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Abstract

Background: It is well known that the development of cancer is caused by the accumulation of somatic mutations
within the genome. For oncogenes specifically, current research suggests that there is a small set of “driver” mutations
that are primarily responsible for tumorigenesis. Further, due to recent pharmacological successes in treating these
driver mutations and their resulting tumors, a variety of approaches have been developed to identify potential driver
mutations using methods such as machine learning and mutational clustering. We propose a novel methodology
that increases our power to identify mutational clusters by taking into account protein tertiary structure via a graph
theoretical approach.

Results: We have designed and implemented GraphPAC (Graph Protein Amino acid Clustering) to identify
mutational clustering while considering protein spatial structure. Using GraphPAC, we are able to detect novel clusters
in proteins that are known to exhibit mutation clustering as well as identify clusters in proteins without evidence of
prior clustering based on current methods. Specifically, by utilizing the spatial information available in the Protein
Data Bank (PDB) along with the mutational data in the Catalogue of Somatic Mutations in Cancer (COSMIC), GraphPAC
identifies new mutational clusters in well known oncogenes such as EGFR and KRAS. Further, by utilizing graph theory
to account for the tertiary structure, GraphPAC discovers clusters in DPP4, NRP1 and other proteins not identified by
existing methods. The R package is available at: http://bioconductor.org/packages/release/bioc/html/GraphPAC.html.

Conclusion: GraphPAC provides an alternative to iPAC and an extension to current methodology when identifying
potential activating driver mutations by utilizing a graph theoretic approach when considering protein tertiary
structure.

Background
Cancer, one of the most widespread and heterogeneous
diseases, is at its most fundamental level a disease
brought on by the accumulation of somatic mutations
[1]. These mutations typically occur in either tumor
suppressors or oncogenes. While oncogenic mutations
either tend to deregulate or up-regulate the result-
ing protein behavior, mutations within tumor suppres-
sors typically lower the activity of genes that prevent
cancer. Pharmacological intervention has shown to be
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more effective with inhibiting activating oncogenes than
with restoring functionality of tumor suppressing genes.
Combined with the theory of “oncogene addiction”,
that many cancers are dependent upon a small set of
key genes to drive their rapid cellular multiplication
with the rest of the mutations simply being passenger
mutations [2,3], the identification of driver oncogenic
mutations has become of critical importance in cancer
research.
Due to the importance of this problem, several approaches

have been proposed to detect naturally selected regions in
which activating mutations occur. One general approach
postulates that driver mutations will have a higher non-
synonymous mutation rate as compared to the back-
ground level after normalizing for the length of the
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gene [4-6]. Similarly, assuming that the neutral rate of
nucleotide substitution is surpassed when positive selec-
tion is acting on a specific region, one can check if the
ratio of nonsynonymous (Ka) to synonymous (Ks) muta-
tions per site is greater than 1 [7]. Relatedly, Ye et al.
[8] and Ryslik et al. [9] showed that mutational clus-
ters can be indicative of activating mutations and that
finding such clusters is a way to reduce the driver muta-
tion search space needing to be analyzed. An alternative
approach relies on creating classifiers to categorize muta-
tions. Machine learning algorithms such as Polyphen-2
[10], which predicts whether a missense mutation is dam-
aging, and CHASM [11-13], which discriminates between
known driver mutations and a set of passenger muta-
tions, rely upon a set of rules developed using a variety
of machine learning techniques such as Random Forests
[14] and Support Vector Machines [15]. These rules can
be used to calculate a score for each mutation based
upon both sequence and non-sequence-based features
such as evolutionary conservation, size and polarity of
the substituted residue as well as accessible surface area
[16]. Other classifiers, such as SIFT [17], use only a sub-
set of these features, e.g. evolutionary conservation, for
prediction.
While the methods based upon background mutational

rates have had some success in identifying regions of
positive selections or driver mutations, they nonetheless
suffer from several shortcomings. First, many of these
methods rely upon calculating the difference between syn-
onymous and non-synonymous mutations but do not take
into account that selection can act upon minute regions
of the gene. Thus, when the mutations rates are averaged
over the entire gene, the signal may be lost. Second, the
methods proposed by Kreitman [7] and Wang [4] do not
differentiate between activating gain-of-function muta-
tions and inactivating loss-of-function non-synonymous
mutations. Third, many of the machine learning meth-
ods require an extensive rule set that must first be trained
using a well annotated database that is still limited. Until
the requisite literature and information is developed, the
machine learning algorithm is unable to create a well-
performing classifier. Furthermore, the rules must be
updated periodically to reflect updated knowledge and
information. For a recent review of several popular meth-
ods that attempt to discernmissense substitution effect on
protein function see Gnad et al. [18] and Gonzalez-Perez
et al. [19].
Building on the work of Bardelli et al. [5] and Torkamani

and Schork [20], which stipulated that only a small num-
ber of specific mutations can activate a protein, Ye et al. [8]
developed Non-RandomMutational Clustering (NMC) to
identify potential activating mutations. NMC works on
the hypothesis that absent any previously known muta-
tional hotspot, a mutational cluster is indicative of a

possible activatingmutation. This is based on the observa-
tion that most amino acid substitutions are either neutral
or incompatible with protein function, resulting in a con-
centration of activating mutations within a small subset
of protein residues and domains [8]. For the null hypoth-
esis that mutation locations are random in the candidate
protein when represented in linear form, NMC identifies
clustering by evaluating whether there is statistical evi-
dence of mutations occurring closer together on the line
than expected by chance. While NMC is able to impli-
cate some cancer related genes, it is limited by the fact
that it considers the protein as a linear sequence and
does not take into account the tertiary protein struc-
ture. To account for protein structure information, Ryslik
et al. [9] developed iPAC (identification of ProteinAmino
acid Clustering), which reorganizes the protein into a one
dimensional space that preserves, as best as possible, the
three dimensional amino acid pairwise distances using
Multidimensional Scaling (MDS) [21]. As described by
Ryslik et al. [9], utilizing the tertiary information is crit-
ical when identifying clustering as mutations that occur
far apart when the protein is considered linearly can be
very close together once the protein is folded in 3D space.
The 3D proximity of such mutations might thus yield
novel clusters. While it was shown that iPAC provides
an improvement over NMC, the reliance upon a global
method like MDS can potentially result in a distorted
rearrangement of the protein, since distant residues will
nevertheless have an impact on each other’s final position
in one dimensional space.
In this manuscript, we provide an alternative method

to iPAC by remapping the protein into one dimensional
space via a graph theoretic approach. This approach
allows for a more natural consideration of the protein,
one that is sensitive to protein domains and linkers. We
show that our methodology is effective in identifying pro-
teins with mutational clustering that are missed by both
iPAC and NMC such as NRP1 and MAPK24. We also
show that for some proteins, GraphPAC identifies fewer
clusters than inferred by both iPAC and NMC while for
other proteinsGraphPAC identifiesmore clusters than the
other two methods. While both GraphPAC and iPAC are
an improvement over NMC since they account for ter-
tiary structure, the differences between GraphPAC and
iPAC point to the fact that different rearrangements of the
protein must be considered in order to better understand
the mutational clustering landscape. We show that many
of the clusters identified by GraphPAC are also classified
as damaging by Polyphen-2 and as an activating muta-
tion by CHASM. By providing a more complete picture
of mutational clustering than iPAC or NMC individually,
GraphPAC allows us to obtain a more accurate landscape
of where potential activating mutations may occur on the
protein.
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Methods
GraphPAC uses a four step approach to identifying
mutational clusters. The first step, as described in
Sections ‘Obtaining mutational data’ and ‘Obtaining the
3D structural data’, retrieves mutational and positional
data from COSMIC [22] and the PDB [23], respectively.
After reconciling the mutational and positional databases
(Section ‘Reconciling the structural and mutational data’),
the residues are realized as a connected graph where
each residue is a vertex whereupon the traveling salesman
problem is heuristically solved in order to find the short-
est path through the protein (Section ‘Traveling salesman
approach’). Once the shortest path has been identified, the
protein residues are reordered along this path providing a
one dimensional ordering of the protein. The linear NMC
algorithm is then used to calculate which mutations are
closer together than expected by chance. Lastly, the clus-
ters are unmapped back into the original space and the
results reported back to the user. We detail each of the
steps in the sections below.

Obtaining mutational data
The mutational positions were obtained from the 58th
version of the COSMIC database that was downloaded via
the following ftp site: ftp.sanger.ac.uk/pub/CGP/cosmic.
The database was implemented locally using Oracle 11g.
Only missense mutations that were classified as “Con-
firmed somatic variant” or “Reported in another cancer
sample as somatic” were selected, with nonsense and
synonymous mutations excluded. Moreover, we only con-
sidered mutations originating from studies that were clas-
sified as whole gene screens. Next, since multiple studies
can report mutational data from the same cell line, muta-
tional redundancies were removed to avoid double count-
ing the mutations. Lastly, only the proteins with a UniProt
Accession Number [24] were kept in order to correctly
match the mutational and positional data, resulting in 777
proteins. See “COSMIC query” in Additional file 1 for the
SQL code required to generate the mutational data.

Obtaining the 3D structural data
The PDB web interface was used to obtain the protein ter-
tiary information for each of the 777 proteins described in
Section ‘Obtaining mutational data’. Since multiple struc-
tures are often available for the same protein, all structures
with a matching UniProt Accession Number were used
and an appropriate multiple comparisons adjustment (see
Section ‘Multiple comparison adjustment for structures’)
was performed afterwards. For proteins where the resolu-
tion provided alternative conformations, the first confor-
mation listed in the file was used. Similarly, for structures
where more than one polypeptide chain with a matching
Uniprot Accession Number was available, the first match-
ing chain listed in the file was used (typically chain A).

Finally, after the chain and conformation were selected,
the cartesian coordinates of all the α-carbon atoms were
used to represent the tertiary backbone structure of the
protein. While we only used the α-carbon location to rep-
resent the residue location in this paper, our methods are
robust if any of the other backbone atoms are used includ-
ing the amide nitrogen, main chain carbonyl carbon or the
main chain carbonyl oxygen.
Also, while X-ray crystallography was used to determine

many of the tertiary structures in the PDB, we note that
molecular dynamics (MD) could in principle be used to
model the protein structure in solution. However, taking
into account the time complexity of such an approach
for larger proteins as well as the number of structures
that we consider, such a task is beyond the scope of
this paper [25]. Further, as crystal structures are almost
always representative of the correctly folded protein, using
the current structural information is more than suffi-
cient until MD simulations can be applied on much faster
time scales. See “Structure Files” in Additional file 2 for
a full listing of all the 1,904 structure/chain combinations
used.

Reconciling the structural andmutational data
In order to reference the same residue in the COSMIC and
PDB databases, an alignment was performed to accom-
modate their different numbering systems. Like iPAC,
GraphPAC allows two such reconciliations. The first is
based upon a pairwise alignment as described in Pages
et al. [26] while the second is based upon a numerical
reconstruction from the structural information available
in the PDB file. Due to the fact that the PDB file struc-
ture potentially changes depending upon the structure
release date along with other technical complications,
pairwise alignment was used for all the analysis described
in this paper unless specifically noted. For further infor-
mation on the alignment please see the documentation in
the GraphPAC package available on Bioconductor. Pro-
tein/structure/chain combinations that resulted in only
one mutation or no mutations on the residues for which
tertiary information was available were dropped. Similar
to iPAC, a successful alignment of the tertiary and muta-
tional data was obtained for 140 proteins correspond-
ing to 1100 unique structure/chain combinations. See
“Structure Files” in Additional file 2 for a full listing and
description.

Traveling salesman approach
Since theNMC algorithm requires order statistics to iden-
tify clustering (see Section ‘NMC’), we need to map the
protein from a three dimensional to a one dimensional
space so that order statistics may be constructed. Con-
trary to iPAC, which employed MDS, a graph theoretic
approach is used by GraphPAC. As discussed above, one

ftp.sanger.ac.uk/pub/CGP/cosmic
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major limitation of MDS is that the minimization of the
stress function:

σ1 =
√√√√

∑
i,j[ f (δi,j) − di,j(X)]2∑

i,j d2i,j(X)
(1)

results in every residue having an effect on the final posi-
tion of every other residue. In Equation 1, δij represents
the Euclidean distance between residues i and j in the orig-
inal higher-dimensional space while di,j(X) represents the
distance between them in the lower dimensional space
X. Lastly, f , is used to account for situations where the
proximity measures δi,j do not come from a true metric
space. Since in our case, δi,j ∈ R, f is the identity func-
tion. Minimization of σ1 may not capture that a protein
is typically comprised of several domains and that only
residues within a specific domain should influence each
other’s final position in linear space (see Figure 1).
Under the GraphPAC algorithm, we first construct a

complete graph with each residue represented by a ver-
texa. We then create a linear ordering of the protein
by finding a Hamiltonianb path through the graph. As
the number of distinct Hamiltonian paths on a complete
graph with N vertices is equal to (N−1)!

2 , a direct consid-
eration of all possible paths is computationally unfeasible.
Further, selective pruning of the edges based upon edge
distance is also often impractical due to the domain struc-
ture where many residues are close to each other. Because
of these factors, we use a heuristic algorithm that solves
the Traveling Salesman Problem (TSP) [27,28] to find
a linear path that is approximate of the shortest path
through the protein.We then use this path as a representa-
tive reordering of the protein into one dimensional space.
Unlike iPAC, which is based on a global remapping, this
methodology takes into account only locally neighboring
residues to remap the protein to one dimensional space.
While there are many heuristic solutions for the TSP

(see Gutin and Punnen [29]), we consider three of the
most common insertion methods [30]: cheapest inser-
tion, farthest insertion and nearest insertion as described
below. Specifically, the objective of the TSP is to find a

cyclic permutation π of {1, 2, 3, . . . , n} that minimizes the
total tour distance, namely:

min
π

n∑
i=1

d(i,π(i))

Here, d(i, j) represents the distance between residues i and
j (with d(i, i) = 0) and π(i) represents the residue that
follows residue i on the tour. The difference between the
three insertion methods rests on how the next residue k is
selected for insertion. Under cheapest insertion, the next k
to be inserted into the tour is chosen such that the increase
in tour length is minimal. Under nearest insertion, at each
iteration, the k that is closest to a residue already on the
tour is selected. Finally, under farthest insertion, the k that
is farthest away from any residue already on the tour is
selected.
These algorithms have different upper bounds on their

tour lengths. For example, the farthest insertion algo-
rithm creates tours that approach 3

2 of the shortest length
while the nearest and cheapest insertion algorithms can
be linked to the minimal spanning tree algorithm and thus
have an upper bound of twice the shortest tour length
when distances satisfy the triangular inequality [28]. Due
to the varied nature of these methods and that there is no
biological justification to favor one over the other, we con-
sider all three methods when identifying clusters and then
perform an appropriate multiple comparison adjustment
to infer the statistical evidence of mutation clusters (see
Section ‘Multiple comparison adjustment for structures’).
As can be seen from Figure 2, all the rearrangement

options present a positive skew and are mostly consistent
with each other. For the majority of the proteins, all three
insertion approaches as well as the MDS approach result
in little rearrangement. However, if one method results
in radical rearrangement when the protein is mapped to
1D space, the other methods do so as well. This makes
selection of a specific insertion method less critical and
for the rest of this manuscript, unless otherwise speci-
fied, we use the insertionmethodwith themost significant
cluster for analysis. Please see “Distribution Summary” in

Figure 1 An example protein with three different domains. Under iPAC, the Domain A residues will influence the final positions of Domain C
residues and vice versa, a result that is undesirable if the three domains are independent of each other. The residues in Domain A and Domain C will
have no effect on each other’s final position via the graph theoretic approach.
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Figure 2 The amount of rearrangement performed under each of the three insertion methods described as well as MDS. Each column on
the x-axis represents one of the 1100 structures considered, with structures from the same protein adjacent to one another and the protein order
determined lexicographically by protein name. The y-axis shows the Kendall Tau distance, which is equivalent to the number of swaps required to
sort the protein back into {1,2,3,. . . ,..} order using bubble sort. The proteins with at least one rearrangement higher than 150,000 represent the DPP4,
F5, IDE, MET, PIK3Cα, SEC23A and TF proteins, from left to right, respectively.

Additional file 3 for a full listing of each structure’s
Kendall Tau distance, protein index and a high resolution
plot.

Path lengths between nearby and distant residues are
statistically different
We employed a statistical test to verify that the TSP algo-
rithm yields a shorter path between residues that are close
together in 3D space versus residues that are far apart.
First, we selected 200 random protein structures from our
data set. For each structure we then selected 100 ran-
dom amino acids and categorized them as “close” versus
“far” in 3D space (see Table 1 for more information on
the classification). For structure i, we then calculated the
average path distance between all pairwise close residues,
denoted c̄i, and the average path distance between all
pairwise far residues, denoted f̄i. Next, we calculated the
average close and far path distance over all structures:
c̄ = (

∑200
i=1 c̄i)/200 and f̄ = (

∑200
i=1 f̄i)/200. Finally, as c̄

and f̄ are averages, we applied the central limit theorem
and performed a t-test with H0 : c̄ = f̄ vs Ha : f̄ > c̄.
This test was performed for each of the insertion methods

described in Section ‘Traveling salesman approach’ and at
various classifications of close and far.
As shown in Table 1, the p-value is ≈ 0 for each com-

bination of distance and insertion method, allowing us to
conclude that the average path distance between residues
that are far apart in 3D space is larger than the average
path distance between residues that are close together in
3D space.

NMC
The NMC algorithm as described by Ye et al. [8], and
briefly reviewed here, was used to find the mutational
clusters once the protein was remapped to 1D space. To
begin, suppose we had m samples of a protein that was N
residues long and that there were a total of n mutations
over all m proteins. As shown in Figure 3, by collapsing
over the m samples, we can construct order statistics for
every mutation. Then, given order statistics X(k) and X(i)
where i < k, we define a cluster to exist if Pr(Cki =
X(k) − X(i)) ≤ α, for some predetermined significance
level α. As shown in Ye et al. [8], while a closed form calcu-
lation of the above probability is possible, it often becomes

Table 1 This table shows the p values when testing the difference in path length between residues that are close versus
far apart

Close vs. Far Method

Residue distance GraphPAC- Cheapest GraphPAC- Farthest GraphPAC- Nearest

< 5 Å vs > 25Å 9.50 E-143 2.10 E-141 1.38 E-145

< 10 Å vs > 30Å 9.32 E-147 5.82 E-145 2.81 E-149

< 15 Å vs > 35Å 2.91 E-151 1.01 E-148 1.33 E-153

< 20 Å vs > 40Å 1.42 E-155 1.63 E-151 7.15 E-158

The left column shows the requirement to label two residues as close or far apart. For instance, “< 5Å versus > 25Å” signifies that residues that are less than < 5Å
apart are labeled as close while residues that are > 25Å apart are considered far apart. The p-values for each method are shown in columns 2–4.
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Figure 3 An example constructing order statistics over 3
samples with 7 total mutations. The number inside the box
indicates the residue number. A “*” above a residue signifies a
non-synonymous missense substitution mutation for that residue.
Figure from Ryslik et al. [9].

computationally costly. To overcome this, we calculate Cki
N

and assume that the statistic is uniform on (0, 1). Then in
the limit, it can be shown that:

Pr
(
Cki
N

= X(k) − X(i)
N

≤ c
)

=
∫ c

0

n!
(k − i − 1)! (i + n − k)!

yk−i−1(1 − y)i+n−kdy

= Pr(Beta(k − i, i + n − k + 1) ≤ c)
(2)

The above calculation is then performed on all pair-
wise mutations and an appropriate multiple comparison
adjustment is then applied. For the remainder of this
study, we use themore conservative Bonferroni correction
[31,32] to adjust for the intra-protein cluster p-values. See
Section ‘Multiple comparison adjustment for structures’
for a description of how we account for the inter-protein
multiple comparisons. Lastly, it is important to mention
that the structural information obtained for each protein
does not always contain the (x, y, z) coordinates for every
residue in the protein. In such cases, in order to com-
pare GraphPAC, iPAC and NMC on an equal basis, these
missing residues are removed from the protein.
We also note that since we obtained our mutational

data from COSMIC, some tissue types are more repre-
sented than others in the database. However, this scenario
results in our analysis being more conservative and our
findings even more significant. Assuming that mutations
occur in different parts of the protein for different tissue
types, when collapsing over all tissues a larger value of n is
obtained while the values of i and k (as seen in Equation 2)
for two specific mutations are not changed. This results in
a larger p-value signifying that clusters found when col-
lapsing over tissue types would be even more significant if
only a unique tissue type was analyzed.

Multiple comparison adjustment for structures
In addition to the Bonferroni adjustment performed to
account for multiple testing within a specific structure,

we perform a second multiple comparison adjustment to
account for testing all 1,100 structures. Since a single pro-
tein can have many structures that are similar to each
other, a second Bonferroni adjustment is too conservative
and an integrated Bonferroni-FDR approach was per-
formed. Specifically, for a given protein, the Bonferrroni
adjusted p-value of each cluster was multiplied by n(n−1)

2
to calculate p∗. Thus, p∗ could be compared directly to
an α-level of 0.05 in order to determine the cluster’s sig-
nificance. Next, a rFDR[33] approach, which is a good
approximation for the standard FDR method when there
are a large number of independent or positively corre-
lated tests, was used. Under this method, the expected
value of α is estimated over all k tests and then used as
the significance threshold. Setting k as the total number
of structures under all three insertion methods, the mean
alpha can be approximated by:

rFDR = α

(
k + 1
2k

)

where k = 3 × 1100 = 3300. Using α = 0.05, rFDR
is calculated to be ≈ 0.025007. Rounding down, all the
clusters for which p∗ ≤ 0.025 were deemed to be sig-
nificant. To avoid confusion in the rest of the paper, we
only report the p-value (with the exception of Table 2).
However, each cluster discussed in Section ‘Results’ is sig-
nificant after the Bonferroni-FDR multiple comparison
adjustment described here.

Results
In this section we compare the results between Graph-
PAC, iPAC and NMC in terms of the number of
structures found (Section ‘Method comparison’) and
describe the new proteins identified by GraphPAC
(Section ‘GraphPAC identifies novel proteins with signifi-
cant clustering’). We also show the results of our method
in comparison to two machine learning methods along
with a descriptions of whether our results overlap biolog-
ically relevant structures (Section ‘Cluster localization in
relevant sites and performance evaluation’).

Method comparison
Using the GraphPAC algorithm, out of the 140 proteins
analyzed, 9, 10 and 12 proteins with statistically significant
clusters were found under the cheapest, nearest and far-
thest insertion methods, respectively. This corresponded
to 223, 225 and 226 significant structures (out of the 1100
total structures considered) under the three methods. It
is important to note that failure to utilize the tertiary
information results in either an over or an underestima-
tion of the number of clusters in approximately 70% of
the structures analyzed (see Figure 4). Hence, failure to
account for the protein structure provides either an overly
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Table 2 A comparison of the 15 proteins that were found to contain significant clustering via GraphPAC, iPAC or NMC

GraphPAC iPAC NMC

Protein p-value p* p-value p* p-value p*

KRAS 4.21 E-233 4.33 E-229 6.17 E-185 6.35 E-181 4.39 E-233 4.52 E-229

TP53 4.05 E-152 4.48 E-147 5.23 E-128 6.11 E-123 4.37 E-086 5.30 E-081

BRAF 3.84 E-130 1.04 E-126 3.73 E-130 1.01 E-126 3.84 E-130 1.04 E-126

PIK3CA 8.20 E-084 3.58 E-080 8.20 E-084 3.58 E-080 8.20 E-084 3.58 E-080

NRAS 8.26 E-029 9.91 E-027 5.38 E-026 6.46 E-024 8.26 E-029 9.91 E-027

HRAS 1.54 E-014 6.94 E-013 1.23 E-010 5.54 E-009 5.61 E-010 8.42 E-009

AKT1 2.47 E-005 2.47 E-004 1.18 E-005 7.08 E-005 2.47 E-005 7.41 E-005

IDE 1.56 E-003 4.67 E-003 2.20 E-005 6.60 E-005 1.56 E-003 4.67 E-003

EGFR 9.04 E-004 9.04 E-003 1.35 E-004 1.35 E-003 - -

DPP4 3.17 E-003 3.63 E-002 - - - -

MAP2K4 1.21E-003 1.21E-002 - - - -

NRP1 1.58E-002 1.58E-002 - - - -

PCSK9 5.61 E-003 1.68E-002 - - - -

HAO1 - - 7.95 E-003 2.39 E-002 - -

EIF2AK2 - - 2.45 E-003 7.36 E-003 - -

If a specific method did not find a particular protein to contain significant clustering, a “-” is shown. The p* calculation is described in Section ‘Multiple comparison
adjustment for structures’. The smallest p-value from all of the insertion methods was selected.

complicated or overly simplified view of the mutational
orientation.
On the protein level, as shown in Table 2, eight proteins

were identified as having significant clusters by Graph-
PAC, NMC and iPAC while 7 proteins were identified as
having significant clusters by only a subset of these meth-
ods. We note that of these seven proteins, four of them
were only identified via theGraphPACmethodology while

two of them were identified only via the iPAC methodol-
ogy. We further note that GraphPAC identifies the largest
number of proteins with significant clustering at the same
false discovery rate, thereby showing an increased power
to detect mutational clustering. We also observe that
there were no proteins found to have significant cluster-
ing under the linear NMC algorithm that were subse-
quently missed by the GraphPAC algorithm. See Section

Figure 4 A comparison of GraphPAC, iPAC and NMC over all the structures that were found to be significant. Each of the 3D methods are
considered: all three GraphPAC insertion methods and iPAC. The size of each colored block represents the number of structures with the relationship
described. For instance, out of the 223 structures with significant clusters found under the cheapest insertion method of GraphPAC (top left), 94
structures had more clusters identified under the GraphPAC approach as compared to the NMC approach. Green is used to designate structures
where the 3D and NMC methods identified 1 cluster while purple is used to designate structures where the 3D and NMC methods identified more
than 1 cluster.



Ryslik et al. BMC Bioinformatics 2014, 15:86 Page 8 of 15
http://www.biomedcentral.com/1471-2105/15/86

‘Cluster localization in relevant sites and performance
evaluation’ for a summary of cluster overlap with active
biological sites along with a performance evaluation via
machine learning methods.

GraphPAC identifies novel proteins with significant
clustering
GraphPAC identified four proteins with clustering that are
missed by the iPAC algorithm: DPP4, MAP2K4, NRP1,
and PSCK9. DPP4 is a serine protease that can modify
tumor cell behavior and is a potential cancer therapeu-
tic target [34]. Both MAP2K4 and NRP1 are well known
to be associated with lung cancer [35,36]. Finally, while
PCSK9 mutations are well known in causing hypercholes-
terolemia [37], recent research shows that absence of
PCSK9 can provide a protective benefit against melanoma
due to lower circulating LDLc. This allows for a poten-
tial additional cancer therapy via PCSK9 inhibitors [38].
[38]. For a full listing of which structure-protein combi-
nations were found significant, see “Results Summary” in
Additional file 4. Please see Sections ‘GraphPAC finds
novel proteins compared to iPAC and NMC’, ‘GraphPAC
identifies additional clusters compared to iPAC andNMC’
and ‘GraphPAC finds fewer clusters compared to NMC’
for an in-depth review of selected protein-structure com-
binations.

Cluster localization in relevant sites and performance
evaluation
We note that 9 of the 13 proteins that GraphPAC iden-
tified as having significant clustering have their most
significant cluster overlap a binding site, catalytic domain
or kinase domain. Out of the remaining four proteins,
three proteins have their most significant cluster fall
within a previously identified biologically relevant region.
For instance, IDE’s most significant cluster is located on
residues 684–698, a denaturation-resistant epitope region
[39]. For NRP1, which plays roles in angiogenesis [40] and
axon guidance [41], the most significant cluster directly
overlaps the F5/8 type C 1 domain - a domain in many
blood coagulation factors. Finally, for PIK3C-α, the most
significant cluster overlaps residue 1047 which has been
shown to potentially increase the substrate turnover rate,
a common oncogenic behavior [42]. For further detail on
relevant biological site information, please see “Relevant
Sites” in Additional file 5.
Further, we evaluated the performance ofGraphPAC via

two well-known machine learning algorithms: CHASM
and PolyPhen-2. It is critical to first note however, that
the machine learning algorithms utilize a much more
detailed set of features when evaluating the mutation.
Thus these algorithms may identify mutations as sig-
nificant while GraphPAC would not. Nevertheless, of
all the mutations that fall within significant clusters

identified by GraphPAC, 93% and 91% of them were also
identified as significant (FDR ≤ 20%) by CHASM and
PolyPhen-2 (respectively). We note thatGraphPAC is only
able to determine statistically significant clustering and
not whether a mutation is truly damaging and/or acti-
vating. However, given the high percentages described
above, the evidence supports the hypothesis that cluster-
ing is in fact indicative of potential drivermutations. Thus,
via GraphPAC, the researcher has a fast and easily avail-
able tool to identify potential driver mutations for further
study. The benefit of GraphPAC is that it is able to be
executed with far less prior information as compared to
the machine learning approaches. For further details, see
“Performance Evaluation” in Additional file 6.
Finally, we note that while GraphPAC provides an

improvement in cluster identification compared to prior
work, the algorithm is unable to distinguish between
mutations that increase or decrease kinase activity
nor between gain-of-function (GOF) or loss-of-function
(LOF) mutations. As described by Lapenna and Giordano
[43], Brognard et al. [44], Geiger et al. [45], Ahn et al.
[36], Lisabeth et al. [46] and Linka et al. [47], a large body
of literature suggests that inactivating loss-of-function
mutations are more common than previously thought and
often occur in regions that regulate kinase activation.
Nevertheless, as described above, many of the clusters
identified by GraphPAC contain mutations that are clas-
sified as driver and/or damaging by common machine
learning algorithms. As such, GraphPAC provides a fast
and easy method to identify such potential mutations,
which can then be verified and analyzed via additional
approaches. These approaches can range from the afore-
mentioned machine learning algorithms to experimental
approaches that test for GOF mutations as described by
Fawdar et al. [48].

Discussion
In this section we discuss in depth some of the clus-
tering results presented in Section ‘Results’. Specifically,
we review in detail three situations: 1) GraphPAC iden-
tifies novel proteins (Section ‘GraphPAC finds novel pro-
teins compared to iPAC and NMC’), 2) GraphPAC finds
additional clusters in proteins identified to contain clus-
tering by other methods (Section ‘GraphPAC identifies
additional clusters compared to iPAC and NMC’) and 3)
GraphPAC finds fewer clusters compared to other meth-
ods (Section ‘GraphPAC finds fewer clusters compared to
NMC’). In each of these sections, we discuss the biological
relevance of our findings.

GraphPAC finds novel proteins compared to iPAC and NMC
As shown in Table 2, GraphPAC identified five additional
proteins as compared to the linearNMC algorithm. In this
section we will consider two of these proteins, both of
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which are directly related to cancer: EGFR, which is also
identified by iPAC, and NRP1, which is not identified by
iPAC.
EGFR is a cell-surface receptor for ligands in the epi-

dermal growth factor family [49] and is present in a wide
range of diseases such as glioblastoma multiforme [50],
lung adenocarcinoma [51] and colorectal cancer [52]. The
most significant cluster found was in the 2ITX struc-
ture [53] between residues 719–768 (see Figure 5) with
a corresponding p-value of 0.0009. This cluster contains
mutations G719S, T751I and S768I which are all found
in non-small cell lung carcinomas (NSCLC) [54-56] with
mutation G719S well known for increased kinase activity
[57]. It is also interesting to note that all three mutations
within this cluster, which was identified purely through
statistical clustering analysis, show a beneficial clinical
response to either Erlotinib or Getfinib [55,58,59]. Exclu-
sion of the tertiary information would have resulted in this
cluster being missed. Finally, it is worth noting that recent
research has shown that signaling by EGFR is depen-
dent upon an allosteric interaction between two kinase
domains in an asymmetric dimer as opposed to phospho-
rylation. As the formation of this asymmetric dimer is
believed to activate all EGFR family members, it is likely
that oncogenic activation of EGFR may differ from other
protein kinases [60,61].
We now consider the NRP-1 protein, a coreceptor for

the vascular endothelial growth factor (VEGF) which
is upregulated in a large variety of cancers including
lung tumors [35], gastrointestinal metasteses [62] and
pancreatic carcinomas [63]. In NSCLC patients, it has
been shown to be an independent predictor of cancer
relapse and reduced survival as well as a cancer invasion
enhancer [64]. Moreover, research has shown that NRP-1

Figure 5 The EGFR ectodomain fragment structure (PDB ID 2ITX)
where the 719–768 cluster is colored in blue. The three mutations,
719, 751 and 768 are displayed as purple spheres.

inhibitors provide an additive effect to anti-VEGF therapy
in reducing tumor progression. Monoclonal antibodies
that attach to the b1-b2 domains, the domains responsi-
ble for VEGF binding, have already been created [65]. The
b1 domain, which spans residues 275–424 almost exactly
overlaps the most significant cluster found by GraphPAC,
which consists of residues 277–432 (p-value 0.0158) in the
2QQI [66] structure (Figure 6). Finally, it is worth not-
ing that mutations on residues 297 and 320 were recently
found that completely disrupt VEGF binding, both of
which also fall within the GraphPAC identified cluster of
277-432 in the 2QQI structure.

GraphPAC identifies additional clusters compared to iPAC
and NMC
A representative example where GraphPAC identifies
additional clusters as compared to NMC and iPAC is in
the KRAS protein for the 3GFT structurec [67] (Figure 7).
KRAS, a GTPase, is one of the most pervasively activated
oncogenes, with some estimates stating that between 17–
25% of all human tumors contain an activating mutation
of the gene [68]. Due to the large number of samples with
mutations in this gene and the resulting strong statisti-
cal signal, GraphPAC, iPAC and NMC all identify that
KRAS contains highly statistically significant mutational
clusters. Nevertheless, GraphPAC identifies several novel
clusters that aremissed by iPAC andNMC.While all three
methods identify clustering at residues 12–13, 12–61 and
12–146, only iPAC andGraphPAC identify two additional
clusters at 1) 61–117 and 2) 117–146.
Moreover, only GraphPAC (under the cheapest and

nearest insertion methods) identifies a statistically sig-
nificant cluster for residues 12–23 and 23–61 as shown
in Table 3. Considering the 12–23 cluster, we see that
a sub-cluster of 12–13 is identified as well. This follows
biological function as mutations on residues 12 and 13
appear in a large variety of cancers, such as breast, lung,

Figure 6 The NRP-1 structure (PDB ID 2QQI) where the 277–432
cluster is colored in red. The mutations that disrupt VEGF binding,
297 and 320 are shown as orange spheres while the end-points of the
cluster, 277 and 432, are shown as purple spheres.
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Figure 7 The KRAS structure (PDB ID 3GFT) color coded by
region: amino acids 13–22 are blue, 24–60 are red and 62–145
are yellow. Residues 12 and 13 which make up the most significant
cluster are shown as purple spheres, while residues 23, 61, 117 and
146 are shown as brown spheres.

bladder, pancreas and colon [6,69,70] while mutations on
residues 22 and 23 appeared in colorectal/large intestine
tissue samples in our data. It is interesting to note that
germline mutations on residue 22 often result in develop-
mental disorders such as Noonan Syndrome Type 3 (NS3)
as well as Cardiofaciocutaneous Syndrome (CFC) [71,72].
Finally, the majority of mutations in cluster 61–146 also

segregate along pathological lines with all the mutations
in our data either occurring in lung or gastrointestinal
tract/large intestine carcinomas. Specifically, residue 61
mutations are typically found in colorectal and lung can-
cer [6,73] while mutations K117N and A146T are found in
colorectal cancer [6].

Table 3 P-value comparison of the three algorithms for
several significant clusters

Residues NMC iPAC GraphPAC

12–13 9.45 E-229 3.91 E-165 8.95 E-229

12–23 - - 1.31 E-99

12–61 4.34 E-65 2.38E E-87 5.49 E-164

12–146 3.85 E-13 3.81 E-90 2.87 E-16

23–61 - - 1.01 E-105

61–146 - 3.01 E-106 4.35 E-31

117–146 - 1.66 E-102 -

A “-” signifies that the method did not find that cluster to be significant. For
GraphPAC, the cheapest insertion results are reported here.

GraphPAC finds fewer clusters compared to NMC
As seen from Figure 4, between 25%–40% of the structures
identified with significant clustering had fewer clusters
under the GraphPAC methodology as compared to the
linear NMC algorithm with the vast majority of these
structures corresponding to BRAF, HRAS and TP53. Here
we consider a representative example, the 4E26 structure
[74] for BRAF when analyzed using the farthest insertion
method (Figure 8). As iPAC identified even more clus-
ters than NMC, we compare GraphPAC to NMC in this
section when showing that fewer mutational clusters is of
benefit. Further, as V600 is well known to be the most
likely mutated position in BRAF, the most significant clus-
ter identified by GraphPAC, iPAC and NMC is located
only on that residue with a p-value of 2.12× 10−129 under
all three methods. In all, GraphPAC identifies 16 clusters
while NMC identifies 22, with the differences shown in
Table 4.
Although it is outside the scope of this manuscript to

consider every difference between Tables 4a and 4b, we
observe that three of the longest clusters 464–671, 466–
671 and 469–671 are dropped by GraphPAC. Since after
alignment of the protein structural data to the mutational
data (see Section ‘Obtaining the 3D structural data’), ter-
tiary information was available on residues 448–603 and
610–723, these clusters cover 77.0%, 76.3% and 75.2%
of all the available residues, respectively. By considering
the 3D structure via GraphPAC, the longest clusters are
dropped and the remaining overlapping clusters focus
almost exclusively on residues 464–600.
After structure and mutation alignment, the residue

substitutions in significant clusters include: G464V,
G466V, G469V, G469A, N581S, G596R, L597V, LV597R,

Figure 8 The BRAF structure (PDB ID 4E26) color coded by
segment: I) amino acids 464–599 are orange 2) amino acids
601–671 are green. The α-carbons of the mutated residues 464, 466,
469, 581, 596, 597 , 601 and 671 are shown as purple spheres. Residue
600 is shown as a red sphere.
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Table 4 A comparison of GraphPAC and NMC identified
clusters for the BRAF structure

(a) Clusters found by GraphPAC

p-value

Start End # Muts. GraphPAC NMC

600 600 60 2.12E-129 2.12E-129

597 600 62 1.49E-104 1.49E-104

600 601 62 1.49E-104 9.22E-117

596 600 64 7.16E-102 7.16E-102

596 601 66 3.37E-91 1.16E-100

597 601 64 8.07E-91 7.16E-102

601 671 3 5.85E-38 -

600 671 63 8.30E-37 7.08E-26

469 601 72 2.59E-22 5.92E-17

581 601 68 1.23E-21 1.33E-65

581 600 66 2.94E-20 3.13E-63

469 600 70 3.98E-20 4.91E-15

466 601 74 2.15E-17 9.69E-19

466 600 72 7.01E-16 1.60E-16

464 601 75 1.15E-15 1.12E-19

464 600 73 2.33E-14 2.97E-17

(b) Clusters found by NMC and dropped by GraphPAC

Start End # Muts. NMC Pvalue

596 671 67 4.12E-29

597 671 65 4.79E-27

581 671 69 3.33E-26

464 671 76 5.92E-09

466 671 75 3.32E-08

469 671 73 8.11E-07

A “-” for the NMC value signifies that cluster was not identified under the linear
algorithm.

V600E, V600K, K601N and R671Q. Since mutation
R671Q does not have extensive literature and comes from
a non-specified tissue sample in the COSMIC database,
it will no longer be considered here. Thus, by consid-
ering the tertiary structure, we significantly narrow the
window of which residues to consider for potential driver
mutations and can partition the protein into three seg-
ments: I) 464–599 and II) 600 and III) 601. Segment I is
primarily associated with lung and colorectal cancer as
shown in [3,75-77]. Segment II represents the two most
common mutations in BRAF, V600E and V600K. Over-
all, 95% of BRAF mutations occur on V600, with some
studies showing that V600E occurs within 73% to 79% of
patients while V600K occurs within 12% to 19% of patients
[78,79]. Mutations at this position result in the oncogene
being constitutively activated with increased kinase activ-
ity and have been found in a wide range of cancers such

as metastatic melanoma [80], ovarian serous carcinoma
[81] and hairy cell leukemia [82]. Furthermore, recent
inhibitors, such as Vemurafenib and GSK2118436 specif-
ically target the V600E and V600E/K mutations (respec-
tively), supporting the hypothesis that somatic clusters
can provide pharmacological targets [83]. Lastly, segment
III is comprised of the much less common K601N muta-
tion which has been observed in myeloma cases along
with V600E. Since these patients share the more common
BRAF mutations as well, they may also potentially benefit
from BRAF inhibitors [84].
Further, as shown in Section ‘Results’ and described

above, GraphPAC finds fewer clusters for a significant
percentage of the structures analyzed. Overall, the reduc-
tion in total clusters identified can result from two
sources: the removal of some residues because no tertiary
data was available or the cluster is no longer significant
when using the traveling salesman algorithm to account
for 3D structure. The first case, which is already rare, will
become increasingly more so as additional studies result
in more complete and detailed structural information. For
the second case, if a cluster is not found to be signifi-
cant underGraphPAC when compared to NMC, a near or
overlapping cluster is usually found (see Tables 4a and 4b).
For BRAF specifically, under every type of graph insertion
method (cheapest, nearest and farthest), every “probably
damaging” or “possibly damaging” mutation (as classified
by PolyPhen-2) was still identified in at least one signifi-
cant cluster for the structure. For a complete analysis, see
“Potential Driver Loss” in Additional file 7.

Conclusion
In this manuscript we provide an alternative method
to utilize protein tertiary structure when identifying
somatic mutation clusters. By employing a graph theoretic
approach to restructuring the protein order, we identify
both new clusters in proteins previously shown to have
clustering as well as proteins that were not previously
shown to have clustering. We have also provided several
examples where we are able to identify clusters of muta-
tions that may benefit from pharmacological treatment.
Moreover, asGraphPAC uses theNMC algorithm to iden-
tify clusters rather than a fixed window size, we are able to
detect clusters of varying lengths. Finally, the methodol-
ogy is fast and robust with the overwhelming majority of
structure/protein combinations taking under 10 minutes
each to analyze on a consumer desktop.
The GraphPAC algorithm, while presenting a viable

alternative to the MDS restriction of iPAC and an
improvement over NMC, nevertheless contains several
limitations. First, while no longer bound to the MDS
requirement of iPAC, there is no closed form solution
to the shortest path problem and our algorithm must
appeal to heuristic approximations. Second, to satisfy the
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uniformity assumption, the mutation status of all residues
must be known ahead of time. With the growth of high-
throughput sequencing however, this issue is temporary.
Next, unequal rates of mutagenesis along with hyper-
mutability of specific genomic regions may violate the
assumption that every residue has a uniform probability
of mutation. To help ensure that this assumption holds,
we only consider single residuemissense substitutions and
have removed insertions and deletions from the analy-
sis since they tend to be sequence dependent. Further,
research has shown that CpG dinucleotides may have a
mutational frequency ten times or higher compared to
other dinucleotides [85]. However, in the analyses pre-
sented in Sections ‘GraphPAC finds novel proteins com-
pared to iPAC andNMC’, ‘GraphPAC identifies additional
clusters compared to iPAC and NMC’, ‘GraphPAC finds
fewer clusters compared to NMC’, only approximately
13% of the mutations used to identify clustering occurred
in CpG sites. Relatedly, colorectal carcinomas [86] con-
tain more transition mutations while cigarette use results
in more transversion mutations in lung carcinomas [8].
Still, when considering KRAS, the overwhelming majority
of substitutions occur on residues 12, 13, and 61 for both
colorectal and lung cancer, implying that while the muta-
tional landscape may vary, it does not have a significant
effect on mutation location and thus would not violate the
uniformity assumption. Hence, while this analysis is influ-
enced by a variety of factors, as are previous studies, it
nevertheless appears that the primary cause of clustering
is selection for a cancer phenotype.
Several areas for future research are also directly evi-

dent. First, an approach that considers the protein directly
in 3D space via simulation may be employed. However,
such an approach would not be able to use the order statis-
tic methodology to identify clustering and thus might not
be as sensitive for small mutation counts. Moreover, while
we only consider distance when finding the shortest path
through the graph, future research can incorporate the
physico-chemical properties of the specific residues or
domains by appropriately increasing or decreasing edge
length. The potential additive effect of multiple cancer
mutations in the same protein, as discussed in the case of
EGFR by Hashimoto et al. [87], can also be incorporated
via additional refinement of the edge weights. Additional
research is required in this area in order to incorporate
these improvements.
Overall however, GraphPAC utilizes protein tertiary

structure via a graph theoretic approach in identify-
ing mutational clustering. We show that this method
identifies new clusters that are otherwise missed and
that in some cases, pharmaceutical targets for muta-
tions in these clusters have already been found and
therapies created. Specifically, Erlotinib and Getfinib are
used to target mutations in EGFR significant clusters

(see Section ‘GraphPAC finds novel proteins compared
to iPAC and NMC’) while Vemurafenib is used to tar-
get mutations that occur within BRAF significant clusters
(see Section ‘GraphPAC finds fewer clusters compared to
NMC’). This helps confirm the hypothesis that mutational
clustering may be indicative of driver mutations and as
new protein structures become available, GraphPAC can
provide a rapid methodology to identify such potential
mutations.

Availability and requirements
Project Name: GraphPAC: Identification of Mutational
Clusters in Proteins via a Graph Theoretical Approach.
Project Home Page: http://www.bioconductor.org/
packages/release/bioc/html/GraphPAC.html
Operating system(s): Platform independent
Programming Language: R
Other Requirements: R ≥ 2.15 (see homepage for R
package requirements).
License: GPL-2

Endnotes
aUnder a complete graph, every vertex is connected to

every other vertex. The length of the edge between
vertices i and j is set to be equal to the length between
amino acids i and j in R

3.
bA Hamiltonian path is a walk through the graph that

visits every vertex once and only once.
cFor this analysis, a manual reconstruction was

performed in order to include residue 61 which is listed
as a histidine under isoform 2B in the Uniprot Database
and a glutamine in the COSMIC database. As the
substitution of one amino acid in the structure would not
have a significant impact on the spatial structure of the
protein, and residue 61 is a highly mutated position, the
residue was kept in the analysis. As a result, amino acids
1–167 are used.
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