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Abstract
Background: A basic question of protein structural studies is to which extent mutations affect
the stability. This question may be addressed starting from sequence and/or from structure. In
proteomics and genomics studies prediction of protein stability free energy change (ΔΔG) upon
single point mutation may also help the annotation process. The experimental ΔΔG values are
affected by uncertainty as measured by standard deviations. Most of the ΔΔG values are nearly zero
(about 32% of the ΔΔG data set ranges from −0.5 to 0.5 kcal/mole) and both the value and sign of
ΔΔG may be either positive or negative for the same mutation blurring the relationship among
mutations and expected ΔΔG value. In order to overcome this problem we describe a new
predictor that discriminates between 3 mutation classes: destabilizing mutations (ΔΔG<−1.0 kcal/
mol), stabilizing mutations (ΔΔG>1.0 kcal/mole) and neutral mutations (−1.0≤ΔΔG≤1.0 kcal/mole).

Results: In this paper a support vector machine starting from the protein sequence or structure
discriminates between stabilizing, destabilizing and neutral mutations. We rank all the possible
substitutions according to a three state classification system and show that the overall accuracy of
our predictor is as high as 56% when performed starting from sequence information and 61% when
the protein structure is available, with a mean value correlation coefficient of 0.27 and 0.35,
respectively. These values are about 20 points per cent higher than those of a random predictor.

Conclusions: Our method improves the quality of the prediction of the free energy change due
to single point protein mutations by adopting a hypothesis of thermodynamic reversibility of the
existing experimental data. By this we both recast the thermodynamic symmetry of the problem
and balance the distribution of the available experimental measurements of free energy changes.
This eliminates possible overestimations of the previously described methods trained on an
unbalanced data set comprising a number of destabilizing mutations higher than stabilizing ones.
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Background
The measure of the protein stability change upon single
point mutations is a thermodynamic quantity whose
accurate prediction is a key problem of Structural Bioin-
formatics. In the last years a significant number of differ-
ent methods are been developed to predict the stability
free energy changes (ΔΔG) in protein when one residue is
mutated. Some methods developed different energy func-
tions, suited to compute the stability free energy [1-11],
while other machine learning approaches [12-15]. The
introduction of machine learning approaches follows the
increasing number of experimental thermodynamic data
and their availability in the ProTherm database [16].
However, these automatic methods suffer from the fact
that experimental data are affected by errors. When the
value of the free energy change is close to 0 and the asso-
ciated error is considered, for one single measure the sign
of ΔΔG can change from decreasing to increasing and vice
versa. Another problem is that the training data are intrin-
sically non symmetric and unbalanced, with destabilizing
mutations outnumbering stabilizing ones (see Figure 1).
This can bias training and testing, effecting the final statis-
tical performance of the predictors at hand.

In this paper we describe a possible solution to the above-
mentioned problems and implement a new predictor able
to discriminate between 3 classes (destabilizing, neutral
and stabilizing mutations). The new implementation pre-
dicts the free energy changes starting for the protein struc-
ture or from the protein sequence with an improved

scoring efficiency with respect to our previous implemen-
tations that routinely discriminate only two putative
classes (destabilizing and stabilizing mutations). Our
present method provides therefore a better discrimination
of single mutated residues that may have negligible effects
on protein stability.

Results and Discussion
Sequence-based Predictor
Previously we showed that it is possible to predict the sign
of the ΔΔG using sequence and/or structure information
[12-14]. Here, differently than before, we implement a
SVM-based method that discriminates between stabiliz-
ing, destabilizing and neutral single point mutations. To
optimize our method we consider different protein
sequence contexts, and when starting from the sequence
we analyse the effect of different lengths of the input win-
dow on the scoring efficiency (Table 1).

It appears that the best scoring of our method is obtained
when a window of 31 residues is taken into account,
reaching an overall accuracy (Q3) of 0.56 and a mean cor-
relation coefficient (<C>) of 0.27. The accuracy of our pre-
dictor is tested with respect to a baseline predictor that
does not consider a sequence context (SVM-BASE). The
sequence context improves the overall accuracy of 5% and
the mean correlation of 4%. In Figure 2 we plot the overall
accuracy and the mean correlation coefficient as a func-
tion of the reliability index (RI).

Noticing that the Q3 and <C> values increase at increasing
values of the reliability index, we argue that the RI value
may help in selecting which mutations are more suited to
increase, decrease or leave unaltered the protein stability.

Structure-based Predictor
The prediction of the sign and value of protein stability
free energy change ΔΔG is more accurate when structural
information is considered [12-14]. We implement this
finding by considering spheres centred on the C-alpha of
the mutated residues with different increasing radius val-
ues (see Table 2).

In agreement with our previous work that considers an all
heavy atom representation of the mutated residue, the
best method for the three class discrimination is obtained
when a radius of 9 Å is considered. The structure-based
method reaches an overall accuracy of 0.61 (Q3) and a
mean correlation coefficient (<C>) of 0.35. In order to
provide a good indicator for selecting more reliable pre-
dictions, again Q3 and <C> values can be adopted given
their increase as a function of the reliability index (RI)
(Figure 3).

Free Energy distribution of the databaseFigure 1
Free Energy distribution of the database. Distribution 
of ΔΔG (kcal/mole) values on the 1623 mutations as 
extracted from the ProTherm database. The grey histograms 
(left side) indicates the destabilizing mutations in the data-
base. The dotted bars (right side) are the occurrences of sta-
bilizing mutations. The black histograms are considered the 
neutral mutation and their absolute ΔΔG value is lower than 
1.0 kcal/mole.
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Analysis of the prediction
The sequence-based and the structure-based methods here
proposed show a similar behavior in the predictions of
the three different classes of single point mutation. For the
destabilizing (ΔΔG<−1.0 kcal/mole) and stabilizing
(ΔΔG>1.0 kcal/mole) mutations obtained values of corre-
lation coefficients are higher than those of neutral muta-
tions (see Table 1 and 2).

When the sequence and structural environments are con-
sidered, an improvement of the prediction of neutral
mutations is detected. This is evident from the two differ-
ent ROC curves of the stabilizing/destabilizing mutations
(Figure 44A) compared to those of neutral mutations (Fig-
ure 4B). In the case of neutral mutations the increment of

the ROC curve area is higher than that obtained when the
baseline predictor is considered (Figure 4A).

Similar plots of the ROC curves are also reported for the
structured-based method (see Figure 5). In this case
higher values of ROC curve areas are generally obtained
for all the three mutation classes and as before with
sequence-based methods, the improving of the area for
neutral mutations is greater that those obtained for stabi-
lizing and destabilizing mutations (Figure 5).

When mutations with relevant effects on the protein sta-
bility (|ΔΔG|>1.0 kcal/mole) are considered, the predic-
tion of the destabilizing and stabilizing mutations is well
balanced and reaches accuracy values of 78% and 84%
with correlation coefficient of 0.56 and 0.69 for sequence-
based and structure-based predictions, respectively.

Interestingly, the accuracy of our predictors can be evalu-
ated as a function of the chemico-physical properties of
the wild-type and of the mutated residues. The Q values
obtained as a function of the chemical-physical type of
wild type and mutated residue (from charged, polar and
apolar to charged, polar and apolar residues, respectively)
are shown for the sequence-based and structure-based
methods, together with the abundance of the mutation
type in the symmetric data base. Data are shown in Figures
6, 7 and 8 and reported with respect to destabilizing, sta-
bilizing and neutral mutations, respectively. In the stabi-
lizing and destabilizing groups of mutations the most
difficult to predict are those relative to the charged/
charged and polar/charged residues. This is so irrespec-
tively of the abundance in the symmetric data base (com-
pare Figure 6, 7 and 8).

The general higher accuracy of the structure-based method
with respect to the sequence-based ones is evident for
each pair of mutations, and in agreement with what pre-
viously found [13]: it is more difficult to predict the pro-
tein stability change when mutations of charged/charged
or polar/charged residues are considered (as indicated by
lower mean correlation values, data not shown).

Table 1: Cross-validation performance of the sequence-based SVM method as a function of different windows lengths centred on the 
mutated residue

Method Windows <Q> <C> Q[-] P[-] C[-] Q[N] P[N] C[N] Q[+] P[+] C[+]

SVM-BASE 0 0.51 0.23 0.54 0.44 0.29 0.48 0.62 0.17 0.54 0.44 0.29
SVM-WIN25 25 0.54 0.25 0.48 0.47 0.30 0.59 0.60 0.19 0.48 0.47 0.30
SVM-WIN31 31 0.56 0.27 0.42 0.49 0.30 0.70 0.61 0.24 0.42 0.49 0.29
SVM-WIN37 37 0.54 0.25 0.46 0.47 0.29 0.62 0.61 0.21 0.46 0.47 0.29

+, − and N: the indexes are evaluated for increasing , decreasing or neutral protein free energy stability change, respectively according to the 
classification described in section 2; for the definition of the different indexes see the System and Methods in [12-14].

Performances of the sequence-based predictorFigure 2
Performances of the sequence-based predictor. Over-
all accuracy (Q3) and correlation (C) of SVM-WIN31 as a 
function of the reliability index (RI) of the prediction. DB is 
the fraction of the data set DBSEQ with RI values higher or 
equal to a given threshold.
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Comparison between sequence-based and structure-based 
methods
In order to better assess the quality of our predictors in
relation with the provided output, we compare the predic-
tion of sequence-based method with those obtained with
the structure-based method. The comparison was per-
formed selecting only the mutations associated to the pro-
teins with known structure and dividing the DB3D dataset
in three different range of relative accessible solvent area.
In Figure 9 we report the overall accuracy (Q3) and the
mean correlation coefficient <C> for highly buried residue
(Relative Solvent Access (RSA) ≤10%), for residues with
10%<RSA≤50% and exposed residue (RSA>50%).

We find that the larger differences between the sequence-
based method SVM-WIN31 and the structure-based
method SVM-3D9 occur in the prediction of highly

exposed residues, suggesting that when this is the case the
structure-based code is better suited than that sequence-
based to grasp the relevant features of the environment.

Test and comparison with previous methods
We compare the new three-class discriminating imple-
mentation with our old two-class discriminating ones
[13], by using a blind set: NewDB (see The protein data
base section.). In Table 3 the results of our two methods
are compared with results obtained classifying the I-
Mutant ΔΔG value output on the three different discrimi-
nated classes (as described in Material and Method). Even
though the training data are the same, it is evident that the
new SVM-based methods (SVM-WIN31 and SVM-3D9)
achieve on average higher scores then the two algorithms
of the previous I-Mutant predictor. More in details when
sequence-based predictions are considered, the new
method gains 3% in accuracy and 11% in correlation val-
ues; structure based predictions gain 4% in accuracy and
11% in correlation.

Conclusions
Our new development provides a more detailed predic-
tion of the effects on the thermodynamics changes due to
single point protein mutations considering that:

1) the thermodynamic reversibility adopted here gener-
ates a balanced data set that can help in over passing the
problem of data-disproportion in favour of the large
number of mutations associated to stability decrease
found in the experimental databases. Moreover the ther-
modynamic reversibility assumption makes the predictive
methods intrinsically symmetric, similarly to the energy-
based methods.

2) the introduction of a third class of neutral mutations
grouping all the mutations that have a ΔΔG value close to
0 (−1.0 ≤ ΔΔG ≤ 1.0 kcal/mole) partially prevents blurring
in learning wrong associations due to the appreciable
associated experimental errors. We suggest that our new
approach can be successfully applied when thermody-
namic data of protein stability need to be analyzed in
order to find more stabilizing/destabilizing mutations as
compared to those that do not appreciably change the
protein stability.

Table 2: Cross-validation performance of the structure-based SVM method as a function of different protein environments centred on 
the C-α of the mutated residue

Method Radius(A) <Q> <C> Q[-] P[-] C[-] Q[N] P[N] C[N] Q[+] P[+] C[+]

SVM-BASE 0 0.49 0.21 0.54 0.44 0.29 0.44 0.58 0.13 0.54 0.44 0.29
SVM-3D6 6 0.59 0.34 0.52 0.52 0.36 0.66 0.67 0.33 0.52 0.52 0.36
SVM-3D9 9 0.61 0.35 0.50 0.57 0.39 0.72 0.64 0.32 0.50 0.57 0.39
SVM-3D12 12 0.59 0.33 0.48 0.53 0.35 0.70 0.64 0.31 0.48 0.53 0.36

For notation see Table 1.

Performance of the structure-based predictorFigure 3
Performance of the structure-based predictor. Over-
all accuracy (Q3) and correlation (C) of SVM-3D9 as a func-
tion of the reliability index (RI) of the prediction. DB is the 
fraction of the data set DB3D with RI values higher or equal 
to a given threshold.
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Methods
The protein databases
The databases used in this work are derived from the
release (September 2005) of the Thermodynamic Data-
base for Proteins and Mutants ProTherm [16]. We select
our initial set imposing the following constrains:

a) the ΔΔG value was extrapolated from experimental data
and reported in the data base;

b) the data are relative to single mutations;

c) the data are obtained from reversible experiments

After this procedure we obtain a larger data set comprising
1623 different single point mutations and related experi-
mental data for 58 different proteins. In Figure 1 we report
the distribution of the ΔΔG values. From the latter by
selecting only 55 proteins known with atomic resolution
we have a subset of 1576 mutations. Adopting a criterion
of thermodynamic reversibility for each mutation, we
double all the thermodynamic data. Finally, we end up
with 3246 mutations for the set containing protein
sequences (DBSEQ, see Additional file 1) and 3152 muta-
tions for the subset of proteins known with atomic resolu-

tion (DB3D, see Additional file 2). According to
experimental ΔΔG value each mutation is grouped into
one of the following three classes:

i) destabilizing mutation, when ΔΔG<−1.0 kcal/mole;

ii) stabilizing mutation when ΔΔG>1.0 kcal/mole;

iii) neutral mutations when −1.0 ≤ ΔΔG ≤ 1.0 kcal/mole.

The choice of |1.0| kcal/mole as a threshold value for ΔΔG
classification provides a more balanced datasets and is
also a limiting value of standard errors reported in exper-
imental works.

In order to test the performance of our method another
database was generated (using the selection rules a and b
listed above) from the current version of ProTherm (April
07). Moreover, to avoid the introduction of mutations
that share similarity with those of the training set, we
eliminated from the new databases the mutations that
occur in sequence positions just considered in the training
sets. Finally we obtain a dataset of 34 proteins with 491
mutations. Considering the hypothesis of thermody-
namic reversibility and the previous classification rules we

ROC curves of the sequence-based predictorFigure 4
ROC curves for the sequence-based predictor. ROC curves for the sequence-based predictor. The cross-validation 
True Positive Rate (TPR) versus the False Positive Rate (FPR) are plotted the best method (SVM-WIN31) and for the baseline 
method (SVM-BASE). In part (A) the ROC curves of the two methods are relative to the prediction of increasing and decreas-
ing free energy mutations (|ΔΔG|>1.0 kcal/mole), while in part (B) they are calculated for neutral mutations (|ΔΔG|≤1.0 kcal/
mole).
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have a dataset of 982 mutations (NewDB, see Additional
file 3) in proteins with known 3D structure.

The thermodynamic assumption
A possible way to improve a classification task is to try to
insert more information in the input code and simultane-
ously try to refine the quality of the discriminated fea-

Analysis of the predictions on the destabilizing mutationsFigure 6
Analysis of the predictions on the destabilizing muta-
tions. Accuracy [Q] of SVM-3D9 (gray histograms), of SVM-
WIN31 (dotted histograms) and database frequencies [DB] 
(white histograms) as a function of the mutated versus wild-
type residues for the destabilizing mutations. The data are 
computed on the experimental database after symmetrizing 
according the thermodynamic assumption (see Methods).

ROC curves of the structure-based predictorFigure 5
ROC curves for the structure-based predictor. The cross-validation True Positive Rate (TPR) versus the False Positive 
Rate (FPR) are plotted the best method (SVM-3DR9) and for the baseline method (SVM-BASE). In part (A) the ROC curves of 
the two methods are relative to the prediction of increasing and decreasing free energy mutations (|ΔΔG|>1.0 kcal/mole), 
while in part (B) they are calculated for neutral mutations (|ΔΔG|≤1.0 kcal/mole).

Analysis of the predictions on the stabilizing mutationsFigure 7
Analysis of the predictions on the stabilizing muta-
tions. Accuracy [Q] of SVM-3D9 (gray histograms), of SVM-
WIN31 (dotted histograms) and database frequencies [DB] 
(white histograms) as a function of the mutated versus wild-
type residues for the stabilizing mutations. The data are com-
puted on the experimental database after symmetrizing 
according the thermodynamic assumption (see Methods).
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tures. In order to meet this requirement here we
implement a new predictor able to discriminate between
3 possible classes, namely: i) destabilizing mutations,
which are characterized by a ΔΔG<−1.0 kcal/mole; ii) sta-
bilizing mutations when ΔΔG>1.0 kcal/mole and iii) neu-
tral mutations when the −1.0 ≤ΔΔG≤ 1.0 kcal/mole. The
problem of the asymmetric abundance of the three classes
is addressed assuming that from the point of view of basic
thermodynamics a protein and its mutated form should
be endowed with the same free energy change, irrespec-
tively of the reference protein (native or mutated). If this
is so, we can assume that the module of free energy change
is the same in going from one molecule to the other and
that what changes is only the ΔΔG sign. By this, given a
free energy value derived experimentally from a protein
mutation, we can take advantage of the previous state-
ment and use the reverse mutation (namely the mutation
that transforms back the mutant into the original protein)
by considering the value of the experimental measure
with the opposite sign (-ΔΔG). The number of the availa-
ble data in the training set doubles and as a nice side-effect
we also balance the training dataset overcoming the prob-
lem of the skewness of the experimental data.

Obviously one may pose the question if this observation
that is formally correct from the thermodynamic point of
view is also applicable to the protein structure and
sequence. Providing that we adopt the approximation that
local environment plays a dominant role (spatial or
sequence-neighbour only) this approach is formally cor-
rect. If we start from the protein sequence the formal state-
ment is correct. When the structural environment is taken
into account, the local approximation may break down,
and spatial rearrangement may happen. In this case using
only one structure to compute the local environment for
both the mutation and its reverse may be inaccurate.
However, all predictive approaches developed so far,
including those based on energy functions, assume that
upon mutation the structural environment remains unaf-
fected.

The predictors
The methods here developed were trained to predict
whether a given single point protein mutation is classified

Table 3: Comparison of the performances of the best sequence-based SVM method (SVM-WIN31) and structure-based SVM method 
(SVM-3D9) with the I-Mutant based predictors.

Method <Q> <C> Q[-] P[-] C[-] Q[N] P[N] C[N] Q[+] P[+] C[+]

I-Mutant Seq 0.52 0.13 0.59 0.46 0.34 0.73 0.55 0.11 0.00 0.00 −0.04
SVM-WIN31 0.55 0.24 0.45 0.51 0.33 0.64 0.58 0.16 0.45 0.51 0.32
I-Mutant 3D 0.54 0.22 0.70 0.43 0.35 0.72 0.61 0.25 0.00 0.33 0.01
SVM-3D9 0.58 0.33 0.55 0.51 0.37 0.62 0.67 0.29 0.55 0.51 0.37

For notation see Table 1. I-Mutant SEQ, I-Mutant 3D, SVM-WIN31 and SVM-3D9 are tested on 982 mutations of NewDB database.

Comparison between sequence and structure base predic-torsFigure 9
Comparison between sequence and structure base 
predictors. Overall accuracy (Q3) and mean correlation 
coefficient (<C>) of the structure-based (3D) and of the 
sequence-based (SEQ) methods relative to highly buried res-
idues with RSA≤10 (30% of DB3D), on mutations with 
10<RSA≤50 (39% of DB3D) and exposed residue RSA>50 
(31% of DB3D).

Analysis of the predictions on the neutral mutationsFigure 8
Analysis of the predictions on the neutral mutations. 
Accuracy [Q] of SVM-3D9 (gray histograms), of SVM-WIN31 
(dotted histograms) and database frequencies [DB] (white 
histograms) as a function of the mutated versus wild-type 
residues for the neutral mutations. The data are computed 
on the experimental database after symmetrizing according 
the thermodynamic assumption (see Methods).
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in one of three classes: stabilizing, destabilizing and neu-
tral. This task is addressed starting from the protein terti-
ary structure or from the protein sequence. For each task,
the method is based on support vector machines (SVM) as
implemented in libsvm release 2.7 (http://
www.csie.ntu.edu.tw/~cjlin/libsvm/). We use a Radial
Basis Functions kernel (RBF kernel = exp[-G || xi − xj ||2]).
For the classification task we basically adopt the same
input code by identifying three labels: one represents the
increased protein stability (ΔΔG >1.0 kcal/mole, label is
+1), the second is associated with the destabilizing muta-
tion (ΔΔG <−1.0 kcal/mole, label is −1) and the last asso-
ciated with neutral mutations (−1.0 ≤ ΔΔG ≤ 1.0 kcal/
mole, label is 0). The input vector consists of 42 values.
The first 2 input values account respectively for the tem-
perature and the pH at which the stability of the mutated
protein was experimentally determined. The next 20 val-
ues (for 20 residue types) explicitly define the mutation
(we set to −1 the element corresponding to the deleted res-
idue and to 1 the new residue (all the remaining elements
are kept equal to 0). Finally, the last 20 input values
encode the residue environment: namely a spatial envi-
ronment, when the protein structure is available, or the
nearest sequence neighbors, when only the protein
sequence is available. When the protein structure is
known (and the prediction is performed on the protein
structure) each of the 20 values is the number of the
encoded residue type, to be found inside a sphere of a 0.9
nm radius, centred on the coordinates of the C-alpha of
the residue that undergoes mutation. Conversely, when
the prediction is performed starting from the protein
sequence, each of the 20 input values is again the number
of the encoded residue type found inside a symmetrical
window centred at the mutated residue, spanning the
sequence towards the left (N-terminus) and the right (C-
terminus), for a total length of 31 residues.

When prediction is structure-based, the Relative Solvent
Accessible Area (RSA) value is calculated with the DSSP
program [16], dividing the accessible surface area value of
the mutated residue by the free residue surface. In this case
a further input value (for a total sum of 43 numbers)
includes the relative solvent accessible area of the mutated
residue only when the protein structure is considered.

The input vectors associated to the reverse mutations are
obtained by inverting the 20 values relative to the muta-
tion elements and the others elements will be unchanged.
The predictors here developed are compared with a SVM
baseline algorithm that considers as input only the 20-ele-
ment vector describing the residue mutation (SVM-BASE).

In order to compare the performance of our new three-
state predictor with the previously developed method
[13], we map the I-Mutant ΔΔG predicted values into the

three defined classes, namely destabilizing mutations
(ΔΔG<−1.0 kcal/mole), stabilizing mutations (ΔΔG>1.0
kcal/mole) and neutral mutations (−1.0 ≤ ΔΔG ≤ 1.0 kcal/
mole).

Scoring the performance
The reported results on the different sets are evaluated
using a 20 folds cross-validation procedure. The proteins
considering in our datasets (DB3D and DBSEQ) are been
clustered according to their sequence similarity using the
blastclust program in the BLAST suite [17], by adopting the
default value of length coverage equal to 0.9 and the score
coverage threshold equal to 1.75. Furthermore, we keep
the mutations that concern proteins in the same cluster
and in the same position (when a residue is mutated in
two different amino acids) in the same set, to minimize
the possibility of an overestimation of the results. We also
tested larger and a smaller partition of the database, but
they do not significantly change the accuracy of our pre-
dictions. In order to balance the predictor we replicate
randomly the less abundant classes, (destabilizing, stabi-
lizing) to reach the same number of data with respect to
the more abundant one (neutral). The data in the 20 sets
used for cross validation are grouped in such a way that
the stabilizing and destabilizing mutations are equally
represented.

We also consider the new dataset (NewDB) and compare
the performance of our method with the results derived
form I-Mutant [13] predictions.

Several measures of accuracy are routinely used to evalu-
ate machine learning based approaches. In this work we
use the same measures of accuracy as previously reported
[12-14], namely the overall accuracy (Q3), the sensitivity
or coverage (Q), the specificity (P) and the correlation
(C). In addition we also report the area ROC curve plotted
calculating True Positive Rate TPR=TP/(TP+FN) and the
False Positive Rate FPR=TP/(TP+FN), in order to show the
distance from a random predictor (an area of 0.5 indicates
random predictions).
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