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Abstract

In this paper we present an algorithm based on the sum-product algorithm that finds elements in the preimage of
a feed-forward Boolean networks given an output of the network. Our probabilistic method runs in linear time
with respect to the number of nodes in the network. We evaluate our algorithm for randomly constructed Boolean
networks and a regulatory network of Escherichia coli and found that it gives a valid solution in most cases.

Introduction
In systems and computational biology Boolean networks
(BN) are widely used to model regulative dependencies of
organisms [1,2]. We consider networks, which map a set
of environmental conditions to the presence of proteins
and finally to actual chemical reactions, which are often
modeled as fluxes of a flux-balance analysis [3]. Hence,
these networks are used to make in silico predictions of
behavior of organisms in a certain environment [4].
In this paper we address the inverse problem, i.e., we

want to predict environmental conditions that allow cer-
tain reactions to take place, and others not. Hence, in gen-
eral, we need to find a set of possible inputs that lead to a
given output. This so called predecessor problem or pre-
image problem has been addressed by Wuensche in [5]
and has been shown to NP-hard in general [6], which
makes it infeasible to solve it for large networks. In [7] an
algorithm with reduced complexity for BNs with canaliz-
ing Boolean functions has been introduced. However, the
problem is infeasible under certain conditions. Both algo-
rithms are designed to find the whole set of preimages, i.e.,
all inputs to the BN with lead to a certain, desired, output.
In some applications, knowledge of the whole preimage

set is not important, merely it can be sufficient to know a
subset of the preimage set. Here, we propose a probabilis-
tic algorithm, which solves this problem in linear time
with respect to the number of nodes in the network, based
on a variation of the well known Sum-Product Algorithm
(SPA) [8], which is used for a variety of tasks, including

decoding error correction codes in communication engi-
neering [9].

Methods
Boolean networks and main idea
We consider networks like shown in Figure 1, mapping
the values of the N in-nodes I = {1, 2, 3} to the M out-
nodes O = {12, 13, 14, 15, 16}, i.e., we can represent this
BN as a function mapping the N input values uniquely
to the M output values:

f : {0, 1}N → {0, 1}M.
The network itself consists of n nodes, and a set of

directed edges connecting these nodes. Each node i has
a certain state, which can be either zero or one, repre-
sented by a variable xi. Its value is determined by evalu-
ating a Boolean function (BF) fi. Further, lets define the
set ñ(fj) as the incoming nodes of node j. For example
in Figure 1, ñ(f5) = {1, 3}. The BF fj is a function map-
ping kj = |ñ(fj)| values of {0, 1}

k to {0, 1}, where k is also
called the in-degree of node j. The number of edges
emerging from a node is called out-degree.
Given a vector of input values x Î {0, 1}N , x = (x1, x2, . . . ,

xN ) the corresponding output of f is y = f (x), y Î {0, 1}M. In
general there does not exist a unique inverse function f−1.
Instead the cardinality of the set Ωy := {x : f(x) = y} will be
larger one. We call Ωy the set of preimages of y. In this
paper we are interested to find at least parts of Ωy. Suppose
there is a probability distribution Py on {0, 1}N such that
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Py{x} =
⎧⎨⎩

1
|�y| if x ∈ �y

0 else
.

If we knew the probability distribution Py, we would
have solved the problem. But as explained, this is too
difficult in general. Our main idea now is to approxi-
mate Py by the product of the marginal distributions Pi
on the individual xi, i.e.,

Py ≈
N∏
i=1

Pi,

as the well-known SPA can be used to compute the
marginals efficiently. If the approximation is good enough
sampling out the product of the marginals will yield an
element in Ωy with reasonable probability.

Proposed algorithm
In this section we will first discuss the basic principles
of factor graphs and the SPA. Then we will describe
the BN as factor graph and will formulate the actual
algorithm to find the marginals. Finally, the sampling
is described.
Factor graphs and sum-product algorithm
Assume some function g(x1, . . . , xn) defined on some
domain An, which can be factorized in m local functions
hj, j Î [m] := {1, 2, . . . , m}, i.e.,

g(x1, . . . , xn) =
∏
j

hj(Xj),

where Xj is the subset of [n] containing the argument
of hj . We can then define a factor graph [8] as a bipar-
tite graph consisting of n nodes representing variables
{x1, . . . , xn} (variable nodes) and of m nodes represent-
ing functions {h1, . . . hm} (function node). Edges exist
between a function node and a variable node if and only
if xi is an input to function hj .
The marginal function gi(xi) is defined as [8]

gi (xi) =
∑
∼{xj}

g (x1, . . . , xn),

where
∑

∼{xj} g (x1, . . . , xn) is defined as∑
∼{xi}

g(x1, . . . , xn)

=
∑
x1∈A

. . .
∑

xi−1∈A

∑
xi+1∈A

. . .
∑
xn∈A

g(x1, . . . , xn),

In general the computation of the gi is difficult, but
due to the factorization of g the task can be efficiently
solved using the the so called Sum-Product Algorithm
(SPA) [8]. The algorithm iteratively passes messages
between the nodes of the graph. At each iteration the
messages µ are sent from the function nodes to the vari-
able nodes, containing the corresponding marginal

Figure 1 Example of a feed-forward network
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function of the local function. These messages are com-
puted as follows [8]:

Function to variable node

μh→x(x) =
∑
∼{x}

⎛⎝h(n(h))
∏

y∈n(h)\{x}
λy→h(y)

⎞⎠,

where n(i) give the set of neighboring nodes of node i.
At the variable nodes, these messages are then com-

bined to a marginal function l and sent back to the
function nodes [8]:

Variable to function node

λx→h(x) =
∏

q∈n(x)\{h}
μq→x(x).

The Boolean network as factor graph
We apply the concept of factor graphs to BNs. Each node
in the network represents one variable xi Î {0, 1}, i Î [n]
of the factor graph, hence we have n variable nodes. Each
BF fj of the BN (j ∈ [n]\I) is a function node and is con-
nected to the node j and the incoming nodes ñ(fj). Lets to
define X̃j as the variables of the incoming nodes of node j,

i.e. the argument of the BN fj. Further, we define X̃(i)
j as X̃j

without the node i.
Finally, if we consider the variables as each node as

random variables, we have a common distribution of all
variables nodes described by the density function,

gx1 ,..., xn(x1, . . . , xn) ≡ g(x1, . . . , xn),

For sake of readability we will omit the subscripts of the
density function, if they are obvious from context. We are
interested in finding the marginal distributions of the in-
nodes, which can be described by the density functions

gxi(xi) =
∑
∼xi

gx1,...,xn(x1, . . . , xn) ∀i ∈ I.

This problem is an instance of the problem described
in Section Factor Graphs and Sum-Product Algorithm,
hence we apply the same methods here.

Update rule: function to variable node
If we focus on one function node j ∈ [n]\I there exists a
common distribution of all variables relevant for this
node. Namely, these relevant variables are the ones
located in X̃j of the BF fj, and the value of node j. We
can write the density of this distribution as:

p(xj, X̃j).

Lets define ñ(fj) as the set of indices of the input
nodes of the BF fj.

We need to send the local marginal distribution of
each variable i Î { j} ∪ ñ(fj) back to the variable node, or
more formally:

μj→i(xi) =
∑
∼{xi}

p(xj, X̃j) =
∑
∼{xi}

p(xj, xi, X̃
(i)
j ) (1)

If i = j, i.e. if the message is designated for the node
containing the output of the BF, the density of the mar-
ginal distribution becomes:

μj→j(xj) =
∑
∼{xj}

p(xj |̃Xj)· (X̃j)

=
∑
∼{xj}

fj(X̃j)· (X̃j)

which is the probability distribution of the functions
output. We can assume that the elements of X̃j are pair-
wise independent, hence we can write:

p(X̃j) =
∏

l∈ñ(fj)
λl(xl),

where ll is the probability distribution of variable
node l and is defined in Eq. 3.
In the other cases, i.e., i ≠ j, Eq. (1) becomes:

μj → i(xi) =
∑
∼{xi}

p(xi|xj, X̃(i)
j )· (xj, X̃(i)

j ).

We still can assume that the elements of X̃(i)
j are pair-

wise independent, hence we can write:

p(xj, n(fj)\xi) = p(xj |̃X(i)
j )· (X̃(i)

j )

= p(xj |̃X(i)
j )

∏
l∈ñ(fj)\{i}

λl(xl).

If the Boolean functions output xj = fj(X̃j) is already

completely determined by X̃(i)
j , i.e., if the variable xi has

no influence on the output for this particular choice of
the other variables, we assume xi to be uniformly dis-
tributed:

p(xi|xj, X̃(i)
j ) =

1
2
pxj(f (X̃

(i)
j , xi) = xj)

and since xj is completely determined by X̃(i)
j

p(xj, X̃
(i)
j ) =

∏
l∈ñ(fj)\{i}

λl(xl).

Otherwise, xi is totally determined by xj and the other
variables, i.e., xi is 0 or 1 depending on BF. Hence, we
can write

p(xi|xj, n(fj)\xi) = pxj(f (X̃
(i)
j , xi) = xj),
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where pxj(f (X̃
(i)
j , xi) = xj) is either 0 or 1. Further we

can assume xj independent of X̃
(i)
j , hence

p(xj, X̃
(i)
j ) = λj(xj)

∏
l∈ñ(fj)\{i}

λl(xl).

Finally, we can summarize for i ≠ j:

μj→i(xi) =
∑
∼{xi}

ξi,jpxj(f (X̃
(i)
j , xi) = xj)

∏
l∈ñ(fj)\{i}

λl(xl), (2)

with

ξi,j =

{
1
2 , if fj(X̃

(i)
j , xi = 0) = fj(X̃

(i)
j , xi = 1)

λj(xj) , else
.

Update rule: variable to function node
The update rule is the same for all variable nodes j Î [n]
and is independent of the function node to which they
are directed.

λj(xj) =
∏
l∈Sj

μl→j(xj),

where Sj is the set of all function nodes, which have
node j as input.
Finding the input distributions
In our algorithm, we use the well known log-likelihood
ratio (LLR) to represent the probability distribution of
binary variables [10]. It is defined as:

LX = ln
p(x = 0)
p(x = 1)

. (4)

A scheme of the algorithm is given in Algorithm 1.
The probability distribution of each node j Î [n] at

iteration t is given as L(i)j and are initialized with L(0)j = 0,

which is equivalent to the uniform distribution. Then we
set the LLRs for the out-nodes to either −∞ or +∞
depending on the desired output y of the BN. At each
iteration the algorithm can be split in two steps. The first
step iterates over all function nodes (j ∈ [n]\I) and all

input variables i Î ñ(fj ) calculating the LLR L(t)j→i using

Eq. (2) and Eq. (4).
In the second step we update all variables-nodes,

where the LLRs Lj represents the distributions lj and,
hence the product of Eq. 3 becomes a summation.
Please note, that the LLR of the previous iteration is
also added to the sum, in order to prevent rapid
changes of the distributions.
After performing a certain number of iterations tmax,

the desired marginal distributions of the input variables
are found.

Algorithm 1
Initialize L(0)j = 0 for all nodes
Set the desired LLRs of the out-nodes, i.e., L(0)j is

either −∞ or +∞, for all out-nodes j ∈ O.
t = 0
repeat
t=t+1
for each non-in-node (j ∈ [n]\I)do
for each input variable i Î ñ(fj) do
calculate Lj®i using Eq. (2) and Eq. (4)

end for
end for
for each non-out-node v do
L(t)j = L(t−1)

j +
∑

l∈Sj L
(t)
l→j

end for
until maximum number of iterations reached

Sampling
The sampling part of our approach is straightforward.
Using the marginal distributions L(tmax)

j , j ∈ I we ran-
domly draw vectors x and check if they fulfill y = f(x). If
so, they are added to the set �̃y. This procedure is
repeated for a certain number of samples.

Simulation results and discussion
We tested our algorithm with randomly generated net-
works and the regulatory network of Escherichia coli (E-
coli) [2]. The random networks consist of 2400 nodes with
N = 200 and M = 1200. We have chosen the BFs from:
· all functions with k ≤ 15 (Type A)
unate, i.e. locally monotone, functions with k ≤ 15

(Type B)
After generating a network we draw a certain number

T of uniformly distributed input vectors x and obtain y
= f(x). For each y we applied then Algorithm 1 to obtain
the marginal distributions L(tmax)

j , j ∈ I . To investigate the
convergence behavior with respect to tmax we first apply
hard-decision to evaluate a good choice for tmax, i.e., we
generate an estimate x̃ by setting

x̃j =

{
0 if L(tmax)

j > 0

1 if L(tmax)
j < 0

Then we evaluate the network ỹ = f(x̃) , and measure
the similarity between y and ỹ by counting the equal
entries and divide them by the length of y. We did so
for 100 networks of Type A and B, and set T = 100.
The averaged results can be seen in Figure 2.
One can see, that for tmax ≥ 14 there is almost no

improvement in the similarity. This number is equal to
two times the number of nodes between input and out-
put, i.e., it seems to be sufficient that the messages travel
once through the network and back. Thus, the following
simulations have been perform setting tmax = 14.

Klotz et al. BMC Bioinformatics 2013, 14(Suppl 10):S4
http://www.biomedcentral.com/1471-2105/14/S10/S4

Page 4 of 6



Next, we apply sampling as described in Section Sam-
pling. We did so for 100 different networks of Type A
and B, and the E-coli network. For each random net-
work we did T = 100 runs, for E-coli T = 1000. The
results can be viewed in Table 1. We depict the percen-
tage of solved networks, i.e. the portion of networks we
found at least one valid x Î Ωy . Further, we give the
average number of valid x and the average number of
unique x.
One can see from the results, that in general for most

networks and ys at least one preimage can be found. It is
worth mentioning, that for the E-coli network every
sampled solution was unique. This is due to the fact, that
there exist a few inputs, who completely determine the out-
put. The other input variables have then no influence and
hence a marginal distribution of 0.5. Further, the results for
the network of type B are much better than for type A. It
seems that the marginal distributions for unate functions
give better estimation of the actual distribution than the
marginal distributions for non-unate functions.

Conclusions
In this work, we proposed a probabilistic algorithm to
address the preimage problem of Boolean networks. This
is of interest when designing experiments, in which certain
regulators are supposed to be in a specific state. Perform-
ing a series of simulations with Random networks we

showed, that the algorithm works not only for unate func-
tions, of which most biologically motivated networks con-
sist, but for any kind of Boolean functions. By replacing
the fixed output values of the network by probabilities one
can simply apply the algorithm to networks, whose desig-
nated output is described by probability distributions.
Further, the algorithm may be easily adjusted to work on
stochastic, e.g. Bayesian, networks, where the nodes con-
tain only transition probabilities instead of Boolean func-
tion. Therefore, it is needed to adapt the update rules
accordingly. It remains an open question, which influence
topographic properties, such as number of layers and
number of nodes in these layers, have to the performance
of the proposed algorithms, since we only investigated net-
works which are similar to the regulatory network of
E-coli.
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