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Abstract

Background: Genomic micro-satellites are the genomic regions that consist of short and repetitive DNA motifs.
Estimating the length distribution and state of a micro-satellite region is an important computational step in cancer
sequencing data pipelines, which is suggested to facilitate the downstream analysis and clinical decision supporting.
Although several state-of-the-art approaches have been proposed to identify micro-satellite instability (MSI) events,
they are limited in dealing with regions longer than one read length. Moreover, based on our best knowledge, all of
these approaches imply a hypothesis that the tumor purity of the sequenced samples is sufficiently high, which is
inconsistent with the reality, leading the inferred length distribution to dilute the data signal and introducing the false
positive errors.

Results: In this article, we proposed a computational approach, named ELMSI, which detected MSI events based on
the next generation sequencing technology. ELMSI can estimate the specific length distributions and states of
micro-satellite regions from a mixed tumor sample paired with a control one. It first estimated the purity of the tumor
sample based on the read counts of the filtered SNVs loci. Then, the algorithm identified the length distributions and
the states of short micro-satellites by adding the Maximum Likelihood Estimation (MLE) step to the existing algorithm.
After that, ELMSI continued to infer the length distributions of long micro-satellites by incorporating a simplified
Expectation Maximization (EM) algorithm with central limit theorem, and then used statistical tests to output the
states of these micro-satellites. Based on our experimental results, ELMSI was able to handle micro-satellites with
lengths ranging from shorter than one read length to 10kbps.

Conclusions: To verify the reliability of our algorithm, we first compared the ability of classifying the shorter
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micro-satellites from the mixed samples with the existing algorithm MSIsensor. Meanwhile, we varied the number of
micro-satellite regions, the read length and the sequencing coverage to separately test the performance of ELMSI on
estimating the longer ones from the mixed samples. ELMSI performed well on mixed samples, and thus ELMSI was of
great value for improving the recognition effect of micro-satellite regions and supporting clinical decision supporting.
The source codes have been uploaded and maintained at https://github.com/YixuanWang1120/ELMSI for academic
use only.

Keywords: Cancer genomics, Genomic micro-satellite, Length distribution estimation, Tumor purity, Computational
pipeline, Sequencing data analysis

Background
Micro-satellites are repetitive DNA sequences that consist
of specific oligonucleotide units [1, 2], exposing intrinsic
polymorphisms in terms of the length, which are often
described as length distributions [3]. A distinct event
known as micro-satellite instability (MSI) refers to a pat-
tern of hypermutation caused by defects in the mismatch
repair system [4], characterized by widespread length
polymorphisms of micro-satellites repeats, as well as by
elevated frequency of single-nucleotide variants (SNVs)
[3, 5]. MSI happens if the length distributions of the same
micro-satellite region differ significantly between differ-
ent tissue samples, such as a tumor sample and a normal
sample, otherwise the micro-satellite stability (MSS) event
exists. Up to 15% – 20% of sporadic cases of colorectal
cancer exhibit MSI events [6, 7], while 12% of advanced
prostate cancer cases have MSI events [8]. Some recent
studies have surveyed the MSI landscape across a range
of cancer types [9–11], and imply that these regions have
important clinical implications for cancer diagnostics and
patient prognosis [12, 13]. For example, MSI positive col-
orectal tumors respond well to PD-1 blocade [14]. Due
to these clinical utility, the detection of MSI events has
become increasingly important.

Owing to the increasing prevalence of the next gener-
ation sequencing (NGS) technologies, several computa-
tional tools for MSI diagnosis utilizing NGS data were
developed, replacing the traditional fluorescent multi-
plexed PCR-based methods, which are time-consuming
and costly. These algorithms includes MSIsensor [15],
mSINGS [16], MANTIS [17], MSIseq [18], MSIpred [19],
and MIRMMR [20]. Based on our best knowledge, these
algorithms may be roughly divided into two categories:
the read-count distribution based ones and mutation
burden based ones. MSIsensor is among the first algo-
rithms for analyzing cancer sequencing data, calculat-
ing the length distributions of each micro-satellite in
paired tumor-normal sequence data and implementing
a statistical test to identify significantly altered events
between these paired distributions. mSINGS works based
on target-gene captured sequencing data, allowing for the
comparisons among the numbers of signals that reflect

the repetitive micro-satellite tracts by differing lengths
from tumor and control samples. mSINGS is computa-
tionally complex, and is thus only suitable for small panels.
MANTIS analyzes MSI of a normal-tumor sample pair
as an aggregate of loci instead of analyzing the differ-
ences of individual loci. By pooling the scores of all the
loci and focusing on the average score, the impacts that
sequencing errors or poorly performing loci may have
on the results can be reduced. Meanwhile, MSIseq, MIR-
MMR and MSIpred utilize machine learning algorithms
to predict MSI status. MSIseq compares the length distri-
butions using four machine learning frameworks: logistic
regression, decision tree, random forest and naive Bayes
approach. It is a classifier that only reports MSI-H vs.
non-MSI-H, without a score or percentage, or informa-
tion about the instability of particular loci. MIRMMR
builds a logistic regression classifier that considers both
the methylation and mutation information of the genes
belonging to MMR system. MSIpred adopts a support
vector machine (SVM) to compute 22 features charac-
terizing the tumor mutational load from mutation data
in mutation annotation format (MAF) generated from
paired tumor-normal exome sequencing data, and then
use these features to predict tumor MSI status in the SVM.
The classifier was trained by the MAF data of 1074 sam-
ples belonging to four types. But none of these approaches
is able to overcome the one-read-length limitation. Since
the detector can no longer squeeze the micro-satellites
by partially mapping reads, the algorithms cannot locally
anchor the micro-satellite by using paired-end reads. To
this end, ELMSI has been proposed to break through this
one-read-length limitation.

Of note, all of these existing algorithms generally imply
a hypothesis that the tumor purity of the input sequenced
samples is sufficiently high, where the purity refers to the
proportion of tumor cells in the mixed sample, which
varies widely among different samples and cancer types.
But in practice, the sample purity is not as high as
expected. Due to the growth pattern of tumor tissues and
clinical sampling method, the tumor sample sequenced
is actually a mixture that contains non-cancerous cells
[21]. The presence of non-cancerous cells can influence
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the judgment of micro-satellite state. Ignoring the tumor
purity, the micro-satellite length distributions and states
may be inaccurate. For a micro-satellite region from a
mixed tumor sample, different tissues may carry differ-
ent length distributions, while the observed “distribution”
from the sequencing data is actually a convolution of the
distribution in tumor cells with that in normal cells. If we
first established an assumption that the input sample is
sufficiently pure, which means we have already assumed
that there is only one distribution existing in the mathe-
matical model, then we cannot fit the actual two distri-
butions at all (See Fig. 1). Meanwhile, even if we can use
a software to estimate the tumor purity p in advance, we
cannot directly solve the deconvolution problem. In order
to recognize the actual length distribution of the tumor
micro-satellite from a given mixed sample, we must calcu-
late the parameter values of the distributions accurately.
Furthermore, since the existing algorithms mainly use sta-
tistical tests to detect MSI, even if the sample is pure
enough, the convolutional distribution inferred based on
a set of mixed data containing the normal tissue micro-
satellite length data, which will dilute the data signal and
may mislead the statistical tests to report a MSS event,
introducing type-I error finally. Existing tumor purity esti-
mation algorithms, such as EMpurity [22], can accurately
identify the proportion of normal cells and tumor cells in
sequencing samples respectively, which is helpful for us to
further correct the length distributions according to the
estimated purity.

Motivated by this, in this article, we proposed a novel
algorithm termed ELMSI that offers a new approach to
identify the state and length distributions of the micro-
satellite from a given mixed sample. First, we established
a more realistic hypothesis that the sequencing sample
is a normal-tumor mixed sample, where the micro-
satellite lengths are subject to two different distributions.

Secondly, we used the purity estimation algorithms to
accelerate the deconvolution process for calculating the
respective distribution parameters. Finally, our algorithm
was suitable for both short and long MSI detection. To
test the performance of ELMSI, a series of simulation
experiments were conducted. Because mSINGS is only
used for small panels and MSIseq targets the sequenc-
ing at smaller regions of interest, while ELMSI instead
focuses on longer micro-satellite and larger panel, these
algorithms were not selected for comparisons. The experi-
mental results herein were compared with MSIsensor. The
results demonstrated that ELMSI can accurately identify
the state of micro-satellite and infer the length distri-
butions of it from a given mixed normal-tumor sample.
Our algorithm outperformed MSIsensor based on mul-
tiple indicators, maintaining satisfactory accuracy even
when coverage decreases at the same time.

Methods
Computational pipeline
Suppose that we are given a series of mapped files in
BinAry Map (BAM) format generated from a normal-
tumor mixed sample, and the outputs of the proposed
algorithm include both the length distributions and the
state of each micro-satellite. The proposed approach,
ELMSI, consists of three components. The first compo-
nent is estimating the tumor purity of the given sequenced
sample by calculating the read counts of the filtered
SNVs. Based on the estimated purity, the second com-
ponent identifies the length distributions and the state
of the shorter micro-satellites from the mixed sample
by adding the Maximum Likelihood Estimation (MLE)
step to the existing algorithm MSIsensor [15]. The third
component infers the length distributions of the longer
micro-satellites by combining a simplified Expectation
Maximization (EM) algorithm with central limit theorem,

Fig. 1 Micro-satellite length distributions in the mixed sample
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and then uses statistical tests to output the states of them.
Here, a model of micro-satellite evolution which has been
well recognized in recent years holds that the distribu-
tion of micro-satellite length is a balance between length
mutations and point mutations [23, 24]. Length muta-
tions, the rate of which increases with increasing repeat
counts, favor loci to attain arbitrarily high values, whereas
point mutations break long repeat arrays into smaller
units. Therefore, we make the same assumption [25] that
the length distribution approximates a normal distribu-
tion. We have made two assumptions on the established
computational model:

1: The input sequenced sample is not pure, containing
micro-satellites of two types (normal cells and tumor
cells) represented by two kinds of length
distributions.

2: The length distribution of a micro-satellite
approximates a normal distribution.

Before building the model, we need to process the input
data. We have the Binary Map format (BAM) files of
whole-exome sequencing (WES) data mapped to refer-
ence genome by bwa [26] as our initial input data. Then,
we define the following important terms on the aligned
reads.

MS-pair: Two paired reads, one of which is perfectly
mapped while the other spans a breakpoint.

SB-read: A read which is across the breakpoint in an
MS-pair.

PSset: A collection of the binary group consisting of
initial positions and sequences of the SB-reads, which is
represented by (POS, SEQ).

Sk-mer: The sequence consisting of the first k bases.
We first find all the micro-satellite candidate regions by

scanning the given reference genome, recording micro-
satellites of maximum repeat unit length 6bp and saving
the location and the corresponding sequences of each site.
Then, we use a clustering algorithm to find the remanent
micro-satellite candidate regions which may be ignored by
the initial scanning. This algorithm clusters are based on
the distances among the initial mapping positions of the
reads across each breakpoint. The number of clusters rep-
resents the number of micro-satellite regions. We set Lmax
as the longest length of micro-satellites. The lengths of
micro-satellites are generally less than 50kbps [27]. Thus,
Lmax is set to be 50kbps. ELMSI estimates the number of
micro-satellites using a clustering algorithm according to
the distances of the initial positions of the SB-reads. The
clustering strategy is as follows:

According to the mapping results from the PSset, two
SB-reads will belong to the same cluster only if the
distance between their initial positions is less than Lmax.
Each cluster then represents a candidate micro-satellite
region, providing the number of micro-satellites.

Once the number of micro-satellites is determined, for
each candidate micro-satellite region, ELMSI uses a k-mer
based algorithm to split each read. As the repeat units
that compose micro-satellites are usually less than 6 bps,
we set k = 6 as a default. Starting from the first base
of the read sequence, the algorithm detects whether two
k-mer sequences are identical replicates. This sequence
is a candidate repeat unit, and the first base of the
sequence is a candidate breakpoint of the micro-satellite.
The same operation is conducted for all reads in the
micro-satellite region and other candidate areas, taking
the mode of the repeat units and breakpoints as the final
results.

Estimating the tumor purity of the sample
First, we introduce a tumor purity estimation algorithm.
Due to the limitation of current sequencing technolo-
gies, the purity problem is almost inevitable during the
actual sampling process, so many algorithms are pro-
posed to solve this problem. Among them, EMpurity [22]
has established a probability model to accurately esti-
mate the tumor cell proportion in the mixed sample. The
observed indicators are the numbers of reads supporting
the reference allele and mutation at each site, respectively,
while the unknown hidden states include the tumor purity
and the joint genotype. EMpurity designs a probabilis-
tic model to describe the emission probabilities from the
hidden states to the observed indicators and the transi-
tion probabilities among the hidden states. This model is
solved by an Expectation Maximization algorithm.

EMpurity uses the pair-sampled DNA sequencing data
as the model input data, and only considers the heterozy-
gous sites with somatic mutations. For one sample in the
pair, the set of possible genotype values at each loci is
G = {AA, AB, BB}. Let N , T and TM represent the normal
sample, virtual pure tumor sample and mixed tumor sam-
ple, respectively. Here, the virtual pure tumor sample T is
actually part of TM. Then, for the paired samples, the set of
possible combined genotype values is a Cartesian product,
which is G × G = {(GN , GT ) : GN , GT ∈ G}. For any site i,
let ni

N_ref and ni
TM_ref denote the number of reads support-

ing the reference allele in the normal sample and mixed
tumor sample, respectively, each of which follows a bino-
mial distribution with parameters μN and μTM . There are
only 9 possible joint genotypes, which follow a polynomial
distribution with parameter μG. Considering the bias on
read depth, we assume that tumor purity follows a normal
distribution across all of the given sites, whose parameters
are μp and λp. Let Ri =

{
ni

x_ref , ni
x_ref

}
and Di =

{
ni

x_d

}
,

x ∈ {N , T , TM}. Let nx_ref be the number of reads support-
ing the mutation in x. Let ni

x_d represent the read depth
in x. For x ∈ {N , TM}, these values are observed. And
then, the estimation of tumor purity is p̂ = ni

T_d/ni
TM_d.

Let G denote the random variable representing the joint
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genotype
{

Gi
(GN ,GT )

}
. Let ϑ represent the set of unknown

parameters, which is ϑ =
{
μN , μT , μG, μp, λ−1

p

}
. Sup-

pose that μG(GN ,GT )
satisfies 0 ≤ μG(GN ,GT )

≤ 1 and∑
GN ∈G

∑
GT ∈G μG(GN ,GT )

= 1.
This model is solved by an Expectation Maximization

algorithm, where the established likelihood function is:

L(R, D,G; ϑ) =
I∏

i=1

∏
GN ∈G

∏
GT ∈G

[
μG(GN ,GT )

Bin
(

ni
x_ref |ni

x_d , μx(Gx )

)
N

(
pi

(GN ,GT )|μpi
(GN ,GT )

, λ−1
pi

(GN ,GT )

)]Gi
(GN ,GT )

x ∈ {N , T}
(1)

The specific EM iterative process can be referred to
EMpurity [22].

Estimating the length distribution parameters of the short
micro-satellite
For the shorter (shorter than one-read-length) micro-
satellites, the existing algorithms, such as MSIsensor [15],
can accurately calculate the specific length data and esti-
mate the state of them. However, when the sequenced
sample is a normal-tumor mixture, the calculated micro-
satellite lengths actually contain both the normal micro-
satellite lengths and the tumor micro-satellite lengths,
and the state estimated directly is inaccurate. Thus, given
a mixed sample with known proportions (normal cells
account for (1−p), tumor cells account for p) and a micro-
satellite region belonging to this sample, MSIsensor can
detect this micro-satellite region, obtaining a set of the
lengths L = {l1, l2, ..., lN } as a result. L is actually a length
data set sampled randomly from two samples which are
independent of each other and subject to two different
normal distribution models. According to the law of large
numbers, the data in L have a probability of (1 − p) to be
the length of a micro-satellite from normal cells, and the
probability of p to be that from tumor cells.

Given a micro-satellite region, we assume that its length
follows a normal distribution N1

(
μ1, σ 2

1
)

when it belongs
to normal cells, while the length of it follows a normal
distribution N2(μ2, σ 2

2 ) when it belongs to tumor cells.
Therefore, the length of this micro-satellite in the mixed
sample follows a probability distribution with the density
function f = (1 − p)f1 + pf2, where f1 and f2 is the density
function of N1 and N2 respectively, while L = {l1, l2, ..., lN }
is the set of lengths obtained from this mixed micro-
satellite sample independently. We can get the values of
μ1, σ1 by separately detecting normal samples (such as
blood samples). Under these known conditions, we can
use the Maximum Likelihood Estimation (MLE) step to
estimate the values of μ2, σ2. From the above, the likeli-

hood function is the joint probability density function of
the lengths:

L(μ2, σ2) =
N∏

i=1
f (xi, μ2, σ2)

=
N∏

i=1

[
(1 − p)

1√
2πσ1

exp
(

− (xi − μ1)2

2σ 2
1

)

+ p
1√

2πσ2
exp

(
− (xi − μ2)2

2σ 2
2

)]
(2)

The likelihood function actually reflects the probability of
generating these length values in L. The parameter val-
ues in the likelihood function which can maximize this
probability are the estimated values we need to calculate:

⎧⎪⎪⎨
⎪⎪⎩

∂L(μ2, σ2)

∂μ2
= 0

∂L(μ2, σ2)

∂σ2
= 0

(3)

By this, the estimated values μ̂2, σ̂2 can be obtained. Thus,
the length distributions of shorter micro-satellites from
a given mixed sample can be recognized, and then we
perform a z-test to assess the micro-satellite state.

Estimating the length distribution parameters of the long
micro-satellite
On the other hand, for the longer micro-satellites, reads
cannot locate them, so we cannot pinpoint their specific
lengths. Thus, we use the length distribution to character-
ize them. Given a mixed sample of normal-tumor cells, we
set the proportion of tumor cells as p to facilitate the com-
putation. In this paper, we only consider the following two
scenarios (See Fig. 2).

Similarly, we have known that the micro-satellite lengths
in (1 − p) normal cells follow a normal distribu-
tion N1

(
μ1, σ 2

1
)
, while the micro-satellite lengths in p

pure tumor cells follow an another normal distribution
N2

(
μ2, σ 2

2
)
. And, normal distribution parameters of N1

can be estimated by detecting normal tissue cells alone.
According to central limit theorem, the average of the
samples is roughly equal to the average of the population.
Whatever the distribution of the population is (mean is μ,
variation is σ 2), when the sampling times reach a certain
condition (> 30), the means of the samples (sample size n)
sampled from it will surround the mean of the population
and be normally distributed (mean is μ, variation is σ 2/n).
Due to the specific lengths of longer micro-satellite can-
not be assessed by the existing technology, we can use the
distribution of the mean length of them to reflect the over-
all length distribution. Our approach supposes that the
length of a micro-satellite is normally distributed. There-
fore, ELMSI considers a continuous estimation strategy,
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Fig. 2 The patterns of sequencing reads from a micro-satellite region sampled from a mixed sample. a short MS region. b long MS region

whose basic goal is to estimate the micro-satellite average
length based on the coverage of the specified area con-
taining this micro-satellite, and then using the updated
micro-satellite average length to estimate the coverage of
this specified area in turn. This loop is repeated until
there are no longer significant changes in micro-satellite
average length. Therefore, we can use at least 30 groups
of sampling average lengths to assess the distribution of
the overall long micro-satellite. The length of the hybrid
longer micro-satellites belonging to this mixed sample
subject to a normal distribution with μ = (1 − p)μ1 +
pμ2, σ 2 = (1 − p)σ 2

1 + pσ 2
2 . According to the Central

Limit Theorem, the sampled average length distribution
parameters μ can be obtained to reflect the overall length
distribution. However, under the technical restrictions, we
can only use the estimated σ 2 to represent the overall
variance due to the uncountable sample size. By substi-
tuting them in the above formula, the length distribution
parameters μ2 and σ2 of micro-satellites in the pure tumor
sample can be calculated. The specific EM process is as
follows:

Let WIN − bk be the window on the reference, with the
breakpoint of a micro-satellite as the midpoint of it. The
default length of WIN − bk is set to be 5000bps. Then, the
read pairs can be divided into the following categories. Let
C-pair be the paired-reads perfectly mapped to WIN −bk,
T-pair be the paired-reads perfectly mapped to the micro-
satellite region, O-pair be the paired-reads with one read
mapped to WIN − bk and the other mapped to the micro-
satellite region, SO-pair be the paired-reads with one read
mapped to the micro-satellite region and the other span-
ning across a breakpoint, S-pair be the paired-reads with
one read mapped to WIN−bk while the other spans across
a breakpoint, and S-read be the reads which span across
the breakpoints in any SO-pair or S-pair. Figure 3 is a
graphical representation of the relevant definitions.

The breakpoints and the repeat units of these micro-
satellites can be identified by the aforementioned data

preprocessing, we set a WIN − bk with the breakpoint as
the midpoint. The initial length of WIN − kb is set to be
5000 bps. According to the aligned reads corresponding
to WIN − bk, we can obtain the coverage of reference in
WIN − bk using the following formulas:

SUMbp = NUMread × Lread (4)

C = SUMbp
L

(5)

where SUMbp represents the total number of bases in
WIN − bk, NUMread represents the total number of reads
in the target area, Lread represents the read length, C
represents the coverage of the target area, and L repre-
sents the length of the target area. When the WIN − bk
length is fixed, SUMbp is a constant. Thus, the lengths of
micro-satellites do not affect SUMbp, but do influence the
coverage C. We can therefore calculate the normal distri-
bution parameters of the micro-satellite lengths through
the following nine steps.

1. Variable initialization:
Let m be the total number of micro-satellites, i
be the ith micro-satellites, S be the sampling
times, WIN − bk be the sequence of samples
with the micro-satellite’s breakpoint as the
midpoint, LWin be the length of WIN − bk, Laln
be the total number of bases belong to the
micro-satellites region in all S-reads, Lset be the
set of micro-satellite lengths.

Step 1-1: Initializing the number of
micro-satellites, the repeating units,
breakpoints by the data preprocessing;

Step 1-2: Clustering the paired-reads into 5
categories which are: C-pairs, T-pairs,
O-pairs, S-pairs and SO-pairs, all the
paired-reads are in WIN − bk;
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Fig. 3 The changes in coverage when a micro-satellite event occurs, and the definitions of different read pairs. C-pairs: The paired-reads in which
mapped to WIN-bk; T-pairs: The paired-reads in which both reads mapped from micro-satellite areas; O-pairs: The paired-reads in which one read
perfectly matched to WIN-bk and one read mapped from micro-satellites areas; SO-pairs: The paired-reads in which one read is mapped from an
micro-satellite area and one read spans across the breakpoints; S-pairs: The paired-reads in which one read is perfectly matched to WIN-bk and one
read spans across the breakpoint. S-reads: The reads which span across the breakpoints in SO-pairs and S-pairs

Step 1-3: Calculating the number of
paired-reads in these categories and let
NUMC , NUMT , NUMO, NUMS, NUMSO
represent the number of C-pairs, T-pairs,
O-pairs, S-pairs and SO-pairs respectively;

Step 1-4: Setting m as the number of
micro-satellites, i = 1, S = 1,
LWin = 5000bps, L′ = 0, Lset = ∅.

2. According to the paired-reads clustering results,
calculate the average coverage of WIN − bk.
The formula is C = SUMbp

L , where

SUMbp = 2 × (NUMC + NUMT + NUMO +
NUMS + NUMSO) × Lread + Laln. And
L = L′ + LWin.

3. Suppose that the coverage follows a uniform
distribution, and then the coverage in Step 2 is
equal to the coverage in micro-satellite area. In
this step, we use the formula L′′ = SUMbp

C to
update the micro-satellite length. Where
SUMbp =
(2×NUMT +NUMO +NUMSO)×Lread +Laln.

4. If |L − L′′| > δ, where δ = L′
100 + 1, let L′ = L′′,

and repeat Step 2.
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5. The obtained micro-satellite length is
incorporated into a set, Lset = Lset

⋃{L′′}.
6. In order to assess the normal distribution

parameter of a given micro-satellite sequence,
we sample 30 times (at least) by changing the
size of LWin. Set S = S + 1, if S < 30, and let
LWin = LWin + 1000. Then proceed to Step 1.

7. The statistical data regarding micro-satellite
lengths obtained from these 30 groups of
sampling experiments are tested using a normal
test algorithm and the Shapiro-Wilk algorithm.
Output the normal distribution parameters of a
micro-satellite N

(
μ, σ 2). μ and σ 2 are the

mean and covariance of lengths.
8. If i < m, set i = i + 1, go to Step 1.
9. The independent z-test is used to compare the

state of micro-satellite between tumor cells and
normal cells. If p-value < 0.05, then the
identified micro-satellite is an MSI event,
otherwise the identified micro-satellite is an
MSS event.

Results and discussion
To test the performance of ELMSI, we first tested its ability
of micro-satellite state classification, and also compared
the two major indicators - precision rate and recall rate -
with those yielded by MSIsensor [15]. And we conducted
experiments on a series of simulated datasets with differ-
ent configurations, which altered the number of micro-
satellites, coverage, and read length. In these simulation
experiments, the following key indicators were calculated
to evaluate ELMSI: true positive (TP), false positive (FP),
true negative (TN) and false negative (FN). In addition,
five popular indicators were further calculated, which are
accuracy, recall, precision, MCC and Gain.

1. Accuracy = (TP + TN)/(TP + TN + FN + FP);
2. Recall = TP/(TP + FN);
3. Precision = TP/(TP + FP);
4. MCC = (TP × TN − FP ×

FN)/
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN);
5. Gain = (TP − FP)/(TP + FN).

Simulation dataset generation
To generate the simulation datasets, we first randomly
selected a region of 10Mbps on human chromosome 19.
To design a complex situation, we randomly chose the
micro-satellites length, repeat unit, and the breakpoint.
As aforementioned, the micro-satellite length in a given
individual is normal distributed. We divided the normal
distribution N

(
μ, σ 2) into seven parts which are μ − 3σ ,

μ − 2σ , μ − σ , μ, μ + σ , μ + 2σ , μ + 3σ , and the number
of micro-satellites in each part planted into the reference
was got through multiplied coverage by corresponding

probability 1%, 6%, 24%, 38%, 24%, 6%, and 1% for each
part, respectively. Once each micro-satellite was planted,
we merged these seven read files. All of the simulated
reads were then mapped to the reference sequence. The
alignment file was then provided to variant calling tools.

Micro-satellites state classification and comparison
experiment
In this part, we first tested the accuracy of ELMSI in clas-
sifying the micro-satellite state from the mixed samples.
The z-test was used to determine whether the micro-
satellite is a MSI event.

For the shorter micro-satellites, we compared our algo-
rithm with the proposed approach MSIsensor. Among the
proposed micro-satellite state classification algorithms,
mSINGS is suitable for small panels and has been reported
to be used only for limited exome data, and MSIseq only
targets the sequencing at smaller regions. Comparison
with these algorithms is meaningless. MSIsensor can accu-
rately identify the micro-satellite state and lengths when
the they are shorter than one read length. Thus we chose
MSIsensor to do the comparison experiment. The number
of micro-satellite was set to be 30, the coverage was set to
be 100× and the read-length was set to be 200bps. The
tumor purity was set to be 0.9, 0.7, 0.5, 0.3, 0.1, respec-
tively. Micro-satellite state were subsequently identified
by the two classification tools MSIsensor and ELMSI. The
results are shown in Table 1.

As can be seen, ELMSI has better performance in hybrid
micro-satellite state classification. When the tumor purity
of the input sequenced sample is below a certain ratio, the
MSS signal in the normal sample will dilute the MSI sig-
nal, causing MSIsensor to report a MSS event. Thus, when
the input tumor sample is a mixture with high normal
cell contamination, MSIsensor cannot distinguish the MSI
accurately. However, ELMSI can do the classification even
if the tumor purity is less than 10%.

On the other hand, for the longer micro-satellites,
the paired-reads used to locate the candidate micro-
satellite region are invalid, and none of the existing
approaches is able to overcome the one-read-length lim-

Table 1 Comparison results of ELMSI and MSIsensor

Tumor proportion
MSIsensor ELMSI

Precision Recall Precision Recall

0.9 1 0.3333 1 1

0.7 1 0.1333 1 0.6667

0.5 0 0 1 0.5667

0.3 0 0 1 0.6

0.1 0 0 1 0.4667
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Table 2 Performance of ELMSI for longer micro-satellites classification

Tumor purity 0.9 0.7

No. Breakpoint Unit μN μT Breakpoint μ′
T MSI Breakpoint μ′

T MSI

1 34489 TCATT 86 125 34491 146.84 1 34489 163.44 1
2 122387 GGCC 425 525 122389 685.63 1 122387 724.23 1
3 189108 GCTAC 46 120 189158 105.65 1 189108 133.03 1
4 190653 CATC 43 136 190655 130.52 1 190653 170.21 1
5 194236 AAC 89 166 194238 145.93 1 194236 151.43 1
6 251655 GCT 71 111 251654 91.17 1 251655 71.71 1
7 311313 ACCA 56 236 311315 321.08 1 311313 331.60 1
8 356789 GCT 76 256 356790 51.47 1 356789 161.35 1
9 398971 TTCG 45 225 398973 213.12 1 398971 251.42 1
10 412340 G 100 280 412505 88.05 1 412340 70.50 1
11 432344 TGA 78 258 432343 177.30 1 432344 220.54 1
12 473174 AAGG 221 354 473176 462.75 1 473174 403.21 1
13 501994 CGCCG 78 161 501996 128.26 1 501994 329.52 1
14 505733 ACAGGG 40 111 505791 222.26 1 505733 248.28 1
15 526358 GTCC 58 144 526360 167.58 1 526358 152.30 1
16 612344 TGC 90 270 612342 355.32 1 612344 343.93 1
17 622735 GGTTC 77 142 622737 114.59 1 622735 197.75 1
18 677621 TCA 70 200 677623 163.89 1 677621 202.36 1
19 712345 GACT 89 269 712337 N/A 0 712345 230.62 1
20 731506 GA 146 203 731506 104.14 1 731506 88.48 1
21 776166 TAA 213 324 776167 359.1743 1 776166 564.01 1
22 842735 CTC 134 211 842734 213.29 1 842735 236.04 1
23 866450 TG 185 220 866450 371.53 1 866450 526.3551 1
24 891334 TCAGC 105 285 891336 234.20 1 891334 338.38 1
25 908385 AGAAT 167 229 908386 194.85 1 908385 294.27 1
26 910124 C 205 301 910204 98.17 1 910124 32.50 1
27 929056 CCG 120 210 929058 199.72 1 929056 202.66 1
28 944729 GGACT 90 190 944731 214.33 1 944729 225.51 1
29 964608 AGGGGG 56 156 964610 305.59 1 964608 296.61 1
30 973099 GGGCAC 355 460 973101 849.18 1 973099 N/A 0

Accuracy 0.967 0.967

Tumor purity 0.5 0.3 0.1

No. Unit Breakpoint μ′
T MSI Breakpoint μ′

T MSI Breakpoint μ′
T MS

1 TCATT 34491 155.09 1 34489 165.59 1 34489 272.51 1
2 GGCC 122389 354.08 1 122387 710.49 1 122387 619.04 1
3 GCTAC 189108 177.33 1 189108 127.27 1 189108 94.68 1
4 CATC 190655 137.45 1 190653 84.00 1 190653 19.35 1
5 AAC 194238 172.94 1 194236 125.12 1 194236 82.57 1
6 GCT 251654 86.32 1 251655 30.28 1 251655 N/A 0
7 ACCA 311355 240.46 1 311313 361.34 1 311313 509.08 1
8 GCT 356790 303.44 1 356789 189.28 1 356789 584.24 1
9 TTCG 398973 275.14 1 398971 282.36 1 398971 295.25 1
10 G 412483 66.43 1 412340 105.09 1 412340 N/A 0
11 TGA 432343 292.88 1 432344 270.84 1 432344 345.93 1
12 AAGG 473176 434.98 1 473174 640.55 1 473174 779.62 1
13 CGCCG 501996 278.35 1 501994 365.00 1 501994 800.13 1
14 ACAGGG 505844 246.03 1 505733 178.62 1 505733 339.87 1
15 GTCC 526361 120.87 1 526358 132.08 1 526358 112.71 1
16 TGC 612419 467.03 1 612344 570.02 1 612344 N/A 0
17 GGTTC 622737 215.57 1 622735 241.85 1 622735 254.75 1
18 TCA 677623 226.32 1 677621 241.83 1 677621 220.82 1
19 GACT 712347 393.39 1 712345 327.39 1 712345 N/A 0
20 GA 731506 77.51 1 731506 51.49 1 731506 N/A 0
21 TAA 776167 405.81 1 776166 170.12 1 776166 340.20 1
22 CTC 842734 221.52 1 842735 321.37 1 842735 204.91 1
23 TG 866450 485.10 1 866450 870.52 1 866450 236.77 1
24 TCAGC 891336 316.81 1 891334 112.10 1 891334 677.12 1
25 AGAAT 908386 206.39 1 908385 457.04 1 908385 152.63 1
26 C 910220 N/A 0 910124 N/A 0 910124 N/A 0
27 CCG 929058 203.18 1 929056 98.56 1 929056 269.48 1
28 GGACT 944731 257.57 1 944729 250.61 1 944729 279.33 1
29 AGGGGG 964610 416.61 1 964608 380.03 1 964608 691.83 1
30 GGGCAC 973101 1182.00 1 973099 N/A 0 973099 748.71 1

Accuracy 0.967 0.933 0.8
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itation. Thus, we proposed ELMSI, which can identify
the longer hybrid micro-satellites, and classify their state.
Next, we tested the classification accuracy of it. The
number of micro-satellite was set to be 30, the cover-
age was set to be 100× and the read-length was set
to be 200bps. The tumor purity was set to be 0.9, 0.7,
0.5, 0.3, 0.1, respectively. The detailed results are shown
in Table 2.

As is shown in Table 2, the decreasing tumor ratio can
influence the accuracy of the ELMSI. However, even with
a purity as low as 10%, the results still indicate that ELMSI
can provide a reliable MSI classification.

Estimating the distribution of micro-satellite lengths
To separately verify the validity of ELMSI in estimat-
ing the length distributions of the longer micro-satellites.

Table 3 Key indicators of ELMSI in different numbers number of mciro-satellites

Number of MSIs Coverage Accuracy Recall Precision Gain MCC

20 30× 0.5385 0.7000 0.7000 0.4000 -0.300

60× 0.4815 0.6500 0.6500 0.3000 -0.350

100× 0.4419 0.6333 0.5938 0.2000 -0.386

120× 0.5750 0.7667 0.6970 0.4333 -0.265

30 30× 0.5250 0.7000 0.6774 0.3667 -0.311

60× 0.5250 0.7000 0.6774 0.3667 -0.311

100× 0.6875 0.8250 0.8049 0.6250 -0.184

120× 0.6400 0.8000 0.7619 0.5500 -0.218

40 30× 0.6809 0.8000 0.8205 0.6250 -0.189

60× 0.5882 0.7500 0.7317 0.4750 -0.259

100× 0.5606 0.7400 0.6981 0.4200 -0.280

120× 0.4930 0.7000 0.6250 0.2800 -0.335

50 30× 0.6949 0.8200 0.8200 0.6400 -0.180

60× 0.7000 0.8400 0.8077 0.6400 -0.175

100× 0.6000 0.7500 0.7500 0.5000 -0.250

120× 0.5375 0.7167 0.6825 0.3833 -0.299

60 30× 0.6164 0.7500 0.7759 0.5333 -0.236

60× 0.6081 0.7500 0.7627 0.5167 -0.243

100× 0.6279 0.7714 0.7714 0.5429 -0.228

120× 0.5862 0.7286 0.7500 0.4857 -0.260

70 30× 0.5333 0.6857 0.7059 0.4000 -0.304

60× 0.4787 0.6429 0.6522 0.3000 -0.352

100× 0.5660 0.7500 0.6977 0.4250 -0.274

120× 0.5463 0.7375 0.6782 0.3875 -0.290

80 30× 0.6122 0.7500 0.7692 0.5250 -0.240

60× 0.5980 0.7625 0.7349 0.4875 -0.250

100× 0.5664 0.7111 0.7356 0.4556 -0.276

120× 0.5575 0.7000 0.7326 0.4444 -0.283

90 30× 0.4957 0.6444 0.6824 0.3444 -0.336

60× 0.5085 0.6667 0.6818 0.3556 -0.325

100× 0.4138 0.6000 0.5714 0.1500 -0.414

120× 0.6667 0.8000 0.8000 0.6000 -0.200

100 30× 0.6116 0.7400 0.7789 0.5300 -0.239

60× 0.5191 0.6800 0.6869 0.3700 -0.316

100× 0.6290 0.7800 0.7647 0.5400 -0.227

120× 0.5952 0.7500 0.7426 0.4900 -0.253
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We ignored the influence of tumor purity, and tested the
performance of ELMSI by changing micro-satellite num-
ber, coverage, and read length. A correct call is defined
as follows: a micro-satellites is identified with a correct
repeat unit, the breakpoint detected belongs to the (b −
−10bps, b + 10bps) where b is the set breakpoint, and the
actual micro-satellites length belongs to the (μ − 3σ , μ +
3σ), where μ and σ are parameter values which have be
estimated.

We first changed the number of micro-satellite from 20
to 100. In order to better reflect the influence of micro-
satellite number on ELMSI, we also varied the coverage
from 30×, 60×, 100×, to 120×. The read length was set
to be 100bp in this group of experiments. For each differ-

ent micro-satellite number, we repeated the test five times
using the same setting and output the average results,
which are summarized in Table 3.

The increasing micro-satellite number can influence
the robustness of the ELMSI. In practice, since micro-
satellites are very rare, few micro-satellites will exist in
a given 10Mbps chromosomal sequence region. Even so,
for testing ELMSI, we intended to increase this density.
Based on Table 3, we can see that ELMSI can identify
micro-satellites and exclude non micro-satellites interfer-
ence accurately. The results also show that ELMSI can
offer a high reliability.

Sequencing coverage affects somatic mutation calling,
which in turn would presumably affect the performance

Table 4 Comparisons of the performance of ELMSI in different coverages

Number of MSIs Coverage Accuracy Recall Precision Gain MCC

20 10× 0.3667 0.5500 0.5238 0.05 -0.4629

20× 0.3846 0.5000 0.5714 0.20 -0.4330

30× 0.4167 0.5263 0.6429 0.26 -0.3974

40× 0.4815 0.6500 0.6500 0.30 -0.3500

50× 0.6957 0.8000 0.8421 0.65 -0.1777

60× 0.6818 0.7895 0.8333 0.63 -0.1873

70× 0.6400 0.7619 0.8000 0.57 -0.2182

80× 0.6071 0.7391 0.7727 0.52 -0.2435

90× 0.5483 0.7083 0.7083 0.42 -0.3077

100× 0.5294 0.6923 0.6923 0.38 -0.3077

40 10× 0.3928 0.61110 0.5238 0.06 -0.4303

20× 0.4615 0.6000 0.6667 0.30 -0.3651

30× 0.5106 0.6857 0.6667 0.34 -0.3237

40× 0.5208 0.6756 0.6744 0.38 -0.3148

50× 0.5192 0.6750 0.6923 0.38 -0.3162

60× 0.5762 0.8333 0.7555 0.48 -0.2670

70× 0.6809 0.8000 0.8205 0.63 -0.1895

80× 0.6600 0.8250 0.7674 0.58 -0.2017

90× 0.6538 0.7906 0.7555 0.53 -0.2262

100× 0.6800 0.8500 0.7727 0.60 -0.1846

60 10× 0.4218 0.5869 0.6000 0.20 -0.4065

20× 0.4247 0.5167 0.7045 0.30 -0.3779

30× 0.4861 0.6250 0.6862 0.34 -0.3430

40× 0.5441 0.6981 0.7115 0.42 -0.2951

50× 0.5232 0.6818 0.6923 0.38 -0.3129

60× 0.5000 0.6571 0.6765 0.34 -0.3331

70× 0.5455 0.7000 0.7119 0.42 -0.2940

80× 0.5000 0.6470 0.6875 0.35 -0.3321

90× 0.6216 0.7667 0.7667 0.53 -0.2333

100× 0.5444 0.7000 0.7101 0.41 -0.2949
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of ELMSI. To assess the influence of the different cov-
erage on ELMSI, we further varied the coverage from
10× to 100×. As is shown in Table 4 the coverage
changes intuitively affect the changes in key indicators. In
this group of experiments, we set the number of micro-
satellites to be 20, 40, or 60, and set read length to be
100 bps.

The lower the coverage, the greater the difficulty faced
by this computational approach. Consistent with this,
Table 4 indicates that the performance of ELMSI increases
as coverage increases, with maximal recall rate more than
80%. Thus, the higher the coverage, the higher the accu-
racy of ELMSI for inferring micro-satellites.

ELMSI can also stay valid when the read length is
altered. The number of micro-satellites was set to be 20,
or 50, coverage was set to be 30×, 60×, 100×, or 120×,
and the read length was set to be 100bps, 150bps, 200bps,
250bps and 300bps. The results are shown in Table 5.

The main weakness of this method is the huge amount
of splicing required. The longer the read length, the
smaller the splicing workload, and the fewer errors will
be introduced by splicing. We thus predict that with
the increased of read length, ELMSI performance will
improve. Table 5 validates this hypothesis, and shows that
the longer the read length is, the more accurate estimation
result is.

Table 5 Key indicators of ELMSI corresponding to different read lengths

Number of MSIs Read length Coverage Accuracy Recall Precision Gain MCC

20 100 30× 0.31 0.45 0.5 0 -0.25

60× 0.33 0.5 0.5 0 -0.5

100× 0.31 0.45 0.5 0 -0.52

120× 0.36 0.55 0.52 0.05 -0.46

150 30× 0.31 0.45 0.5 0 -0.25

60× 0.37 0.5 0.59 0.15 -0.45

100× 0.46 0.6 0.6 0.3 -0.36

120× 0.42 0.55 0.65 0.25 -0.40

200 30× 0.5 0.65 0.68 0.35 -0.33

60× 0.49 0.57 0.65 0.1 -0.55

100× 0.48 0.7 0.61 0.25 -0.34

120× 0.52 0.7 0.67 0.35 -0.32

250 30× 0.6 0.75 0.75 0.5 -0.25

60× 0.54 0.7 0.7 0.4 -0.3

100× 0.55 0.75 0.69 0.2 -0.38

120× 0.58 0.75 0.71 0.25 -0.34

50 100 30× 0.43 0.6 0.6 0.2 -0.4

60× 0.37 0.55 0.54 0.08 -0.46

100× 0.45 0.63 0.61 0.23 -0.38

120× 0.36 0.55 0.52 0.05 -0.46

150 30× 0.51 0.68 0.63 0.35 -0.33

60× 0.45 0.63 0.61 0.23 -0.38

100× 0.48 0.58 0.62 0.05 -0.45

120× 0.47 0.73 0.63 0.45 -0.28

200 30× 0.51 0.7 0.65 0.45 -0.32

60× 0.61 0.78 0.64 0.5 -0.24

100× 0.52 0.63 0.67 0.15 -0.40

120× 0.56 0.75 0.68 0.4 -0.28

250 30× 0.53 0.7 0.68 0.38 -0.31

60× 0.57 0.78 0.7 0.23 -0.36

100× 0.61 0.7 0.67 0.35 -0.32

120× 0.59 0.75 0.7 0.25 -0.33
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Conclusion
In this article, we focus on the computational prob-
lem of inferring the length distributions and states of
all kinds of micro-satellites in tumors with normal cell
contamination. Existing approaches, such as MSIsensor,
mSINGS, MANTIS and MSIseq, perform well in han-
dling the genomic micro-satellite event whose length is
shorter than one read length, but often encounter a signif-
icant loss of accuracy when the length of micro-satellite
becomes longer. Meanwhile, all of these MSI detection
algorithms implies a general assumption before estab-
lishing a mathematical model that the input sample is a
pure tumor sample, which is difficult to achieve under
existing sequencing technology. We have therefore pro-
posed an algorithm to break these limitations, handling
micro-satellites with a wide range of length from a mixed
normal-tumor sample based on NGS data. Our pro-
posed algorithm, termed ELMSI, directly computes on the
aligned reads. ELMSI can clearly recognize the length dis-
tributions and states of micro-satellites with a wide range
of length from mixed sequenced samples. For short micro-
satellites, it can identify the lengths accurately, while for
long micro-satellites, it can estimate the normal distri-
bution parameters. ELMSI is among the first approaches
to recognize and identify long micro-satellites. However,
due to the nature of sequencing data and the limita-
tion of computing capacity, the estimated mean μ is
relatively accurate, while the estimated variance σ has
a certain deviation. Thus, for longer MSI detection,
our algorithm uses independent z-test mainly. When
the sample size can be calculated during the iteration
process, we can estimate the variance of the longer
micro-satellite more accurately, and thus we recommend
to use independent t-test to infer the MSI state. The
performance of ELMSI is compared with MSIsensor,
and ELMSI is superior for the hybrid shorter micro-
satellites classification. For the mixed longer samples,
ELMSI can also obtain the satisfactory results. The sim-
ulation experimental results demonstrate that ELMSI is
robust, with good performance in response to varia-
tions in coverage, read length, and the number of micro-
satellites. It will be useful for micro-satellites screen-
ing and we anticipate a wider usage in cancer clinical
sequencing.
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