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Abstract

Background: Identification of bacteria may be based on sequencing and molecular analysis of a specific locus such
as 16S rRNA, or a set of loci such as in multilocus sequence typing. In the near future, healthcare institutions and
routine diagnostic microbiology laboratories may need to sequence the entire genome of microbial isolates.
Therefore we have developed Reads2Type, a web-based tool for taxonomy identification based on whole bacterial
genome sequence data.

Results: Raw sequencing data provided by the user are mapped against a set of marker probes that are derived from
currently available bacteria complete genomes. Using a dataset of 1003 whole genome sequenced bacteria from
various sequencing platforms, Reads2Type was able to identify the species with 99.5% accuracy and on the minutes
time scale.

Conclusions: In comparison with other tools, Reads2Type offers the advantage of not needing to transfer
sequencing files, as the entire computational analysis is done on the computer of whom utilizes the web application.
This also prevents data privacy issues to arise. The Reads2Type tool is available at http://www.cbs.dtu.dk/~dhany/
reads2type.html.
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Background
Identification of bacteria is important for making accu-
rate clinical diagnoses and for narrowing down the list
of potential antibiotics that may be used against the
pathogens, and therefore for quickly initiating a medi-
cal therapy for treating the patient. In the past, tradi-
tional phenotypic and biochemical methods were widely
used for bacterial identification [1, 2], as bacterial whole
genome sequencing (WGS) was too expensive and diffi-
cult to implement. WGS has recently started showing its
potential as a cost-effective and rapid solution for medi-
cal diagnostics and outbreak prevention. For example, via
WGS one can identify species and strain [3, 4] and antibi-
otic resistance gene [5], as well as make predictions of
pathogenicity [6] and identification of novel genes.
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The latest development in sequencing technology has
contributed to lowering sequencing error, producing
longer sequence reads, increasing throughput on modern
sequencers, and decreasing sequencing cost [7]. Therefore
it is expected that in the nearest future, clinical and indus-
trial microbiological laboratories will have access to their
own sequencers. The issue to be faced will then be how to
handle and analyze the large amounts of sequencing data
to produce useful biological and epidemiological informa-
tion, for example regarding the identity of pathogens.
The major challenge for taxonomy identification based

on sequencing data is the selection of marker genes. The
16S rRNA gene is commonly used for deriving phylogeny
and taxonomy of microbes [2, 8], and for bacterial iden-
tification in metagenomics samples [9]. This is due to the
presence of the 16S rRNA gene in all bacteria, as well as its
conserved function [10]. However, the 16S rRNA gene has
low discriminatory power at species level for several taxo-
nomic groups [11, 12], for example the Enterobacteriaceae
family [11, 13–17]. This lack of accuracy in identifying
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Enterobacteriaceae species using 16S is due to the high
similarity of 16S sequences within the family [18]. To
increase the bacterial identification accuracy, one could
instead use a combination of several housekeeping genes
[19]. However, the larger the marker sequence database
is, the slower the bacterial identification process becomes.
Therefore, a smaller bacterial marker sequence database
needs to be constructed, which contains sufficient data for
bacterial identification.
Aligning millions of sequencing reads against tenth of

thousands of marker sequences is the second challenge
in identifying species based on WGS data. String match-
ing is computationally demanding and the most time-
consuming part of the in-silico taxonomy identification
process. Thus, a strategy to efficiently match two sets of
sequences is needed.
A web-based taxonomy identification tool must be able

to cope with both an unstable Internet connection (on
the client side) and network bottlenecks (on the server
side), as file upload failure may halt the analysis before it
even starts and too many clients uploading files may cause
network issues, respectively. Therefore, to avoid these
drawbacks, the development of web-based taxonomy
identification should focus on minimizing the amount of
data transfer through the Internet.
In this paper we describe the web-application

Reads2Type, by which one can rapidly identify the tax-
onomy of bacterial isolates based on raw WGS data. The
user does not need to upload the sequencing data to the
server. As far as we are aware, this is the first bacterial
identification web server that assigns the computational
analysis to the client side, thus avoiding network issues
and minimizing data transfer. It was previously shown
[20] that Reads2Type performs approximately 2.5 times
faster than other tools, given the same taxonomy iden-
tification accuracy. This result is based on a benchmark
study that compared the performance of the console
application of Reads2Type with other tools for taxonomy
identification of raw sequencing files. The old version
of web-based Reads2Type used Java. However, Java web
has limited its features since early 2014, and therefore we
rebuilt a web-based Reads2Type on a Node.js environ-
ment, which is compiled with Browserify. This enables
the version of Reads2Type that we present here to be
faster and even more reliable for microbial identification
than the old web-based Reads2Type version [20].

Methods
Evaluation dataset and computational resources
The evaluation set for selecting Enterobacteriaceae
marker genes for the probe database consisted of 30,680
Enterobacteriaceae short read sequencing files from
NCBI SRA (Short Read Archive) [21] from 24 differ-
ent species. To examine the performance of Reads2Type,

we evaluated 1003 raw sequencing data of Campylobac-
ter jejuni, Enterococcus faecalis, Escherichia fergusonii,
Escherichia coli, Klebsiella pneumoniae, Staphylococcus
aureus, and Salmonella enterica isolates, sequenced at
the Technical University of Denmark. For real-life out-
break data, Reads2Type was tested on 6 publicly avail-
able raw sequencing data files from the German 2011
E. coli outbreak. In addition, Reads2Type was tested on
ERR025475_2, which is one of theK. pneumoniae raw read
files provided by Sanger (http://www.ebi.ac.uk/ena/data/
view/ERR025475). The latter test uses different compu-
tational resource (in Amman, Jordan) compared with the
former: All computational experiments were conducted
on a 2.6 GHz Intel Core i5 CPU, 8 GB memory, Mac OS
X Yosemite operating system, except the implementation
test on Amman, which was conducted on an Intel Core i7
CPU (@2.20 GHz), 6 GBmemory,Windows 7 Home Basic
SP-1 64-bit operating system.

Probe database
A probe database, consisting of fragments of selected
marker genes, was used as the reference database for
Reads2Type to identify the taxonomy of prokaryotes
based on WGS reads. The length of the probe sequences
was set to 50 basepairs (bp), as nowadays most sequenc-
ing platforms produce reads longer than 50 bp. Moreover,
reads with length less than 50 bp have an insufficient pro-
portion of unique sequences that can be mapped to the
genome [22].
16S rRNA was used as the main marker gene for the

probe database. To increase Reads2Type prediction accu-
racy, the 16S rRNA sequences for the probe database
were predicted from the collection of prokaryotic com-
plete genomes using RNAmmer [23] instead of retrieving
16S rRNA sequences from publicly available databases
of targeted sequencing and partial coding sequences.
RNAmmer is highly accurate in predicting 16S sequences
and may even predict 16S sequences that are not yet
submitted to the public RNA databases. The complete
genomes of bacteria and archaea were obtained from the
NCBI Genome Database in August 26, 2012. This dataset
of 2045 different strains consists of 969 different bacterial
species, 150 bacterial unspecified species, 105 different
archaeal species, and 13 archaeal unspecified species such
as genomospecies, endosymbionts, uncultured microbes,
and “sp.” organisms (i.e., organisms that have only been
typed to the genus but not the species level).
Although 16S rRNA was the main marker gene, DNA

gyrase subunit B (gyrB) was a better marker gene for
Enterobacteriaceae, as shown in the Results section.
Hence, the probe sequences were generated by, first,
gathering 11,481 16S rRNA sequences, which were pre-
dicted by RNAmmer, and 1620 Enterobacteriaceae gyrB
sequences, which were downloaded from the NCBI
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nucleotide database. Then, all possible 50 bp fragments
were generated from these gathered sequences. The out-
come formed the probe database.

Size reduction of probe database
To improve the performance of Reads2Type, we reduced
the size of the probe database via three consecutive steps,
which consisted in removing 1) all the 16S rRNA probes
that were unique to Enterobacteriaceae, as these have
low species identification accuracy, 2) the duplicates that
resulted from chopping conserved regions of different
strains, and 3) the consecutive probes. To remove the
duplicates we followed this procedure: Given a marker
gene for each of the 50-mer fragments extracted from
this gene, we derived a list of organisms sharing those
fragments, and called these fragments probe sequences.
Of the 1,268,055 probe sequences that were produced,
1,040,203 were uniquely found in one organism; these
are defined as unique probes, and the rest of them were
shared between organisms; these are called shared probes.
To reduce consecutive probes we retained 50-mers every
25 bp on the marker genes, as a window size of 25 bp
is considered dense enough to identify the species of the
given isolate.
Via the above mentioned three steps we managed to

reduce the size of the probe database down to 61,462,
which is ∼20 times smaller than the original size; 40,085
of them are unique probes, the rest are shared probes.
The file size of the probe database is 4.6 MB. This
database is loaded in the client computer’s memory once
the Reads2Type website is accessed by the client.

Reads2Type
Figure 1 illustrates how Reads2Type works. The input
of Reads2Type is a raw whole-genome sequencing-file of
bacterial isolates. When a read matches a probe sequence,
the list of matching organisms is displayed in the user’s
browser.
To improve Reads2Type performance, each time a read

matches a shared probe, the probe sequences that belong
to organisms that are subset of the matching probe are
kept, and other sequences are removed, thus significantly
accelerating the progress of finding a read that matches
a unique probe. For instance, if a read matches a probe
sequence that is shared by organisms A, B, and C, then
the probe database is reduced in such a way that it only
contains the unique probes of A, B, and C, as well as
the shared probes of A and B, A and C, and B and
C. We define the above as the ‘narrow down’ approach.
Also, DNA string matching is done by FM-indexing
[24]. This consists in a combination of the Burrows-
Wheelers Transform indexing and the suffix array index-
ing that can be used to efficiently find exact matches to a
pattern.

Reads2Type is built on a Node.js environment and com-
piled with Browserify. Node.js is an open source and mul-
tiplatform runtime environment for building server-side
and networking applications. Browserify is an open source
JavaScript tool that we used to transform Node.js scripts
into a client-side web-based compatible script. Once the
user chooses the sequencing file, Reads2Type starts iden-
tifying the organism’s taxonomy by comparing each read
to the sequences in the probe database, and stops running
when there is an exact match to a unique probe.

Results
The Enterobacteriaceae marker genes choice
The prediction accuracy for the three different marker
genes 16S rRNA, gyrB, and dnaJ, which were chosen
to identify Enterobacteriaceae species, was compared
(Fig. 2). The Enterobacteriaceae species prediction accu-
racy is higher for the case of gyrB genes than 16S and
dnaJ genes; thus gyrBwas selected as the marker genes for
unique probes. The unique probes of Enterobacteriaceae
that are derived from 16S rRNA were subsequently
removed, but the shared probes derived from 16S rRNA
were kept; this is because using 16S as reference gives less
accurate prediction of Enterobactericeae at the species
level.

Reads2Type performance
In the case of in-house raw reads, the Reads2Type bac-
terial taxonomic identification accuracy is high (Table 1).
Only five out of 1003 sequencing files were mistakenly
identified. We subsequently discovered that the mispre-
diction of one S. enterica raw read file was due to con-
tamination. The other four files, i.e. three E. coli and one
S. aureus raw read files, were misidentified due to 100 %
identity of the unique probes that prompt these mispre-
dictions to the draft genomes of the correct species. One
should keep in mind that Reads2Type only uses fragments
of marker genes derived from complete genomes as the
reference database, and therefore this type of misidentifi-
cation will no longer occur when the complete genome of
the true species is available. The total execution time to
predict the species varied depending on whether there is
a read that matches a unique probe earlier in the sequenc-
ing file and whether there are several matches between
the reads to shared probes before finally matching the
unique probe. The average time needed to get the first
match is 40 s (Fig. 3), which is what is required to read
about 661 reads (Fig. 4). The reading of the sequencing
data progresses faster every time there is a match to a
shared probe. Reads2Type reads the sequencing data with
a speed of about 17 reads per second (Fig. 5). Most of the
Reads2Type runtime is spent on finding the first match
to the probe database. When Reads2Type finds a match
to a shared probe, reading speed increases dramatically.
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Fig. 1 The flowchart of Reads2Type. Each read is aligned with the sequences in the probe database. If a read perfectly matches a shared probe, the
probe database undergoes the ‘narrow down’ treatment. Else if it matches a unique probe, the reading terminates and the identified species is
presented

Fig. 2 The Enterobacteriaceae species prediction accuracy using 16S, gyrB, and dnaJ as the marker genes, tested on several SRA read data. For each
species, the percent accuracy is shown as three grey bars ranging from 0 to 100% (left vertical axis). The grey line represents the number of read data
tested for each Enterobacteriaceae species (right vertical axis). The results shown in the TOTAL x-axis tick refer to the accuracy of all tested SRA read
data; these data suggest that the gyrBmarker genes gives a better accuracy than the 16S rRNA and the dnaJmarker genes
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Table 1 Accuracy test on in-house raw reads

#True prediction #False prediction

Campylobacter jejuni 107 0

Staphylococcus aureus 210 1

Enterococcus faecalis 104 0

Escherichia fergusonii 4 0

Klebsiella pneumoniae 90 0

Salmonella enterica 256 1

Escherichia coli 232 3

TOTAL 1003 5

Three E. coli raw read files were misidentified as one Shigella dysenteriae and two
Shigella flexneri. One S. aureus raw read file was misidentified as Staphylococcus
epidermidis. One Salmonella enterica raw reads file was mispredicted as S. aureus,
which was subsequently discovered to be caused by contamination. Also, two
paired-end files were considered as two different files

Therefore, the final bacterial identification is typically
reached shortly after the first match (Fig. 3), although the
number of reads that needs to be read could reach the
order of hundred of thousand (Fig. 4).
Despite having a shorter genome compared with the

other six species that we analyzed, on average S. aureus
needs a longer identification runtime before the first
match is achieved. This is because 16S rRNA, which is
used to identify staphylococci, is not as good as hsp60
[25]. Therefore to improve the runtime and accuracy, it
is necessary to consider other markers genes than 16S,
for example hsp60, as we did and discussed in the pre-
vious subsection, “The Enterobacteriaceae marker genes
choice”. Also, the number of matches needed to identify E.

coli is the highest among all the seven organisms (Fig. 5).
The reading speed as a function of the size of the probe
database (Fig. 6) shows that, when the probe database is
pruned due to a match with shared probes, the number
of probe references is reduced, hence the speed of reading
increases.
The runtime and the number of reads (Fig. 7) needed to

predict the species of the 2011 German E. coli outbreak
sequencing data are presented. The result indicates that
the runtimes needed to obtain the first match and the last
match are consistent with the results shown in Fig. 3 and 4.
To investigate how much a low Internet connection

(54.0 Mbps) may affect the bacterial identification pro-
cess, Reads2Type was tested in Amman (Jordan), which
is located on a different continent than where the server
is, i.e., Denmark. It turned out that, although the down-
load speed was about 6 times lower than in Denmark,
the needed time for bacterial identification in Jordan
is similar to the one needed in Denmark (namely less
than 10 s), suggesting that the run time is indepen-
dent from the speed of the Internet on the client
side.
To compare the performance of Reads2Type with that

of other tools, we have used Kraken [26], which is a UNIX-
based standalone application for taxonomy identification
of metagenomic sequence data, and by which one should
be able to identify single isolateWGS data. Figure 8 shows
that the runtime of Reads2Type generally outperforms the
one of Kraken. Figure 9 shows that Kraken is slightly more
accurate than Reads2Type when applied on the 1003 raw
sequencing data of seven different species.

Reads2Type runtime (first hit) Reads2Type runtime (final hit)

Fig. 3 The run time needed to get the first match (left) and last match (right)
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Fig. 4 The number of reads required to get the first match (left) and last match (right)

Discussion
The results from our study show that by using the web-
based Reads2Type application it is possible to identify
species based on raw reads of WGS. Also, we show that
replacing Enterobacteriaceae’s unique probe sequences,
which are derived from 16S rRNA, with the ones that are
derived from gyrBincreases the accuracy of Reads2Type.

Reads2Type is a user friendly web-application that can
be accessed via different types of platforms, and which
provides species identification on the minutes time scale.
This relatively short time scale is due to the ‘narrow down’
treatment (see Section “Reads2Type”), the fast FM index
for string matching, the small probe database, and the
fact that the computational analysis is performed on the

Fig. 5 The reading speed before first match (left) and the number of matches required to get the final match (right)
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Fig. 6 The reading speed as a function of the size of the probe database

client computers, instead of on the server. In contrast with
standalone applications, Reads2Type does not require a
downloading and installation of software.
The web-based BLAST tool may be used in alter-

native to Reads2Type for species identification. Like

Reads2Type, BLAST [27] can identify the taxonomy of
single isolates based on WGS data. However, BLAST
requires conversion of raw sequencing data to FASTA
format and uploading of data files to the server. This pro-
cedure may be difficult for untrained users. Also, it is time

Fig. 7 The run time (left) and the number of reads aligned before getting a match, called read progress (right), which are needed to identify the E.
coli on the publicly available Germany 2011 E.coli outbreak dataset. The dark grey bars and the light grey bars represent the speed of Reads2Type
(left) and number of reads (right) needed to reach the first match and last match, respectively
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Fig. 8 The run time of Reads2Type (left), and Kraken (right) on the 1003 raw sequencing data

consuming for users that need immediate results or only
have a slow Internet connection to their disposal. The
accuracy of BLAST is higher than that of Reads2Type, as
BLAST uses the nucleotide database, while Reads2Type
uses subsets of 16S rRNA sequences and gyrB sequences
from complete genome and nucleotide database, respec-
tively. However, the web-based BLAST returns an error
message when the sequencing file is very large, and as a
consequence of this, BLAST may not be able to complete
the computation within an hour; while Reads2Type can
deal with files of whatever size, as users do not need to
upload data files and Reads2Type stops reading the file

when the species are identified. The web-based BLAST
returns an error, too, if at least hundreds megabytes of
high-scoring segment pairs are produced, thus requiring
that users readjust the BLAST parameters and re-run the
BLAST search.
Short read aligners such as BWA [28] and Bowtie2 [29]

may also be used for species identification of a bacte-
rial isolate, although both needs downloading executables.
However, both BWA and Bowtie2 require huge compu-
tational resources, and these may not be available to a
number of users. Although the web-based BLAST and the
short read aligners provide accurate results, Reads2Type

Fig. 9 Predictions for seven different species in the 1003 raw sequencing data using Reads2Type (left) and Kraken (right). For Kraken, the prediction
is considered correct if >50 % of the reads are identified as the true taxonomy. Based on this criteria, Kraken has 100% prediction accuracy. For
Reads2Type, the three pink cells correspond to five misidentifications, and the two dark red cells shows that E. coli and S. aureus has been
misidentified, as stated in Table 1
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may be practical when a quick identification of species
from raw sequencing files is needed.
To confirm the prediction power of Reads2Type, we

used another tool, Kraken. However, running Kraken
requires knowledge of UNIX commands and:

1. at least 75 GB of computer memory,
2. at least 160 GB of disk space,
3. a complex and computationally expensive pre-runs,

which consist in downloading the installer, running
the installation, setting the UNIX environment
variables, downloading and prebuilding the reference
database from NCBI complete and draft genomes
database, and

4. reading the whole sequencing file before delivering
results. Thus, Kraken execution time depends on the
size of the sequencing file.

In comparison, running Reads2Type needs only limited
computer skills and:

1. ∼6 MB of free memory to load the marker database
into the browser,

2. no disk space to run,
3. no pre-runs, and
4. no reading of entire sequencing files, as Reads2Type

analysis ends when a read matches a unique probe.

One should keep in mind that Reads2Type does not
provide prediction confidence as Kraken does. Also,
Reads2Type can only be used to identify species of single
isolate samples, whereas Kraken can be used for species
identification in metagenomic samples. Therefore, if sin-
gle isolate samples are investigated then one would expect
that Kraken predicts only one species with high confi-
dence. Furthermore, the prediction accuracy of Kraken is
generally higher than that of Read2Type because Kraken
uses both the complete and draft genome sequences as the
reference database, while Reads2Type only uses fragments
of selected marker gene derived from complete genome
sequences.

Conclusions
The clinical advantage of using web-based WGS tools is
that it provides not only a taxonomic identification, but
also information regarding antibiotic resistance, virulence
factors, novel genes, predictions regarding pathogenicity,
and spatiotemporal data concerning previous outbreaks
caused by the same or closely related pathogens. This is
particularly useful for healthcare personnel that quickly
needs to identify the upcoming threat, to help controlling
ongoing outbreaks, and to contribute to the development
of a global epidemiology map.
In the case when a contamination occurs during

the sequencing stage, Reads2Type may misidentify the

species. The current availability of complete reference
genomes limits the identification power of Reads2Type.
This is because the lower the number of strains available
as complete genomes is, the less accurate marker probes
can be extracted by Reads2Type, hence a lower accu-
racy in microbial identification follows. However the idea
behind Reads2Type is not to substitute the use of accu-
rate tools such as BLAST and BWA, but rather to give an
educated guess regarding the identity of bacteria. Further-
more, when using Reads2Type one does not need to be
concerned about data privacy issues, as data are not sent
across the Internet, and the data analysis is entirely done
on the client site.

Availability of supporting data
The dataset of 1003 whole genome sequenced bacte-
ria were all sequenced at the Technical University of
Denmark. The datasets that are already published refers
to S. aureus [30], E. faecalis, and E. fergusonii (from
project accession [ENA:PRJEB8647]. The remaining raw
reads, which refer to C. jejuni, K. pneumoniae, S. enterica
and E. coli, will be made available upon publication of
the papers describing the epidemiology of these strains.
Among these, the raw reads of Salmonella-spp-B25,
Salmonella-spp-02-03-002, Salmonella-spp-02-03-008,
Salmonella-spp-05-102, and Salmonella-spp-07-022
are public [31]. The raw sequencing data files from
the 2011 German E. coli outbreak were downloaded
from ftp://ftp.genomics.org.cn/pub/Ecoli_TY-2482/110
601_I238_FCB067HABXX_L3_ESCqslRAADIAAPEI-2_
1.fq.gz for the BGI Illumina read data and http://www.
hpa-bioinformatics.org.uk/lgp/genomes for the five HPA
Illumina read data.
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