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Abstract
Background: The behaviors of cells in metazoans are context dependent, thus large-scale multi-
cellular modeling is often necessary, for which cellular automata are natural candidates. Two
related issues are involved in cellular automata based multi-cellular modeling: how to introduce
differential equation based quantitative computing to precisely describe cellular activity, and upon
it, how to solve the heavy time consumption issue in simulation.

Results: Based on a modified, language based cellular automata system we extended that allows
ordinary differential equations in models, we introduce a method implementing asynchronous
adaptive time step in simulation that can considerably improve efficiency yet without a significant
sacrifice of accuracy. An average speedup rate of 4–5 is achieved in the given example.

Conclusions: Strategies for reducing time consumption in simulation are indispensable for large-
scale, quantitative multi-cellular models, because even a small 100 × 100 × 100 tissue slab contains
one million cells. Distributed and adaptive time step is a practical solution in cellular automata
environment.

Background
Quantitative multi-cellular modeling, used, for example,
in the electrophysiological modeling of the heart, in neu-
ral networks, and in the metabolic modeling of cells in tis-
sues/organs [1,2], is an important area of computational
biology [3]. Computational efficiency is an important
issue for such in silico research, because, first, many ordi-
nary differential equations (ODE) employed to describe
intracellular activity are nonlinear; and second, such mod-
els often consist of a large number of homo- or hetero-
geneous cells (Fig 1). Electrophysiological modeling of
the heart, in which the description of electrical activity in
each of a large number of heterogeneous cells is based on
Hodgkin-Huxley (HH) type membrane equations, is a

typical case. Effective reduction of time required is essen-
tial to make simulation affordable on available computer
resources.

Several methods, including the very popular adaptive
time step method, have been proposed to enhance the
computational efficiency of large-scale systems. Obvi-
ously, the effectiveness of a method is chiefly dependent
on the details of implementation as well as the scale and
nature of models. For example, the classic Rush & Larson
method for runtime adjustment of time step, though very
straightforward for single-cell modeling, faces such chal-
lenges as parallelism, asynchronism and heterogeneity
when used in multi-cellular biological models [4]. Very
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often, a method coded and workable in one programming
environment cannot be directly adopted in another. Thus,
new methods, accompanied by new modeling strategies
and tools, are reported from time to time.

While partial differential equations (PDE) are often used
to model propagation phenomena in multi-cellular situa-
tions [5], there are cases where they are not applicable,
and propagation must be simulated at a cell-to-cell level.
This occurs, for example, when a system is heterogeneous
consisting of different kinds of components. When a sys-
tem evolves dynamically and shows emergent behaviors,
centralized, PDE based descriptions also become unfit-
ting. Modeling arrhythmias with a heart model is such a
case in which the electrical properties of assorted cardiac
cells and gap junctions may change substantially in simu-
lation. For such systems, decentralized modeling is
needed, which calls for relevant optimal numerical meth-
ods to conquer the time consumption problem.

Modeling with cellular automata has gained much preva-
lence recently [6-9], especially for tissue/organ modeling,
not only for its ability to simulate discrete intercellular
communication, but also for its implicit large-scale paral-
lelism. In such modeling, a natural mapping between
each biological cell and each automaton cell is often
assumed. Although most reported applications are quali-

tative in nature [9-12], cellular automata are not necessar-
ily restricted to discrete modeling. Various extensions can
be made to existing systems to facilitate various types of
cellular automata computation [13]. Effective methods to
improve the efficiency of quantitative cellular automata
computation are therefore of much interest. The purpose
of this short paper is to introduce a novel and widely
applicable method to implement distributed and asyn-
chronous adaptive time step in quantitative cellular
automata modeling. A heterogeneous electrophysiologi-
cal model of the heart built with five groups of membrane
equations of cardiac cells is described as the test model,
and performance evaluation based on it is made. As in
Rush & Larson method, cyclic activity of cells, either syn-
chronous or asynchronous, is the basis of the distributed
asynchronous adaptive time step method.

Results
The test model is a two dimensional one consisting of six
kinds, 4300 cardiac cells whose activity is described by rel-
evant HH type membrane equations (see Fig 2). Electrical
activity is cyclically created in the sinoatrial node cells by
the membrane equations in these cells. Then, the poten-
tial difference between repolarized cells and resting cells
triggers the membrane equations in resting cells, driving
the propagation of cardioelectrical activity in the heart.
The long repolarization and resting stages in each cell in

Quantitative cellular automata with different neighborhoods (radius = 1)Figure 1
Quantitative cellular automata with different neighborhoods (radius = 1). (A) Moor neighborhood. (B) A user-
defined neighborhood.
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each cycle makes adaptive time step method useful. Sim-
ulations were carried out on a PC with a 1.7 GHz
Pentium4 CPU. First, we used MatLab to perform simula-
tion with two ventricular cells connected by a gap junction
(the first cell is stimulated by an external current; the sec-
ond one is triggered by the transjunctional current) to find
out appropriate thresholds for Ina and factor. A workable
(but possibly not optimal) set of Ina value for ventricular
cells is 0.01, 0.001, 0.002 (mA), and the corresponding
values of factor are 1, 2, 5, and 7. The second cell executes
10071 integrations in a 600 ms simulation. A speedup
rate of 5.96 ( = 60000/10071) is acquired.

To confirm the validity and stability of this method in a
realistic heterogeneous model, we carried out simulation
with the sparse 2D test model. It shows that the method
worked reliably and produced an action potential distri-
bution at repolarization stage that agrees quite well with

that produced by simulation without adaptive time step
(Fig 2). At the time of 100,000 steps (1000 ms), we
checked five ventricular cells to see how many skips
occurred in each. A group of extra fields, num1 to num7,
were set in the Cellang program to record the times of inte-
gration under different skips (see Fig 3). For these five
cells, an average speedup rate of 4.456 was reached. As in
the two-cell simulation, small fluctuations of transmem-
brane current and gating variable m occur in the phase 4
of action potential caused by larger time steps, but they
did not affect action potential and transjunctional
propagation.

Since the heterogeneous model does not occupy the
whole cell space, the non-cardiac automaton cells should
also spend a certain amount of time on housekeeping
operations. To further check the efficiency of the method,
we made 400 ms simulations with a 128 × 128 homoge-

Simulation results of the heterogeneous 2D model locating in a 256 × 256 cell spaceFigure 2
Simulation results of the heterogeneous 2D model locating in a 256 × 256 cell space. Different colors stand for dif-
ferent values of the dynamically computed membrane potential of cells. 36675 and 36606 are running steps; each step corre-
sponds to 0.01 ms (mini second). The color strips between the inner surface and the outer surface show the normal 
endocardium-to-epicardium repolarization. At 366 ms most cells have undergone depolarization and are at the end of repolari-
zation, the high accordance between picture A and picture B therefore indicates the validity and safety of the adaptive time 
step method. A. The distribution of membrane potential of cells in epicardium-to-endocardium repolarization without the 
adaptive time step. B. The distribution of membrane potential of cells with the adaptive time step. Pictures are captured with 
GIMP, a screen capture tool under Linux.
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neous 2D model fully occupied by ventricular cells except
1 or 4 sinoatrial node cells locating at 1 or 4 corners to ini-
tiate excitation. With the adaptive time step method, the
one-sinoatrial-node-cell version consumed 56 m 20 s to
run 400 ms, the four-sinoatrial-node-cell version spent 56
m 58 s. However, without the adaptive time step method,

the one-sinoatrial-node-cell version needs 142 m 56 s to
make a 400 ms simulation. We remark that the fact that
the agreement of the speedup rate for both propagation
stimulated by one corner and propagation stimulated by
four corners is significant for the simulation of abnormal
(arrhythmic) propagation, as it indicates that highly asyn-

The number of integrations in a 1000 ms simulationFigure 3
The number of integrations in a 1000 ms simulation. Five cells locating at <93,75>, <18,38>, <96,42>, <54,37>, 
<54,72> are chosen to display the number of integration happened in each cell in a simulation with the adaptive time step. 
numX gives the number of integrations; the real time step is ∆t*X.

The two-cell simulation results (the second cell) using MatLabFigure 4
The two-cell simulation results (the second cell) using MatLab. A. The action potential. B. The state of gating variable 
m that controls the sodium channel. In phase 4, m fluctuates within a range, but the action potential keeps correct.
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chronous cellular activities, such as ectopic beats and
reentrant movement, do not degrade the performance as
they do in some methods [20].

Discussion
We described a novel method to implement distributed
and asynchronous adaptive time step in a quantitative cel-
lular automaton environment and showed that this
method is numerically efficient. The variation of cellular
activity that admits different scale of time step of integra-
tion is the precondition to employ the method. Simula-
tion results acquired from two electrophysiological
models prove the effectiveness of this method, in which a
speedup rate of about 5 can be reached. Since each cell
determines its time step independently based on the value
of Ina, the dynamic adjustment of time step of all cells
runs in a highly asynchronous way. Simulation results of
the heterogeneous and sparse 2D model show that the
method can work effectively in realistic models. Also, as
we have indicated above, the method is effective in the
presence of highly asynchronous cellular activities. We
believe this is because the method itself works in a fully
asynchronous way and a fine-grained and implicit
domain decomposition exists naturally (each cell is a sub-
domain). When the global ∆t is small enough and the
threshold values of factor and Ina, the indicator of cellular
activity, are set within suitable bounds determined by sin-
gle-cell simulations, the method is safe and stable. Simu-
lation shows that the computational gain always
surpasses the overhead of using two extra fields to check
the value of Ina and to keep tract of skip.

In comparison with Quan et al's method [20], the advan-
tage of this method is that there is neither an explicit
domain decomposition nor a priority queue. Actually, a
fine-grained domain decomposition is implicit in cellular
automata computation as each automaton cell is both a
computing unit and a subdomain. Thus, there is no extra
cost of domain decomposition. Besides, in a complex and
highly heterogeneous model, an algorithm for explicit
domain decomposition may be very complicated and
dependent on many details of the model such as dimen-
sion and geometrical properties. In contrast, the model
based on quantitative cellular automata described here is
completely general.

We remark that Quan et al obtained a reduction of com-
putation as high as 17 times (from 3 to 17), with the high-
est speedup rate attained in the resting phase (phase 4) of
the action potential [20]. This is, however, not supported
by our results. Both the two-cell straightforward simula-
tion and the sparse heterogeneous simulation show that
the dynamics of the gating variable m is unstable in phase
4, especially when time step is large (Fig 4). By contrast,
we obtained the highest stable speedup rate in the plateau

phase. We found the overall 5-times speedup rate we
obtained is the same as that reported by Cherry et al [21],
who used an explicit mesh refinement method. How large
a speedup rate can be obtained and when the largest spee-
dup rate is attained depend on the dynamic properties of
the ODEs involved. Our data show that the activity of ven-
tricular cells described with the Luo-Rudy phase I model
is more stable in phase 2 than in phase 4, in which a 7-
times speedup rate cannot be sustained.

In a specific model built with quantitative cellular autom-
ata, how much time can be saved depends on several fac-
tors. The first is the structure of a model. The sparser a
model is, like the heart with four chambers and an irregu-
lar surface, the less we benefit from the method, because
of the housekeeping operations spent on non-biological
cells. The second factor is the time spent on cell commu-
nication when istim is also used to jointly control the skip.
In a 3D model with the Moore neighborhood, each cell
has 26 neighboring cells. Thus, the time spent on comput-
ing istim will be tripled compared to a 2D model in which
a cell has only 8 neighbors. In electrophysiological mode-
ling, when a complex algorithm is used to compute tran-
sjunctional current [22], the time spent on cell
communication can be considerable. Thirdly, the com-
plexity of differential equations has a significant impact
on the performance. If newly published action potential
models, which use many more ODEs to describe more
channels and the concentration fluctuation of ions, are
used, the suspension of integration can significantly
improve the performance of the simulation. If, on the
other hand, the action potential model is very simple, for
example, of the Fitzhugh-Nagumo type, the extra cost aris-
ing from the use of two additional fields might neutralize
the benefit of adaptive time step. Finally, the proper defi-
nition of thresholds of Ina and factor is crucial.

Conclusion
Modeling with cellular automaton has become very pop-
ular recently, especially in the modeling of tissues/organs
in computational biology. Our work demonstrates that
quantitative modeling, which requires an extension of
classical cellular automata, is feasible. Furthermore, the
simple yet effective method described in this paper shows
that distributed and asynchronous adaptive time step can
be readily implemented and the performance of simula-
tion can be significantly improved without a significant
loss of accuracy of simulation. Besides electrophysiologi-
cal modeling, this method can be applied to other biolog-
ical modeling. For example, in cell cycle control and
signal transduction models of tissue growth and morpho-
genesis [23,24], or in multi-cellular model of host-patho-
gen interaction [12], even a small-scale 100 × 100 × 100
3D model contains 1 million cells, whose complex, local
activities described with ODEs will lead to much more
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complex, global behavior through cell to cell
communication. The adaptive time step method in quan-
titative cellular automata environment described here
may render the simulation practicable.

Methods
Quantitative Cellular Automata
Celluar is a cellular automata system with the program-
ming language Cellang [14]. A Cellang program is shared
by all automaton cells and describes the computation
within and between cells. A data file, which can be edited
manually or created by a program, specifies the location
of cells in an n-dimensional cell array and the initial value
of cell field(s) in each cell. The data file functions as input
to the Cellang program. A predefined variable time, which
increases by 1 after each step, provides synchronization
for all cells. Though common arithmetical and logical
operators are provided, Cellang lacks the necessary facili-
ties for numerical computation.

Discrete in value should not be compulsory for modeling
with cellular automata in many cases. Exploiting the fact
that a Cellang program uses C files as intermediate codes,
we built numerical computation facilities into it by add-
ing floating-point data type, function calls (including the
mathematical functions in the C library), and other quan-
titative facilities. With these extensions, numerical solu-
tions of ODE can be coded and large-scale parallel
solution of ODEs (over a large number of cells) can be
realized in a simple and straightforward way. We have
built several models with the extended system, including
an electrophysiological model of the whole heart for
which the proposed adaptive time step method is very
important.

Models of the Heart
To validate the efficiency of the asynchronous adaptive
time step method, two prototypical models were designed
and tested. The first one is a 128 × 128 2D homogeneous
ventricular sheet, with cells of sinoatrial node located at
one or four corners to initiate excitation. The second one,
also with a 128 × 128 resolution, is a 2D heterogeneous
cardiac sheet consisting of ventricular and atrial cells, cells
of atrioventricular and sinoatrial nodes, and those of con-
duction fibers. The electrical activities in these cells are
described by the corresponding HH type action potential
models [15-19]. We note that a 128 × 128 2D model
involves 16384 action potential models, i.e., 16384 sys-
tems of ODEs. Numerical solution of ODEs is carried out
using the explicit Euler method. In both models, a stand-
ard Moore neighborhood is adopted, i.e., each cell has 8
neighbors. A simple and static gap junction model, which
uses the potential difference between two cells and the
resistance of the gap junction to determine the transjunc-

tional current, is adopted. The resistance of gap junctions
does not change with membrane potentials.

Among the various quantitative cellular automata models
in which intracellular activity is described by ODE, the
heterogeneous electrophysiological model may be the
best one to illustrate the parallel solution of nonlinear
(HH type) equations and the implementation of asyn-
chronous adaptive time steps. In this model, the activity
of different kinds of cardiac cells, which we assume to be
in one-to-one correspondence with automaton cells, is
rendered as follows: A field type is defined in the Cellang
program, with initial value set in the data file. According
to the different value of type, the Cellang program is
divided into several sections with the if-then statement.
Different cells execute codes in different sections. A set of
cell fields are declared to store the current value of the
membrane potential, transjunctional currents and gating
variables. Windows are created to display a selected field,
such as the transmembrane potential, of all cells (Fig 2),
as well as various cellular and channel electrical activities
of any selected cells (Fig 3).

Asynchronous Adaptive Time Step
Although there are different methods to implement adap-
tive time step in biological models built with ODEs, they
actually share the same biological basis, i.e., the fluctua-
tion of cell activity such as cell cycle activity and electrical
activity in which the change rate of key variables is differ-
ent in different times. What we did is to implement the
method in a quantitative and heterogeneous cellular
automata environment. To use the quantitative cellular
automata to simulate a system with ODEs in a large
number of cells, besides the predefined time that is used to
iterate integration in cells, a user-defined floating type
time step ∆t is defined, which is automatically shared by
all cells, for the numerical solution of ODEs. The value of
∆t depends on the nature of ODEs. In our two illustrative
models it is selected to be 0.01 ms. ∆t is changeable in
runtime. However, to describe asynchronous cellular
activities caused and connected by normal and abnormal
cell communication (such as excitation propagation in
this case), it is not feasible to dynamically change ∆t. For
a fixed ∆t, to simulate 1000 ms of electrical activity, every
cell in the model should run 100,000 times integration.
Yet, there is another way to make usage of the cyclic prop-
erty of cellular activity to reduce computation in simula-
tion. In the case of the electrophysiological model
described here, the integration of membrane equation can
be skipped when the cellular activity is not very active.

As in other methods [20], for the modeling of ventricular
cells we can use Ina, the ionic current of sodium, to reflect
the activity of each ventricular cell. We use an extra cell
field to store Ina. At any step of the computation, if a ven-
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tricular cell's Ina value is smaller than a threshold, the
integration of all membrane equations at this step can be
skipped. Based on results acquired from single-cell
simulation, we can specify a set of Ina thresholds to deter-
mine how many steps of integration can be safely skipped
in different situations. In our examples, four Ina thresh-
olds are set to determine whether integration of the HH
equations should be executed immediately, or skipped 1,
4, or 6 times respectively (specified by a temporary varia-
ble factor whose value is 1, 2, 5, 7). At the same time, we
also record how many steps have been skipped since the
last integration with a cell field skip. Thus, the real time
step used in each integration for each cell is ∆t*skip.

We note, however, that a static skip mechanism (a specific
value of Ina determines a specific value of factor) cannot
accurately deal with emergent depolarization that can be
triggered by either normal or abnormal transjunctional
currents. The latter situation frequently occurs in various
arrhythmias. The Ina determined, unmodifiable factor
makes the final ∆t*skip often too large, leading to errors or
even an overflow. Hence, we make the skip dynamically
adjustable as follows:

1. In each step, initially set the default value of factor to 1,
meaning to do integration immediately;

2. Read the field Ina, according to its value and the preset
thresholds of Ina, determine the value of factor;

3. If factor <= skip, do integration and reset skip to 1;

4. Otherwise, skip integration and increase the skip
number by skip = skip + 1.

In this way, for every cell, the real time step used in each
integration is dynamically adjusted at runtime according
to the strength of its activity.

For cells where Ina is not the major inward depolarizing
current, dvdt, the change rate of membrane potential, can
be the indicator of cellular activity. Although the algo-
rithm can be put before computing the transjunctional
currents to skip even transjunctional currents computa-
tion, a safer choice is to put it after the computation and
use istim, the sum of transjunctional currents that func-
tions as the stimulating current to a cell, to jointly control
the suspension of integration.
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