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Abstract
Background: Unraveling the mechanisms that regulate gene expression is a major challenge in
biology. An important task in this challenge is to identify regulatory elements, especially the binding
sites in deoxyribonucleic acid (DNA) for transcription factors. These binding sites are short DNA
segments that are called motifs. Recent advances in genome sequence availability and in high-
throughput gene expression analysis technologies have allowed for the development of
computational methods for motif finding. As a result, a large number of motif finding algorithms
have been implemented and applied to various motif models over the past decade. This survey
reviews the latest developments in DNA motif finding algorithms.

Results: Earlier algorithms use promoter sequences of coregulated genes from single genome and
search for statistically overrepresented motifs. Recent algorithms are designed to use phylogenetic
footprinting or orthologous sequences and also an integrated approach where promoter
sequences of coregulated genes and phylogenetic footprinting are used. All the algorithms studied
have been reported to correctly detect the motifs that have been previously detected by laboratory
experimental approaches, and some algorithms were able to find novel motifs. However, most of
these motif finding algorithms have been shown to work successfully in yeast and other lower
organisms, but perform significantly worse in higher organisms.

Conclusion: Despite considerable efforts to date, DNA motif finding remains a complex challenge
for biologists and computer scientists. Researchers have taken many different approaches in
developing motif discovery tools and the progress made in this area of research is very encouraging.
Performance comparison of different motif finding tools and identification of the best tools have
proven to be a difficult task because tools are designed based on algorithms and motif models that
are diverse and complex and our incomplete understanding of the biology of regulatory mechanism
does not always provide adequate evaluation of underlying algorithms over motif models.
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Introduction
The gene is the fundamental unit of inherited information
in deoxyribonucleic acid (DNA), and is defined as a sec-
tion of base sequences that is used as a template for the
copying process called transcription. The main idea in
gene expression is that every gene contains the informa-
tion to produce a protein. Gene expression begins with
binding of multiple protein factors, known as transcrip-
tion factors, to enhancer and promoter sequences. Tran-
scription factors regulate the gene expression by activating
or inhibiting the transcription machinery. Understanding
the mechanisms that regulate gene expression is a major
challenge in biology. Identifying regulatory elements,
especially the binding sites in DNA for transcription fac-
tors is a major task in this challenge. Pattern discovery in
DNA sequences is one of the most challenging problems
in molecular biology and computer science. In its simplest
form, the problem can be formulated as follows: given a
set of sequences, find an unknown pattern that occurs fre-
quently. If a pattern of m letters long appears exactly in
every sequence, a simple enumeration of all m-letter pat-
terns that appear in the sequences gives the solution.
However, when one works with DNA sequences, it is not
that simple because patterns include mutations, inser-
tions or deletions of nucleotides.

A DNA motif is defined as a nucleic acid sequence pattern
that has some biological significance such as being DNA
binding sites for a regulatory protein, i.e., a transcription
factor. Normally, the pattern is fairly short (5 to 20 base-
pairs (bp) long) and is known to recur in different genes
or several times within a gene [1]. DNA motifs are often
associated with structural motifs found in proteins. Motifs
can occur on both strands of DNA. Transcription factors
indeed bind directly on the double-stranded DNA.
Sequences could have zero, one, or multiple copies of a
motif. In addition to the common forms of DNA motifs
two special types of DNA motifs are recognized: palindro-
mic motifs and spaced dyad (gapped) motifs. A palindro-
mic motif is a subsequence that is exactly the same as its
own reverse complement, e.g., CACGTG. A spaced dyad
motif consists of two smaller conserved sites separated by
a spacer (gap). The spacer occurs in the middle of the
motif because the transcription factors bind as a dimer.
This means that the transcription factor is made out of two
subunits that have two separate contact points with the
DNA sequence. The parts where the transcription factor
binds to the DNA are conserved but are typically rather
small (3–5 bp). These two contact points are separated by
a non-conserved spacer. This spacer is mostly of fixed
length but might be slightly variable.

Given a set of DNA sequences (promoter region), the
motif finding problem is the task of detecting overrepre-
sented motifs as well as conserved motifs from ortholo-

gous sequences that are good candidates for being
transcription factor binding sites. A large number of algo-
rithms for finding DNA motifs have been developed. Most
of these algorithms are designed to deduce motifs by con-
sidering the regulatory region (promoter) of several coreg-
ulated genes from a single genome. It is assumed that
coexpression of genes arises mainly from transcriptional
coregulation. As coregulated genes are known to share
some similarities in their regulatory mechanism, possibly
at transcriptional level, their promoter regions might con-
tain some common motifs that are binding sites for tran-
scription factors. A sensible approach to detect these
regulatory elements is to search for statistically overrepre-
sented motifs in the promoter region of such a set of coex-
pressed genes. A statistically overrepresented motif means
a motif that occurs more often than one would expect by
chance. Therefore, these algorithms search for overrepre-
sented motifs in this collection of promoter sequences.
However, most of these motif finding algorithms have
been shown to work successfully in yeast and other lower
organisms, but perform significantly worse in higher
organisms. To overcome this difficulty recent motif find-
ing algorithms are taking advantage of cross-species
genome comparison or phylogenetic footprinting [2]. The
simple premise underlying phylogenetic footprinting is
that selective pressure causes functional elements to
evolve at a slower rate than non-functional sequences.
This means that usually well conserved sites among a set
of orthologous promoter regions are excellent candidates
for functional regulatory elements or motifs. Several motif
finding algorithms have been developed based on phylo-
genetic footprinting [3-8]. Most recently, algorithms that
integrate DNA sequence data from coregulated genes and
phylogenetic footprinting have significantly improved
motif finding from genomic sequences [9-16]. Efforts
have also focused toward developing algorithms that
incorporate parameters that are useful for motif finding in
higher organisms [17]. Stormo [18] presented an excellent
history of development and application of computer algo-
rithms for DNA motif finding. Since then a remarkably
rapid development has occurred in DNA motif finding
algorithms and a large number of DNA motif finding
algorithms have been developed and published. In this
survey, we review the recent developments in DNA motif
finding algorithms.

Motif discovery algorithms
Based on the type of DNA sequence information
employed by the algorithm to deduce the motifs, we clas-
sify available motif finding algorithms into three major
classes: (1) those that use promoter sequences from coreg-
ulated genes from a single genome, (2) those that use
orthologous promoter sequences of a single gene from
multiple species (i.e., phylogenetic footprinting) and (3)
those that use promoter sequences of coregulated genes as
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well as phylogenetic footprinting. However, most of the
earlier literature categorized motif finding algorithms into
two major groups based on the combinatorial approach
used in their design: (1) word-based (string-based) meth-
ods that mostly rely on exhaustive enumeration, i.e.,
counting and comparing oligonucleotide frequencies and
(2) probabilistic sequence models where the model
parameters are estimated using maximum-likelihood
principle or Bayesian inference. The word-based enumer-
ative methods guarantee global optimality and they are
appropriate for short motifs and are therefore useful for
motif finding in eukaryotic genomes where motifs are
generally shorter than prokaryotes. The word-based meth-
ods can also be very fast when implemented with opti-
mized data structures such as suffix trees [19] and are a
good choice for finding totally constrained motifs, i.e., all
instances are identical. However, for typical transcription
factor motifs that often have several weakly constrained
positions, word-based methods can be problematic and
the result often needs to be post-processed with some
clustering system [20]. Word-based methods also suffer
from the problem of producing too many spurious
motifs. The probabilistic approach involves representa-
tion of the motif model by a position weight matrix [21].
Position weight matrices are often visualized as a picto-
gram in which each position is represented by a stack of
letters whose height is proportional to the information
content of that position [22]. Probabilistic methods have
the advantage of requiring few search parameters but rely
on probabilistic models of the regulatory regions, which
can be very sensitive with respect to small changes in the
input data. Many of the algorithms developed from the
probabilistic approach are designed to find longer or
more general motifs than are required for transcription
factor binding sites. Therefore, they are more appropriate
for motif finding in prokaryotes, where the motifs are gen-
erally longer than eukaryotes. However, these algorithms
are not guaranteed to find globally optimal solutions,
since they employ some form of local search, such as
Gibbs sampling, expectation maximization (EM) or
greedy algorithms that may converge to a locally optimal
solution.

A list of motif finding algorithms is presented chronolog-
ically in Additional file 1. Here we review some represent-
ative motif finding algorithms from the three major
classes (based on the DNA sequence data employed) of
algorithms described above.

Algorithms based on promoter sequences of 
coregulated genes
Most of the earlier algorithms designed to find motifs use
a set of promoter sequences of coregulated genes to iden-
tify statistically overrepresented motifs. The combinato-

rial approach (word-based, probabilistic, or other)
underlying their design leads to a further classification.

Word-based algorithms

van Helden et al. [23] developed the motif finding algo-
rithm Oligo-Analysis based on the word-based approach.
Although conceptually simple, their algorithm proved
efficient for extracting motifs from most of the yeast (Sac-
charomyces cerevisiae) regulatory families they analyzed.
These motifs had been previously found by laboratory
experimental analysis. Furthermore, putative new regula-
tory sites were predicted within upstream regions of coreg-
ulated genes. In contrast with heuristic methods, this
oligonucleotide analysis is rigorous and exhaustive. How-
ever, its range of detection is limited to relatively simple
patterns that include short motifs with highly conserved
core. The methodology used in developing the algorithm
includes (1) constitution of regulatory families and (2)
calculation of expected oligonucleotide frequencies. Later,
van Helden et al. [24] extended their method to find
spaced dyad motifs. Because the spacer can be different for
distinct motifs, the spacer length is systematically varied
between 0 and 16. The significance of this type of motif
can be computed based on the combined score of the two
conserved parts in the input data or based on the esti-
mated complete dyad frequency from a background data
set. The greatest shortcomings of the algorithm of van
Helden et al. [23] is that there are no variations allowed
within an oligonucleotide. Tompa [25] addressed this
problem when he proposed an exact word-based method
to find short motifs in DNA sequences. His algorithm was
particularly applied to the ribosome binding site prob-
lem. Tompa took into account both the absolute number
of occurrences and the background distribution and cre-
ated a table that, for each k-mer (length-k sequence) s,
records the number Ns of sequences containing an occur-

rence of s, where an occurrence allows for a small, fixed
number c of substitution residues in s. Then a reasonable
measure of s as a motif would be based on how unlikely it
is to have Ns occurrences if the sequences were drawn at

random according to the background distribution. The
statistical significance test for motif occurrences used and
described by Tompa [25] is as follows. Let X be a single
random sequence of the specified length L, with residues
drawn randomly and independently from the background
distribution, or alternatively generated by a Markov chain
according to the background dinucleotide distribution.
Suppose that ps is the probability that X contains at least

one occurrence of the k-mer s, allowing for c substitutions.
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Under the reasonable assumption that N length-L ran-
dom sequences of X are independent, the expected
number of containing at least one occurrence of s among
the N random sequences is Nps, and its standard deviation

is . Therefore, the associated z-score is

where Ms is the number of standard deviations by which
the observed value Ns exceeds its expectation, and is some-
times called the "z-score", "normal deviate", or deviation
in standard units. The random quantity of Ms is asymptot-
ically normally distributed, and normalized to have mean
0 and standard deviation 1, making it suitable for compar-
ing different motifs s. Tompa proposed an efficient algo-
rithm to estimate ps from a set of background sequences
based on a Markov chain.

Using a similar approach, Sinha and Tompa [26] devel-
oped the algorithm YMF (Yeast Motif Finder). They
derived the motif model from a study of known transcrip-
tion factor binding sites in yeast. The inputs to the algo-
rithm are a set of upstream sequences, the number of non-
spacer characters in the motifs to be enumerated, and the
transition matrix for an order m Markov chain constructed
from the full complement of upstream sequences of yeast.
This algorithm is guaranteed to produce motifs with great-
est z-score (described above). They conducted a validation
experiment where YMF was used to identify candidate
binding sites in 23 well studied regulons (a set of genes
controlled by a common regulator) of yeast. For 18 of
these regulons, YMF succeeded in reporting the known
binding site consensus for the regulon's principal tran-
scription factor. They also applied YMF for motif finding
from gene families in the functional and mutant pheno-
type catalogues of S. cerevisiae from MIPS database [27]
and found many promising novel transcription factor
binding sites. Sinha and Tompa [28] performed experi-
ments using synthetic and yeast promoter sequences to
compare the performance of YMF to the algorithms
MEME [29] and AlignACE [30]. They reported that YMF
made more accurate predictions of known regulatory ele-
ments on more of the yeast regulons than the other two
tools. However, from this study they also concluded that
it may be beneficial to try a few very different motif dis-
covery tools in addition to YMF because of their observ-
ance that different tools performed better with different
data sets.

Brazma et al. [31] used a word-based approach to develop
a motif finding algorithm that looks for occurrences of
regular expression-type patterns. They applied the algo-
rithm for discovering (1) patterns in the complete set of
over 6000 sequences taken from upstream of the putative

yeast genes and (2) patterns in the upstream regions of
coregulated genes in yeast. Among the highest rating pat-
terns, most had matches to known motifs in yeast.

Sagot [19] introduced a word-based approach for motif
finding that is based on the representation of a set of
sequences with a suffix tree. Vanet et al. [32] used suffix
trees to search for single motifs in whole genomes of bac-
teria. Marsan and Sagot [33] extended this method to
search for combinations of motifs. Representation of
upstream sequences as suffix trees gave a large number of
possible combination, however, the implementation was
still efficient. The motif finding algorithms, Weeder and
MITRA (Mismatch Tree Algorithm), developed by Pavesi
et al. [34] and Eskin and Pevzner [35] respectively, are also
based on the suffix tree and its variant. The algorithms
WINNOWER [36] and cWINNOWER [37] uses word-
based approach combined with graph-theoretic methods
for motif finding.

Probabilistic algorithms
One of the first implementations for finding a matrix rep-
resentation of transcription factor binding sites was a
greedy probabilistic sequence model-based algorithm by
Hertz et al. [38] to find the site with the highest informa-
tion content. They used this algorithm to identify a com-
mon motif that was present once in every sequence. This
algorithm has been substantially improved over the years
and in their latest implementation of this algorithm (Con-
sensus) Hertz and Stormo [39] provided a method to esti-
mate the statistical significance of a given information
content score based on large deviation statistics.

Down and Hubbard [40] developed the motif finding
algorithm NestedMICA based on a probabilistic
approach. This algorithm uses a sequence model based on
an independent component analysis framework to learn
models for multiple motifs simultaneously and it also
uses an alternative inference strategy that is likely to find
a globally optimal model in a single run. The authors
tested the performance of this algorithm with the algo-
rithm MEME on synthetic data and a well-characterized
set of muscle regulatory regions and reported that Netsed-
MICA was more sensitive than MEME and in one case it
successfully extracted a target motif from background
sequence four times longer than could be handled by
MEME.

Most probabilistic motif finding algorithms apply potent
statistical techniques such as EM and Gibbs sampling and
its extensions.

EM methods
EM for motif finding was introduced by Lawrence and
Reilly [41] and it was an extension of the greedy algorithm

Np ps s( )1 −

M N Np Np ps s s s s= − −( )/ ( ),1
Page 4 of 13
(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 7):S21 http://www.biomedcentral.com/1471-2105/8/S7/S21
for motif finding by Hertz et al. [38]. It was primarily
developed for protein motifs, however, it can also be
applied for DNA motif finding. No alignment of the sites
is required and the basic model assumption is that each
sequence must contain at least one common site. The
uncertainty in the location of the sites is handled by
employing the missing information principle to develop
an EM algorithm. This approach allows for the simultane-
ous identification of the sites and characterization of the
binding motifs. The MEME algorithm by Bailey and Elkan
[29] extended the EM algorithm for identifying motifs in
unaligned biopolymer sequences. The aim of MEME is to
discover new motifs in a set of biopolymer sequences
where little is known in advance about any motifs that
may be present. MEME incorporated three novel ideas for
discovering motifs. First, subsequences that actually occur
in the biopolymer sequences are used as starting points
for the EM algorithm to increase the probability of finding
globally optimum motifs. Second, the assumption that
each sequence contains exactly one occurrence of the
shared motif is removed. Third, a method for probabilis-
tically erasing shared motifs after they are found is incor-
porated so that several distinct motifs can be found in the
same set of sequences, both when different motifs appear
in different sequences and when a single sequence may
contain multiple motifs.

Gibbs sampling methods
Among the probabilistic methods Gibbs sampling
method has been used extensively for motif finding algo-
rithms. Here we present a short description of the original
Gibbs sampler for motif finding developed by Lawrence et
al. [42]. They did not apply this algorithm to DNA
sequence but applied to protein sequence in the original
article. Since one of the original assumptions of this algo-
rithm was that there exists at least one instance of a motif
in every sequence, the method is sometimes called the
"site sampler". Gibbs sampler is a Markov Chain Monte
Carlo (MCMC) approach: "Markov-Chain", since the
results from every step depends only on the results of the
preceding one like in EM; "Monte-Carlo", since the way to
select the next step is not deterministic but rather based on
random sampling, i.e., random-numbers. The statistical
background of MCMC methods is explained in the book
by Liu [43] and that of Gibbs sampling in the article by Liu
et al. [44]. In this algorithm it is assumed that we are given
a set of N sequences S1,...,SN and we seek within each
sequence mutually similar segments of specified width W.
The algorithm maintains two evolving data structures. The
first is the pattern description, in the form of a probabilis-
tic model of residue frequencies for each position i from 1
to W, and consisting of the variables qi,1,...,qi,20, indexed
by W positions and the 20 possible residues. This pattern
description is accompanied by an analogous probabilistic
description of the "background frequencies" p1,...,p20 with

which residues occur in sites not described by the pattern.
The second data structure, constituting the alignment, is a
set of positions ak, for k from 1 to N, for the common pat-
tern within the sequences. The objective will be to identify
the "best", defined as the most probable, common pat-
tern. This pattern is obtained by locating the alignment
that maximizes the ratio of the corresponding pattern
probability to background probability.

The algorithm is initialized by choosing random starting
positions within the various sequences. It then proceeds
through many iterations to execute the following two
steps of the Gibbs sampler. (1) Predictive update step:
One of the N sequences, z, is chosen either at random or
in specified order. The pattern description qi,j and back-
ground frequencies pj are then calculated, as described
below, from the current positions ak in all sequences
excluding z. (2) Sampling step: Every possible segment of
width W within sequence z is considered as a possible
instance of the pattern. The probabilities Qx of generating
each segment x according to the current pattern probabil-
ities qi,j are calculated, as are the probabilities Px of gener-
ating these segments by the background probabilities pj.
The weight Ax = Qx/Px is assigned to segment x, and with
each segment so weighted, a random one is selected (seg-
ment x is chosen with probability Ax/∑jAj, where the sum
is taken over all possible segments). Its position then
becomes the new az. This simple iterative procedure con-
stitutes the basic algorithm.

The central idea is that the more accurate the pattern
description constructed in step 1, the more accurate deter-
mination of its location in step 2, and vice versa. Given
random position ak, in step 2 the pattern description qi,j
will tend to favor no particular segment. Once some cor-
rect ak have been selected by chance, however, the qi,j begin
to reflect, even though imperfectly, a pattern extant within
other sequences. This process tends to recruit further cor-
rect ak, which in turn improves the discriminating power
of the evolving pattern. An aspect of the algorithm alluded
to in step 1 above concerns the calculation of the qi,j from
the current set of ak. For the ith position of the pattern we
have N - 1 observed amino acids, because sequence z has
been excluded; let ci,j be the count of amino acid j in this
position. Bayesian statistical analysis suggests that, for the
purpose of pattern estimation, these ci,j's should be sup-
plemented with residue-dependent "pseudocounts" bj to
yield pattern probabilities qi,j = (ci,j + bj)/(N - 1 + B), where
B is the sum of the bj. The pj are calculated analogously,
with the corresponding counts taken over all non-pattern
positions. After normalization, Ax gives the probability
that the pattern in sequence z belongs at position x. The
algorithm finds the most probable alignment by selecting
a set of ak's that maximizes the product of this ratio. Equiv-
alently, one may maximize F, the sum of the logarithms of
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these ratios. In the notation developed above, F is given
by the formula

where the ci,j and qi,j are calculated from the complete
alignment of the sequences.

Extensions to Gibbs sampling method
Based on Gibbs sampling strategy, Roth et al. [30] devel-
oped the motif finding algorithm AlignACE (Aligns
Nucleic Acid Conserved Elements). This algorithm returns
a series of motifs as weight matrices that are overrepre-
sented in the input set of DNA sequences. In this algo-
rithm, a motif is defined as the characteristic base-
frequency patterns of the most information-rich columns
of a set of aligned sites. It differs from the original Gibbs
sampling algorithm [42] in the following major features.
(1) The motif model is changed so that the base frequen-
cies for non-site sequence are fixed according to the source
genome (e.g., 62% A+T in the case of yeast). (2) Both
strands of the input sequence are simultaneously consid-
ered at each step of the algorithm and overlapping sites
are not allowed even if the sites are on opposite strands.
(3) Simultaneous multiple motif searching is replaced by
an approach in which single motifs are found and itera-
tively masked. (4) It uses an improved near-optimum
sampling method. AlignACE uses the MAP (maximum a
priori log-likelihood) score to judge different motifs sam-
pled. It is a measure of the degree of overrepresentation of
a motif as compared to the expected random occurrence
of that motif in the sequence under consideration. The
main drawback of MAP score used by this algorithm is the
fact that some motifs occurring ubiquitously in a genome
(e.g., A-rich motifs in yeast) are scored very highly, but are
not likely to be relevant to the specific set of genes in ques-
tion. Later, Hughes et al. [45] used AlignACE for finding
motifs from groups of functionally related genes in yeast.
Rather than applying the MAP for scoring motifs, they
used an improved measure known as group specificity.
This new measure takes into account the sequence of the
entire genome and highlights those motifs that are found
preferentially in association with the genes under consid-
eration. Using this algorithm with the improved scoring
technique they were able to find motifs that were previ-
ously identified as well as novel motifs.

Thijs et al. [46] developed the motif finding algorithm
MotifSampler using a modification of the original Gibbs
sampling algorithm. The two major modifications are (1)
the use of a probability distribution to estimate the
number of copies of the motif in a sequence and (2) the
incorporation of a higher-order Markov-chain back-
ground model. The authors tested their algorithm on sev-

eral data sets. For the data sets involving sequences from
plants containing the G-box motif and the upstream
sequences from bacterial genes regulated by oxygen-
responsive protein FNR, MotifSampler was able to find
expected motifs. From the experiment involving four clus-
ters of coexpressed genes, expressed in response to
wounding in Arabidopsis thaliana, they found several puta-
tive motifs that are related to the pathways involved in the
plant defense mechanism.

Using a Gibbs sampling strategy, Liu et al. [47] developed
the motif finding algorithm BioProspector that uses the
promoter regions of coregulated genes. It differs from the
original Gibbs sampler in the following points. (1) It uses
zero to third-order Markov background models whose
parameters are either given by the users or estimated from
a specified sequence file. (2) The significance of each
motif is judged based on a motif score distribution esti-
mated by a Monte Carlo method. (3) It allows for the
modeling of spaced dyad motifs and motifs with palin-
dromic patterns. The authors of this algorithm were suc-
cessful in finding motifs for binding of RAP1 protein in
yeast, TATA-box motif in Bacillus subtilis and CRP protein
binding site in Escherichia coli.

Shida [48] developed the motif discovery algorithm Gibb-
sST using the method of simulated tempering with Gibbs
sampling. Gibbs sampling is one of the most promising
pattern discovery methods in terms of its flexibility and
wide range of application, however, it is known to be
rather strongly affected by the local optima problem [49].
Therefore, the Gibbs sampling method can be further
improved by a search method in the solution space. In
pattern discovery and bioinformatics in general, the sim-
ulated annealing method is mostly used for improvement
of search methods in the solution space [50-52]. How-
ever, satisfactory improvements were not obtained using
this method [48]. Simulated tempering is one of many
proposals from the field of thermodynamics for the sys-
tematic avoidance of local optima in multivariate optimi-
zation problems and is quite useful for reducing the
vulnerability of Gibbs sampling to local optima [48]. In
the GibbsST algorithm the authors have utilized the sim-
ulated tempering approach to improve the Gibbs sam-
pling method of motif finding. They validated this
algorithm using synthetic data and actual promoter
sequences extracted from yeast and obtained much
increased resistance to the local optima problem.

Machine learning techniques
Liu et al. [53] developed the algorithm FMGA based on
genetic algorithms (GAs) for finding potential motifs in
the regions located from the -2000 bp upstream to +1000
bp downstream of the transcription start site. The muta-
tion in GA is performed by using position weight matrices

F ci j
q

p
ji

W
i j

j
=

==
∑∑ , log ,

1

20

1

Page 6 of 13
(page number not for citation purposes)



BMC Bioinformatics 2007, 8(Suppl 7):S21 http://www.biomedcentral.com/1471-2105/8/S7/S21
to reserve the completely conserved positions. The crosso-
ver is implemented with specially designed gap penalties
to produce the optimal child pattern. This algorithm also
uses a rearrangement method based on position weight
matrices to avoid the presence of a very stable local mini-
mum, which may make it quite difficult for the other
operators to generate the optimal pattern. The authors
reported that FMGA performs better in comparison to
MEME and Gibbs sampler algorithms.

Liu et al. [54] developed a self-organizing neural network
structure for motif finding in DNA and protein sequences.
The network contains several layers with each layer per-
forming classifications at different level. The authors
maintained a low computational complexity through the
use of layered structure so that each pattern's classification
is performed with respect to a small subspace of the whole
input space. The authors also maintain a high reliability of
their search algorithm using self-organizing neural net-
work since it will grow as needed to make sure that all
input patterns are considered and are given the same
amount of attention. From simulation results the authors
reported that their algorithm outperformed the algo-
rithms MEME and Gibbs Sampler in certain aspects and
their algorithm also works well for long DNA sequences.

Other approaches
Kingsford et al. [55] used a mathematical programming
approach for DNA motif discovery that involved finding
subsequences of a given length such that the sum of their
pairwise distances was minimized. They used integer lin-
ear programming (ILP) that utilizes the discrete nature of
the distance metric imposed on pairs of subsequences.
Since finding a solution to the ILP is computationally dif-
ficult, the authors tightened the linear programming
relaxation by adding an exponential set of constraints and
used an efficient separation algorithm that can find vio-
lated constraints and thus having a polynomial time solu-
tion. The authors tested the effectiveness of their approach
in identifying DNA motifs in E. coli and demonstrated
that the performance of their method is competitive with
some Gibbs sampling-based algorithms for motif finding.

Kaplan et al. [56] used a structure-based approach for
motif finding with no prior DNA binding data. They com-
bine DNA sequence data and transcription factor protein
structural information to infer context specific amino
acid-nucleotide recognition preferences. This information
is used to predict binding sites for novel transcription fac-
tors from the same structural family. The authors used
Cys2His2 Zinc Finger protein family and showed that the
learned DNA-recognition preferences are compatible with
experimental results.

While many motif finding algorithms have been shown to
work successfully in yeast and other organisms, most per-
form significantly worse in higher organisms [57]. Hon
and Jain [17] developed a deterministic motif finding
algorithm with application to the human genome. This
deterministic method depends on an indexing technique
to optimize the search process. The fast search procedure
is coupled to a very simple scoring function that combines
a preference for conservation among input sequences with
a preference for under-represented sequences relative to
the genome.

Ensemble algorithm
Hu et al. [58] introduced the ensemble approach for motif
finding to improve the prediction accuracy of the motif
finding algorithms. They developed a novel clustering-
based ensemble algorithm named EMD [59] for motif dis-
covery by combining multiple predictions from multiple
runs of one or more base component algorithms. The
potential of an EMD algorithm lies in the fact that it could
take advantage of superb predictions of every component
algorithm. The authors used five component algorithms
namely AlignACE, Bioprospector, MDScan [60], MEME
and MotifSampler in their study. They tested their algo-
rithm on a benchmark dataset generated from E. coli Reg-
ulonDB. The EMD algorithm achieved 22.4%
improvement in terms of the nucleotide level prediction
accuracy over the best stand-alone component algorithm.
The authors pointed out that the advantage of the EMD
algorithm is more significant for shorter input sequences,
but most importantly, it always outperformed or at least
stayed at the same performance level of the stand-alone
component algorithms even for longer sequences.

Algorithms based on phylogenetic footprinting
The major advantage of phylogenetic footprinting over
the coregulated genes approach is that the latter requires a
reliable method for identifying coregulated genes. Where
as, using phylogenetic footprting approach, it is possible
to identify motifs specific to even a single gene, as long as
they are sufficiently conserved across the many ortholo-
gous sequences considered. The rapid accumulation of
genomic sequences from a wide variety of organisms
makes it possible to use the phylogenetic footprinting
approach for motif finding. The standard method used for
phylogenetic footprinting is to construct a global multiple
alignment of the orthologous promoter sequences and
then identify conserved region in the alignment using a
tool such as CLUSTAL W [61]. However, it has been
observed [3,4,62] that this approach to phylogenetic foot-
printing does not always work. The reason is that if the
species are too closely related, the sequence alignment is
obvious but uninformative, since the functional elements
are not sufficiently better conserved than the surrounding
nonfunctional sequence. On the other hand, if the species
Page 7 of 13
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are too distantly related, it is difficult or impossible to find
an accurate alignment. To overcome this problem, one of
the several existing motif finding algorithms such as
MEME, Consensus, Gibbs sampler have been used for
phylogenetic footprinting. Cliften et al. [3] used AlignACE
for motif finding by comparative DNA sequence analysis
of several species of Saccharomyces and reported some suc-
cesses where the global multiple alignment tools failed.
McCue et al. [63] used Gibbs sampler for motif finding
using phylogenetic footprinting in proteobacterial
genomes. That the use of such general motif discovery
algorithms can be problematic in phylogenetic footprint-
ing has been pointed out by Blanchette and Tompa [4].
These motif finding algorithms do not take into account
the phylogenetic relationship of the given sequences since
these methods assume the input sequences to be inde-
pendent. Therefore, the data sets containing a mixture of
some closely related species will have an unduly high
weight in the choice of motifs reported. Even if these
methods were modified to weigh the input sequences
unequally, this would still not capture the information in
an arbitrary phylogenetic tree. To overcome this problem,
Blanchette and Tompa [4] designed an algorithm for
motif finding from phylogenetic footprinting that uses
dynamic programming to find most parsimonious k-mer
from each of the input sequences where k is the motif
length.

Berezikov et al. [5] reported the motif finding algorithm
CONREAL based on phylogenetic footprinting. This algo-
rithm uses potential motifs as represented by positional
weight matrices to establish anchors between orthologous
sequences and to guide promoter sequence alignment.
They compared the performance of CONREAL with two
global alignment programs LAGAN [64] and AVID [65]
using a reference data set and observed that CONREAL
worked equally well for closely related species like rodent
and human and has a clear added value for aligning pro-
moter elements of more divergent species like human and
fish, as it identifies conserved transcription factor binding
sites that are not found by other methods.

Cliften et al. [6] used the phylogenetic footprinting
approach to find motifs in Saccharomyces genomes. They
searched for phylogenetic footprints among the genome
sequences of six Saccharomyces species using the sequence
alignment tool CLUSTAL W. Using this simple alignment
technique they were able to find many statistically signif-
icant conserved sequence motifs. This was possible
because they compared multiple genome sequences that
are as optimally diverged as possible.

Wang and Stormo [7] developed the algorithm PHY-
LONET that systematically identifies phylogenetically
conserved motifs by analyzing all of the promoter

sequences of several related genomes and defines a net-
work of regulatory sites for the organism. This algorithm
involves construction of phylogenetic profiles for each
promoter and then uses a BLAST-like algorithm to effi-
ciently search through the entire profile space of all the
promoters in the genome to identify conserved motifs and
the promoters that contain them. Statistical significance
of motifs is estimated by modified Karlin-Altschul statis-
tics [66]. The authors used this algorithm to the analysis
of 3524 yeast promoters and identified a highly organized
regulatory network involving 3315 promoters and 296
motifs. This network includes nearly all of the currently
known motifs and cover more than 90% of known tran-
scription factor binding sites. They claimed that this algo-
rithm can be applied to much larger genome such as the
human genome.

Carmack et al. [8] developed a scanning algorithm, Phylo-
Scan, which combines evidence from matching sites
found in orthologous data from several related species
with evidence from multiple sites within an intergenic
region, to better detect regulons. The orthologous
sequence data may be multiply aligned, unaligned, or a
combination of aligned and unaligned. In aligned data,
PhyloScan statistically accounts for the phylogenetic
dependence of the species contributing data to the align-
ment and, in unaligned data, the evidence for sites is com-
bined assuming phylogenetic independence of the
species. The authors applied this algorithm to real
sequence data from seven Enterobacteriales species and
identified novel transcription factor binding motifs.

Algorithms based on promoter sequences of 
coregulated genes and phylogenetic footprinting
These algorithms integrate two important aspects of a
motif's significance, i.e., overrepresentation and cross-spe-
cies conservation, into one probabilistic score. Gelfand et
al. [9] used promoters of coregulated genes and ortholo-
gous promoter sequence data for finding overrepresented
motifs in Archaea. They used the Smith-Waterman algo-
rithm for signal identification, construction of recogni-
tion profiles, identification of candidate signals in
genome sequences and protein similarity searches. In this
study, they treated all data, i.e., coregulated and ortholo-
gous sequences as independent in spite the fact that the
orthologous sequences are directly related. A similar treat-
ment of the mixed set of data was done by the algorithm
of McGuire et al. [10]. An algorithm by Kellis et al. [11]
extracts motifs in two steps from the mixed data of two
types of sequences. In the first step this algorithm finds a
set of highly conserved motifs and in the second step the
overrepresented motifs are extracted from this set. Prakash
et al. [12] developed the algorithm OrthoMEME based on
an EM approach that uses mixed data of two types of
sequences. This algorithm searches the space of motifs
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and motif alignments simultaneously. Each motif occur-
rence is assumed to have an orthologous copy in the other
species, which could be located anywhere in the corre-
sponding promoter. The algorithm OrthoMEME is
designed to handle orthologous sequences from two spe-
cies.

Based on the Consensus algorithm [38] Wang and Stormo
[13] developed the motif finding algorithm PhyloCon
(Phylogenetic Consensus) that takes into account both
conservation among orthologous genes and coregulation
of genes within a species. This algorithm first aligns con-
served regions of orthologous sequences into multiple
sequence alignments or profiles, and then compares pro-
files representing non-orthologous sequences. Motifs
emerge as common regions in these profiles. They pre-
sented a novel statistic to compare profiles of DNA
sequences and a greedy approach to search for common
subprofiles. They demonstrated that PhyloCon performed
well on both synthetic and biological data. The strengths
of PhyloCon are that it does not consider a single instance
of a motif as a string of letters. Instead, it sees any position
of such an instance as a probabilistic distribution over all
possible nucleotides. Random mutations that could dis-
rupt the significance of any copy of the motif are much
less devastating to a probabilistic profile. Spurious ran-
dom profiles are much less likely than spurious random
motifs. Thus PhyloCon has a low false positive rate and is
very tolerant of background sequence length. Extended
background genomic conservation beyond the motif
helps not only to reduce search space, but also to correctly
align conserved motifs. By saving suboptimal alignments
and comparing all of them, PhyloCon reduces its false
negative rate.

Sinha et al. [14] developed the algorithm PhyME based on
a probabilistic approach that handles data from promot-
ers of coregulated genes and orthologous sequences. An
important feature of this algorithm is that it allows motifs
to occur in conserved as well as non-conserved regions in
orthologous promoters, treating the two kinds of occur-
rences differently when scoring a motif. It does not require
each binding site occurrence in one promoter to have an
orthologous occurrence in any or all other species. This
allows some flexibility in terms of the evolutionary dis-
tances spanned by the input sequences. For example,
using a distantly related ortholog will help pinpoint
motifs located in conserved regions but will not hamper
the discovery of motifs absent from that ortholog. The
authors evaluated this algorithm on synthetic data and
data sets from yeast, fly and human. They compared
PhyME with the algorithms MEME, OrthoMEME, Phylo-
Gibbs [16], EMnEm [15] and GIBBS (Wadsworth Gibbs
sampler) [67] and reported that the motif detection abil-

ity of PhyME was better than the other algorithms in most
cases.

Moses et al. [15] developed the algorithm EMnEm that
uses EM and a phylogenetic model to find motifs from
data involving coregulated genes and orthologous
sequences. This algorithm assumes that the input
sequences are completely aligned, however, such an
assumption may not be suitable for species at relatively
large evolutionary distance such as human and mouse.

Siddharthan et al. [16] developed the algorithm Phylo-
Gibbs that combines the motif finding strategies of phyl-
ogenetic footprinting and Gibbs sampling into one
integrated Bayesian framework. PhyloGibbs runs on arbi-
trary collections of multiple local sequence alignments of
orthologous sequences. The algorithm searches over all
arrangements in which an arbitrary number of binding
sites for an arbitrary number of transcription factors can
be assigned to the multiple sequence alignments. These
binding site configurations are scored by a Bayesian prob-
abilistic model that treats aligned sequences by a model
for the evolution of binding sites and background inter-
genic DNA. This model takes the phylogenetic relation-
ship between the species in the alignment explicitly into
account. The algorithm uses simulated annealing and
MCMC sampling to rigorously assign posterior probabili-
ties to all binding sites that it reports. In tests on synthetic
data and real data from five Saccharomyces species this
algorithm performed significantly better than the algo-
rithms MEME, Gibbs sampler, PhyME and EMnEM.

Performance evaluations of motif finding 
algorithms
A large number of motif finding algorithms are available,
therefore, users may like to have some guidance in choos-
ing the best tools for their motif finding endeavor. How-
ever, it has been a challenging task to conduct studies on
performance comparisons of motif finding tools. As men-
tioned by Tompa et al. [57], the difficulty in performance
assessment of motif finding tools stems from several
sources. The tools have been developed based on varied
and complex motif models, and therefore, individual
tools may do better on one type of data but do worse on
other types of data. Also our incomplete understanding of
the biology of regulatory mechanism does not always pro-
vide adequate evaluation of underlying algorithms over
motif models.

Most authors test their algorithm against a few available
algorithms using both biological sequence data and syn-
thetic data sets with planted motifs. Pevzner and Sze [36]
tested their combinatorial algorithm SP-STAR with the
probabilistic algorithms GibbsDNA (version of Gibbs
sampler to work with DNA sequences), Consensus and
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MEME and reported that SP-STAR performed better than
the other three algorithms on short motifs. Sinha and
Tompa [28] compared the accuracy of three motif finding
algorithms: YMF, MEME and AlignACE. The performance
score that they used was: the number of positions, over all
sequences where occurrences of the known and reported
motifs overlap, divided by the total number of position at
which the known or reported motif occurs. The compari-
son was done on synthetic data with planted motifs as
well as on real data sets of coregulated genes from S. cere-
visiae. YMF was found to be more accurate than the other
two algorithms on the S. cerevisiae data set.

Tompa et al. [57] assessed performance of thirteen motif
finding algorithms. The purpose of their assessment was
twofold: providing some guidance regarding the accuracy
of currently available motif finding tools in various set-
tings, and to provide benchmark data sets for assessing
future tools. Based on the fact that little is known about
most transcription factors and their target binding sites,
even in well studied organisms, the authors included
those computational tools designed for the discovery of
novel regulatory elements, where nothing is assumed a
priori of transcription factor or its binding sites. For these
tools, a user provides a collection of regulatory regions of
genes that are believed to be coregulated, and the tool
identifies motifs that are statistically overrepresented in
these regulatory regions. The thirteen motif-discovery
tools assessed by the authors were AlignACE, ANN-Spec
[68], Consensus, GLAM [69], Improbizer [70], MEME,
MITRA, MotifSampler, Oligo/Dyad-Analysis, QuickScore
[71], SeSiMCMC [72], Weeder and YMF. They created data
sets containing known binding sites to test these tools.
Without revealing the known binding sites, each author
with specific expertise on a particular tool then ran that
tool on these data sets. Experts were chosen to test each
tool so that none would be put at the disadvantage of
being run with an uninformed setting of its parameters.
The expert predictions were then compared with the
known binding sites, using various statistics to assess the
correctness of the predictions.

For binding sites they used the TRANSFAC database [73]
to choose real transcription factors, their known binding
sites, and the positions and orientations of those binding
sites. Each such transcription factor had one data set of
sequences. Each such data set consisted of one of three dif-
ferent types of background sequence, with the transcrip-
tion factor's known binding sites planted at their known
positions and orientations. The three types were (1) the
binding sites' real promoter sequences, (2) randomly cho-
sen promoter sequences and (3) sequences generated by a
Markov chain of order 3. They used several statistics to
assess the performance of each tool on each data set at the
nucleotide level as well as at the site level using the infor-

mation on the known binding sites and the set of pre-
dicted binding sites by the tool.

Data revealed that the absolute measures of correctness of
the programs were low. For example, site sensitivity was at
most 0.22 and correlation coefficient was at most 0.20.
Site sensitivity is the statistics that gives the fraction of
known sites that are predicted while the correlation coef-
ficient is the Pearson product-moment correlation
between two sets of positions (known nucleotide posi-
tions and predicted nucleotide positions). The authors
warned that this assessment should not be taken as an
indictment of computational methods for prediction of
regulatory element for a very great number of reasons.
Most importantly, the underlying biology of regulatory
mechanisms is very incompletely understood. We lack an
absolute standard against which to measure the correct-
ness of tools.

The results of the comparison experiments showed that
the tool Weeder outperformed the other tools in most
domains and by most measures in this assessment. The
authors believe that some part of Weeder's success is due
to judicious choices regarding when to predict no motif in
a data set: Weeder was run in a "cautious mode", where
only the strongest motifs were reported. A few small
exceptions to Weeder's domination were that the SeSiM-
CMC did somewhat better on the fly data set and the
MEME3 (a variation of MEME) and YMF did somewhat
better on the mouse data sets. The authors suggest that
biologists should use a few complementary tools in com-
bination rather than relying on a single one and to pursue
the top few predicted motifs of each rather than the single
most significant motif.

Hu et al. [58] also conducted a comprehensive benchmark
experiment for performance comparisons of five
sequence-based motif finding algorithms using large data-
sets generated from E. coli RegulonDB. The authors for
this study have pointed out how their work differs from
the benchmark experiments of Tompa et al. [57] for per-
formance comparisons of motif finding algorithms. In the
study by Tompa et al. [57], the algorithm developers were
allowed to fine-tune the running parameters and reported
the best results while Hu et al. [58] allowed minimal
parameter tuning during performance evaluation. They
also suggest that performance evaluation based only on
the predictions with the highest score has the risk of
penalizing some practically effective algorithms, since in
many cases the predicted motifs with the highest score are
not the motif with highest accuracy.

Five algorithms assessed by the authors were AlignACE,
MEME, BioProspector, MDScan and MotifSampler. The
authors defined a set of prediction performance indexes
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for the algorithms and conducted comparative evalua-
tions of the algorithms in terms of their prediction accu-
racy, scalability and the reliability of their significance
scores with the RegulonDB. The prediction accuracy meas-
ures used by these authors were nucleotide level accuracy,
binding site level accuracy, and sequence and motif level
accuracy. This study showed that the performance of the
algorithms tested is quite low, with around 15 to 25%
accuracy at the nucleotide level and 25 to 35% at the bind-
ing site level for sequences of 400 nucleotides long. How-
ever, the algorithms were capable of predicting at least one
binding site correctly more than 90% of the time. Among
the factors that affect the prediction accuracy, the
sequence length was found to be the most critical; the per-
formance of all algorithms degrades significantly as the
sequence length increases. In this study, the authors also
included an ensemble algorithm for comparison. The
ensemble algorithm achieved a better performance than
the popular MEME algorithm by 52%.

Conclusion
Since transcription factors bind to DNA motifs and mod-
ulate gene expression, identification of motifs in the pro-
moter region of genes will help understand some aspects
of regulation of gene expression. Therefore, biologists and
computer scientists have been very interested in identify-
ing computational tools for motif finding. With the
advent of availability of large scale genome sequencing
and high-throughput gene expression analysis techniques,
a large number of motif finding tools have been designed
and implemented over the past decade. Our survey of the
developments in the area of DNA motif finding algo-
rithms show that diverse approaches such as combinato-
rial enumeration, probabilistic modeling, mathematical
programming, neural networks and genetic algorithms
have been employed to develop motif finding tools. Ear-
lier algorithms relied on coexpressed genes and searched
for overrepresented motifs. Recent algorithms take advan-
tage of motif's overrepresentation and conservation
among orthologous sequences. From this large number of
available tools for motif finding, users would like to have
guidance in choosing the generally best tool. However,
assessment of performance of tools has still been a diffi-
cult task. This is mainly because we do not have a clear
understanding of the biology of regulatory mechanisms,
therefore, we lack an absolute standard against which to
measure correctness of tools. Most of the algorithms per-
form better in lower organisms including yeast as com-
pared to higher organism. Recent algorithms that
integrate the motif overrepresentation and cross-species
conservation have proven to perform better in higher
organism including human [7,14]. We agree with Tompa
et al. [57] that biologists should use a few complementary
tools in combination rather than relying on a single one
and pursue the top few predicted motifs of each rather

than the single most significant motif, which also reflects
the success of Hu et al. [58] developed ensemble algo-
rithm.
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