numerical
sequence by replacing each dinucleotide or trinucleotide
with a structural value. This transformation was based
on experimentally determined structural models [44].
Second, we used a moving average to smooth the raw
structural profiles, with a step of 10 bp and a window
size of 100 bp. The final structural profile is a vector of
values of the structural features, at a resolution of 10
bp, which can be adjusted as needed. We tried different
window sizes ranging from 5 to 200 bp. The result
showed that smaller window sizes (<75 bp) were not
sufficient for value smoothing. On the contrary, bigger
sizes (>150 bp) had too strong an averaging effect,
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smoothing out the differences among intrinsic structural
patterns at different positions. Thus, to retain a suffi-
cient smoothing effect and avoid much modification to
the data, we used the window size of 100 bp rather than
the nucleosome size (165 bp). Meanwhile, with the step
size 10 bp for the sliding window, we obtained the
structural values at a resolution of 10 bp. This smooth-
ing constraint may slightly affect the results of following
nucleosome locations. For example, if the predictive
peaks of structural profiles locate within ± 35 bp around
true nucleosomes, the predictions have a resolution of ±
40 bp.

Locating nucleosomes through peak detection
According to our analysis, the structural profiles of
nucleosome regions possess distinct characteristics,
which are absent in the nucleosome-depleted sequences.
For positively related features, the peak in the structural
profile is a well-positioned property of the nucleosome.
In contrast, the valley exists in nucleosome region for
negatively related features. Thus, identification of
nucleosome positions can be done by detecting peaks of
structural profiles for positively correlated features, or
detecting valleys for negatively correlated features. Since
the detection of peaks and valleys is similar, we only
present here peak detection procedure. As outlined in
Figure 6(a), the approach is composed of two main
parts, calculating a structural profile and detecting peaks
to locate nucleosomes. The procedure for calculating
structural profile was described in the previous section.
In the following, we describe the peak detection model.
The structure vector S for a given sequence s can be

obtained by the transformation procedure described
above. The structural values, stored in S, can be plotted
along the sequence, which may represent the changing
patterns of the structural values, sketched in Figure 6
(A). Meanwhile, we introduce four variables for defining
a peak, i.e., peak intensity Pi , left endpoint Pl , right
endpoint Pr , and peak width Pw (Figure 6(B)). To detect
significant peaks, a predefined peak significance thresh-
old Ps needs to be determined empirically by an inspec-
tion of the average Pi. In order to determine a Ps for
each chromosome, we tried different values in the range
[0.1, 1]. The peak detection method performed best
when Ps was chosen from [0.3, 0.6]. Then we can locate
nucleosomes along the sequence as follows:
S.1) Filtering out noises of the structural profiles.

Although an initial smoothing is done to a structural
profile, it may still have noises. Comparing with
valid peaks, noises usually appear with low intensity
and narrow shape. To filter out noises and mean-
while to minimize the amount of modification to the
data, we adopt a median filtering to remove possible

noises, i.e., for a position p, its value Sp is replaced
by the median value within a predefined window.
Here the window size is the same as previous
smoothing size (100 bp). Denote the median filter
output of S as SM.

S.2) Determining the peak intensity threshold for each
chromosome.

We then scan the noise-reduced structure vector SM
with a sliding window. Since most common dis-
tances between adjacent nucleosome centers are
approximately 165 bp (about 18 bp linker) in S. cere-
visiae [19], the width of the window is set to 165 bp,
other than the length of 147 bp as done in [45].
In order to determine the peak intensity threshold,
the average peak intensity along the sequence is first
calculated. Then relative to the average intensity, we

Peak detecting for
nucleosome localization

Computing
structural profiles

Converting

Smoothing

Peak detecting

Profiles with 

labeled peaks

Predicting PhaseStructural Profiles

Genome

Sequence

Nucleosome
location

A

Figure 6 Predicting nucleosome occupancy using DNA
structural features. (A) The flow chart of our new nucleosome
position prediction approach DLaNe. (B) Illustration of parameters
for peak detection.
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define the peak intensity threshold to filter out the
less intensive peaks. In each window, the difference
between the maximal and minimal values is assigned
to the peak intensity Pi of the window. After scan-
ning the whole sequence, we calculate the average Pi
of all windows, denoted as APi. Based on APi and a
given peak significance threshold Ps, the peak inten-
sity threshold is determined as:

APi = EPi =
∑�|SM|/Pw�

i=1
Pi/

⌊|SM|/Pw
⌋
,

where SM is the structure vector corresponding to
sequence s, Pw is the predefined peak width, and

Ps ∈ (0, 1].

Peak intensity threshold = Ps·APi.

S.3) Searching for each peak’s maximum position and
endpoints.

To locate the concrete nucleosome position, we take
the structural profiles and steric effect into account.
The reason is that detailed nucleosome positions are
influenced not only by high order chromatin struc-
ture, but also by repulsive and attractive interactions
between neighboring nucleosomes. Steric exclusion
prevents consecutive nucleosomes from overlapping
in space, dictating relatively fixed lengths of linker
DNA [60,61]. Thus, overlaps between two nucleo-
somes are not allowed owing to steric effect. A legal
locating specifies positions for a set of non-overlap-
ping 147-bp nucleosomes on S. cerevisiae. Thus, the
detection of peaks follows the following rule. Given
a peak intensity threshold, peak detection is per-
formed by scanning the filtered structure vector SM
. If the peak intensity of the window is less than the
peak intensity threshold, viz., Pi < Ps·APi, there is no
significant peak in this window, and the sliding win-
dow moves forward; otherwise, there exists a peak in
the window. First, the position with the maximal SM
value is regarded as Pc. Since a well-positioned
nucleosome is about 147 bp, Pl and Pr of this peak
are correspondingly determined as follows, Pl = Pc -
73, Pr = Pc + 73, where the value 73 is equal to half
of the length of nucleosome. If there is more than
one peak that exceeds the cutoff in the current win-
dow, the higher peak is chosen by selecting the max-
imal structural value in the window. Iteratively, the
sliding window move forward to locate next nucleo-
some till it comes to the end of sequence. Then,
each feature can be used to locate nucleosomes.

S.4) Integrating the predictions of individual features.

Furthermore, we introduce a Random Forest [62]
based meta-predictor to integrate predictions of dif-
ferent structural features. Random Forest classifier is
an ensemble classifier consisting of many decision
trees with variations in structure and outputs the
class voted by the majority individual trees [62]. First,
the predictions of each feature are collected. For each
prediction, the number of times that it is predicted by
different features, the distance to its closest neighbor-
ing prediction and whether it is predicted by a certain
feature are extracted as its features. Second, using the
experimental nucleosome positions of one chromo-
some of yeast, we trained the Random Forest based
meta predictor on the above selected features. Third,
the trained meta predictor is applied to decide
whether a prediction can be accepted. Finally, all
accepted predictions are clustered if they are within
73 bp with each other, and the middle one in a clus-
ter is taken as a meta prediction.

Locating nucleosomes using a hidden Markov Model
The hidden Markov model (HMM) has been applied to
infer nucleosome positions from genome-wide hybridi-
zation data [45,58]. As the profiles of these structural
features are highly correlated with nucleosome occu-
pancy, we also developed a HMM model to locate
nucleosome from the structural profiles. Our implemen-
tation of HMM was based the HMM toolbox, which
was downloaded from Murphy website http://www.cs.
ubc.ca/~murphyk/Software/HMM/hmm.html. According
to the resolution of these transformed structural pro-
files, the HMM model contained 16 distinct states, 15
nucleosome states and one linker state, which is differ-
ent from previous models [45,58]. To apply the HMM
model, the structural profiles of genomic sequences
were first transformed as described above. After we
obtained the structural profiles, we trained the model
on Chromosome 3 based on Lee et al’s reference
nucleosome positions. Using the Viterbi algorithm, we
applied the learned HMM model to compute the most-
likely states. According to the predicted state sequence,
we located the possible nucleosome positions.
The Additional file 2 provides the implementation of

our DLaNe method based on structural features.

Additional material

Additional file 1: Supplemental Table 1. Pairwise Pearson correlation
coefficients among structural profiles of 12 different structural features
across the whole S.cerevisiae genome. Supplemental Table S2. Pearson
correlation coefficients between the 12 structural features and the G + C
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content across the whole S.cerevisiae genome. Supplemental Figure S1.
The comparison between structural profiles and experimental
nucleosome occupancy of S.cerevisiae. Here we show the other eight
structural features of a 3 kb region around CHA1 promoter on
chromosome 3, including three positive features (the first row) and five
negative features (the second row). Supplemental Figure S2. The
comparison between structural profiles and experimental nucleosome
occupancy of S.cerevisiae. Here we show four typical related features of a
3 kb region around HIS3 promoter on chromosome 15, including DNA.

Additional file 2: The executable and source codes of DLaNe.
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