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Background
The growth and development of organisms and their responses to internal and exter-
nal stimuli are controlled by complex internal regulatory mechanisms, including the 
gene level. Gene regulation network is the mapping of complex regulation mechanism 
in organism at gene level. At the molecular level and in the microscopic domain, the 
function of genes is understood as the interaction behavior of complex networks. Cell 
function is controlled by the interconnections between gene expression mechanisms 

Abstract 

Background: Building biological networks with a certain function is a challenge in 
systems biology. For the functionality of small (less than ten nodes) biological net-
works, most methods are implemented by exhausting all possible network topological 
spaces. This exhaustive approach is difficult to scale to large-scale biological networks. 
And regulatory relationships are complex and often nonlinear or non-monotonic, 
which makes inference using linear models challenging.

Results: In this paper, we propose a multi-layer perceptron-based differential equa-
tion method, which operates by training a fully connected neural network (NN) to 
simulate the transcription rate of genes in traditional differential equations. We verify 
whether the regulatory network constructed by the NN method can continue to 
achieve the expected biological function by verifying the degree of overlap between 
the regulatory network discovered by NN and the regulatory network constructed by 
the Hill function. And we validate our approach by adapting to noise signals, regulator 
knockout, and constructing large-scale gene regulatory networks using link-knockout 
techniques. We apply a real dataset (the mesoderm inducer Xenopus Brachyury expres-
sion) to construct the core topology of the gene regulatory network and find that Xbra 
is only strongly expressed at moderate levels of activin signaling.

Conclusion: We have demonstrated from the results that this method has the ability 
to identify the underlying network topology and functional mechanisms, and can also 
be applied to larger and more complex gene network topologies.
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and gene regulation. The mapping between gene interactions and functions is one of the 
main research topics in systems biology [1].

Cellular networks undergo steady-state or oscillatory stimulation signals, which pro-
vide a way to reconstruct network topology. To understand how the interrelationships of 
genes in living organisms respond accurately to external signals and perform their func-
tions robustly. For example, the adaptive function of cells [2] refers to the ability of the 
system to respond to signal changes and return to the pre-stimulated level, which is the 
key for living systems to perceive large-scale changes [3]. The transient nature of this 
stimulus response is important to prevent cells from experiencing uncontrolled prolifer-
ation or apoptosis [4]. For example, nuclear enrichment of MAP kinase Hog1 completely 
adaptes to changes in external osmotic pressure and is robust to very low signal fidelity 
and operating noise [5].

In the construction of small networks, enumeration search [6] has obvious effect on 
listing all possible network topology modules, but in larger and more complex networks, 
enumeration method is difficult to calculate. At present, the models used for gene regu-
lation network modeling mainly include the following: Boolean network, Bayesian net-
work, differential equation, etc [7]. Boolean network is a relatively simple model, and the 
simulation of the system is fixed and relatively rough; Bayesian network is a probabilis-
tic model that can quantitatively and randomly describe the control network; Differen-
tial equations can quantitatively and accurately predict the system behavior; Modeling 
and reconstructing gene regulatory networks from time series data, most of the existing 
methods [8–12] are based on ordinary differential equations (ODE).

Ordinary differential equation models include linear differential equations and non-
linear differential equations. Linear differential equation models have been used to infer 
large-scale gene regulatory networks due to their simple structure and few parameters 
and expression data. For example, Matsumoto et  al. [13] proposed the SCODE algo-
rithm based on linear ordinary differential equations to study gene regulatory network 
information related to the process of cell differentiation. They first performed single-
cell sequencing on individual cells, and then used the algorithm to assess differences 
in expression patterns between individual cells. Aubin et al. [14] proposed the GRISLI 
method that infers a velocity vector fields in the space of scRNA-seq data from profiles 
of individual cells, and models the dynamics of cell trajectories with a linear ordinary 
differential equation to reconstruct the underlying GRN with a sparse regression pro-
cedure. Although linear regulatory functions can describe network regulatory system, 
gene regulatory networks are mostly nonlinear. Many classical nonlinear differential 
equations that conform to the laws of biochemistry have been proposed to infer GRN, 
such as S-system model [15], Hill function. In recent years, the S-system model has 
been widely utilized to infer GRN and biochemical reactions, which follows the theory 
of a biological system [16], Since the structure of the S-system model is fixed, heuristic 
search algorithms have been used to search for the optimal parameters of the S-system 
model. , such as differential evolution (DE) [17], cooperative coevolutionary algorithm 
[18], sensitivity-based incremental evolution method [19], bat algorithm (BA) [20], 
immune algorithm (IA) [21], firefly algorithm [22], dissipative particle swarm optimiza-
tion (DPSO) [23], cockroach genetic algorithm (CGA) [24], hybrid algorithm based on 
genetic algorithm (GA) and PSO [25].
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Hidde De Jong [7] proposed the Hill function as a regulatory function. Hill functions 
are considered suitable for building GRN models with ODEs [7, 26]. They can quantify 
activation and inhibition effects of genes. The regulating function can also be sigmoid 
function [27] commonly used in neural networks, referred to as S-type function, whose 
input and output characteristics are usually expressed by logarithmic curve or tangent 
curve. It introduces the necessary nonlinearity and defines an upper bound on the rate 
of change in molecular concentration. The advantage of this neural network-based dif-
ferential equation model is that a large number of effective learning algorithms have 
been developed for the learning of parameters in the regulatory network. For example, 
Mattias Wahde [28] provided a differential equation system based on feedback neural 
network, the regulation function is the commonly used logarithmic Sigmoid activa-
tion function, and the parameter estimation adopts genetic algorithm. Shen et al. [29] 
believed that deep learning could be used to search network topology more effectively 
and train deep neural network to find satisfactory network topology by relying on trajec-
tory and error. The idea is to learn differential equations in data, i.e. use a neural network 
to train an accurate potential unknown dynamical system [30, 31], the model is diffi-
cult to be extended to a large number of genes, so it is difficult to describe the complex 
behavior of the system.

Inspired by the above methods, we propose a multi-layer perceptron-based differen-
tial equation method, which specifically transforms the gene regulation network(GRN) 
system into an input-output regression problem, where the input is gene expression data 
and the output is the derivative estimated from the expression data. Our method utilizes 
time-series gene expression data to train a regulatory function that simulates the tran-
scription rate of a gene, which is a fully connected neural network(NN) with a four-layer 
structure. The fully connected neural network is trained by using the gene expression of 
the previous moment to predict the gene expression of the next moment, and using the 
loss function between the obtained prediction result and the real gene expression for 
feedback training. After training the model, the link knockout technique is used to set 
the expression value of a gene to 0 and determine the regulatory relationship between 
genes by looking at the influence of the gene on the synthesis rate (see Materials, Meth-
ods and Results for a detailed description). Figure 1a illustrates the detailed work of the 
overall framework. Figure 1b is used as an example to fully understand the composition 
of the regulatory relationship between the three genes. The control variable method is 
used to obtain the relationship between the synthesis rate and the gene over time. When 
the synthesis rate of gene 1 is restricted to 0, That is, taking gene 1 as the stimulus signal, 
looking at the changes of the three genes and their corresponding synthesis rates over 
time, and obtaining the final regulatory relationship between individual genes through 
the cross-sectional view of the fully connected neural network.

In this paper, we verify whether the regulatory network constructed by the NN 
method can continue to achieve the expected biological function by verifying the degree 
of overlap between the regulatory network discovered by NN and the regulatory net-
work constructed by the Hill function (HF). Moreover, our method is verified by three 
cases: adaptive noise signal, link knockout, and using link knockout technology to build 
large-scale gene regulatory network. And apply the real dataset (the mesoderm inducer 
Xenopus Brachyury (XBra) expression) to construct the core topology of gene regulatory 
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network. The resulting network topology can be intuitively explained by the concentra-
tion changes between genes, and many target functions can be achieved by comparing 
the resulting network with existing biological networks.

Results
Simulation studies

In this section, we conduct some simulation studies to empirically evaluate our proposed 
framework under different settings. In what follows, we demonstrate our proposed abil-
ity to construct gene regulatory networks in three scenarios: One is a regulatory network 
that can adapt to the influence of Gaussian white noise, and the other is the simulation 
of link knockout. The regulatory network obtained by training NN is redundant, and the 
core gene regulatory network can be obtained by link knockout. The last is to use linked 
knockouts to construct large-scale gene regulatory networks.

Case one: adaptation

Since adaptive systems often operate in noisy environments, exploring the adaptive 
properties and noise immunity of the network is the main goal of this section. It can be 
seen from Fig. 1 that the fully connected neural network (NN) transfers hidden informa-
tion from the previous time point to the next time point, and we ask the output node g3 
to perform the adaptation function (Fig. 1b). The input node g2 has no functional limita-
tion, but can play an adjustment role. The input node g1 is used as the input signal I.

Therefore, as shown in Fig.  2(1), the time evolution of the input signal (I) after 
adding noise, the expression level of g3 (blue line) is basically consistent with its 
target time course value (blue line) Dotted line), with a fast response phase and a 
slower recovery phase. And it can be intuitively seen in Fig. 2 that f3 and f2 change 
with the increase or decrease of the input g3 , g2 , I, it is easy to know the adjustment 
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a:Algorithm Basic Principles

when is satisfied
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Fig. 1 Fully linked neural network. a Schematic diagram of the fully connected neural network training 
synthetic term f. b Three genes are used as an example to illustrate. The synthetic term f2(f3 ) of g2(g3 ) is 
evaluated by a fully connected network. f2 and f3 (wheat and light blue) can depend on all three variables: g3 , 
g2 and the input signal g1
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logic hidden in NN, and directly construct Gene regulatory network (Fig. 2(3)). Our 
method achieves a reliable response to Gaussian white noise.

In the context of biological regulatory networks, we need to verify whether the 
resulting network is biologically feasible. Here, in order to check whether the net-
work obtained by the NN model (Fig. 1b) is reliable, the f term in Equation 2 is rep-
resented by the hill function, which is widely used in biological regulation modeling. 
The obtained gene regulatory network (Fig.  1b(3)) can be successfully transferred 
to the hill function model (Table  1), and the expected adaptive function can be 
achieved. Similarly, The obtained gene regulatory network (Fig. 2(3)) can be success-
fully transferred to the hill function model (Table 2).

Fig. 2 Time evolution process under noisy conditions. (1) Under the stimulus after adding Gaussian white 
noise to the input signal (the red line of Input), without any constraints on  g2, the time evolution curves  g3 
and  g2 obtained after training the NN, and the expression level of  g3 (blue line) is the same as The target time 
progress value (target’s blue dotted line) basically matches. (2) Cross-section information obtained by training 
a NN under noisy conditions. Three panels show the dependence of f3 , f2 on I, g3 or g2 with the other two 
variables fixed. (3) The regulatory network obtained from (2)

Table 1 Parameters for Hill function model with the topology of Fig. 1b(3) (Hill coefficient n = 2)

Link Activition/Inhibition b K

g1 to g3 Act. 4.242 1.198

g1 to g2 Act. 0.691 0.708

g2 to g3 Act. 0.496 0.664

g2 to g2 Act. 1.499 1.300

g3 to g2 Inh. – 0.166

g3 to g3 Inh. – 0.231
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Case two: link‑knockout knockout

According to Formula 5, the regulation logic of the gene regulatory network can be 
obtained by knocking out the difference before and after gene expression obtained by 
a certain edge, such as knocking out the regulatory link from g3 to g2 , by setting g3 to 
0 when calculating f2 . Four examples of link knock-out with � set to 0 are shown in 
Fig. 3(1). The first panel shows that g3 = 0 is entered into NN to obtain the value of f2 . g2 

Table 2 Parameters for Hill function model with the topology of Fig. 2(3)(Hill coefficient n = 2)

Link Activition/Inhibition b K

I to g3 Act. 2.148 1.573

I to g2 Act. 0.161 0.091

g3 to g2 Act. 0.178 0.051

g3 to g3 Inh. – 1.977

g2 to g3 Inh. – 0.976

g2 to g2 Inh. – 1.278

Fig. 3 Simulate regulator knockout. (1) The perturbed f function can be iterated to simulate the effect of 
mutants in which specific regulatory chains are deleted. For example, deletion of g3 ’s modulating effect on 
g3 leads to an increase in g3 (from darker to brighter solid green lines), indicating self-inhibition (shown in 
the third panel). The difference in g2 levels is not important here (dotted line). A similar argument applies to 
the other three panel. (2) Describes the sensitivity of network sequence and adapt to the error. Pane shows 
the knockout technology through links, step 1 to 4 of the evolution process of the network topology. The 
minimum incoherent feed forward motif appears naturally (topology #4), before the network has too few 
links to adapt
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expression level increases from the lighter orange line to the brighter orange line, indi-
cating that g3 inhibits g2 . The second panel shows that g2 is set to 0 and input into NN to 
obtain f3 . In the figure, the expression level of g3 decreases from lighter blue to darker 
blue, indicating that g2 stimulates g3 . In the third panel, g3 was set to 0 and input into NN 
to obtain f3 . The expression level of g3 increased from lighter blue to darker blue, indi-
cating g3 self-inhibition, and in the same way, the fourth panel showed g2 self-activation.

As above mentioned in this paper, through the order to remove unnecessary link to 
adjust repeatedly sparse network. The Fig.  3(2) depicts the sensitivity(response peak) 
and adaptive error(difference between the pre-stimulus and the fully adapted g3 levels) 
of the network sequence. The network shown in Panel #1 in Fig. 3(2) includes a basic 
adaptive function: incoherent feed-forward loops. #1 is the regulatory network learned 
by NN without any constraints, which has redundancy. By linking knockout technol-
ogy, applications to the existing links knockout, find the smallest change after deleting 
network, links to knock out after retraining within NN can get effective gene regula-
tion network of sparse #4 (in sensitivity and adaptation error is equal). #4 is the adaptive 
function with the least links to achieve the minimum incoherent feedforward network.

Case three: Large‑scale gene regulation networks are constructed using link knockout 

techniques

To apply to large-scale data, we evaluate the performance of our model using two data-
sets, each containing time-series expression profiles. Time-series data reflects how 
the network responds to perturbations and how it recovers after the perturbations are 
removed. The first one is the simulation data, we choose the InSilico_Size100 dataset 
from the DREAM4 In Silico Network Challenge [32]. The second one is from the real 
dataset, we select a large-scale E.  coli dataset (GSE20305) from the Gene Expression 
Omnibus (GEO) database [33]. The gold standard benchmark for E.coli consists of part 
from DREAM5 challenge [34] and other experimentally verified part from RegulonDB 
[35]. GSE20305 [33] provides real gene time-series data of E. coli under different experi-
mental environments. We choose the data under the three conditions (cold stress, heat 
stress and oxidative stress) to make up our experimental dataset. The specific informa-
tion of each dataset is shown in Table 3.

Table 3 The description of datasets used in experiments

DataSet Network Number 
of genes

Number of TFs Number 
of 
samples

Time points edges Density

DREAM4 InSilico_
Size100

Network_1 100 100 10 21 176 0.0176

DREAM4 InSilico_
Size100

Network_2 100 100 10 21 249 0.0249

DREAM4 InSilico_
Size100

Network_3 100 100 10 21 195 0.0195

DREAM4 InSilico_
Size100

Network_4 100 100 10 21 211 0.0211

DREAM4 InSilico_
Size100

Network_5 100 100 10 21 193 0.0193

E.coli Network_1 1484 163 3 8 3080 0.0127
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To evaluate the effectiveness of our method on the datasets in Table 3, Serveral meth-
ods are chosen as baselines as follows:

• GENIE3 [36]: an approach to infer gene regulatory networks from gene expression 
data. It trains a random forest model that predicts the expression of each gene in the 
dataset and uses the expression of transcription factors (TFs) as input.

• BiXGBoost [37]: it is a bidirectional-based method by considering both candidate 
regulatory genes and target genes for a specific gene. Moreover, BiXGBoost utilizes 
time information efficiently and integrates XGBoost to evaluate the feature impor-
tance.

• SIGNET [38]: a deep learning-based framework for capturing complex regulatory 
relationships between genes under the assumption that the expression levels of tran-
scription factors participating in gene regulation are strong predictors of the expres-
sion of their target genes.

• GNIPLP [39]: an approach to infer GRNs from time-series or non-time-series gene 
expression data. GNIPLR projected gene data twice using the LASSO projection 
(LSP) algorithm and the linear projection (LP) approximation to produce a linear and 
monotonous pseudo-time series, and then determined the direction of regulation in 
combination with lagged regression analyses.

• PoLoBag [40]: it is an ensemble regression algorithm in a bagging framework where 
Lasso weights estimated on bootstrap samples are averaged. These bootstrap samples 
incorporate polynomial features to capture higher-order interactions.

For a fair comparison of the above methods in this experiment, we always use the default 
parameters when running the program. We systematically evaluate the model using 
seven evaluation metrics, namely True Positive Rate(TPR), False positive rate(FPR), 
Matthews correlation coefficient (MCC), Accuracy(ACC), F-measure(F1), Area Under 
the Receiver Operating Characteristic curve(AUROC), Area under the precision-recall 
curve (AUPR). Experimental results for each method provide all predicted edges and 
their corresponding weights. The higher the weight, the higher the credibility of the reg-
ulatory relationship. Since different thresholds construct different GRN, the FPR, TPR, 
MCC, ACC and F1 measures are also correspondingly different.

The experiments are first performed on the DREAM4 InSilico_Size100 five networks. 
The edge weights predicted by all methods are sorted, and the first 250 predicted values 
are set to 1, and the other predicted values are set to 0. The following five indicators are 
calculated as shown in Table 4. The results in Table 4 show that our method outperforms 
the comparative methods, which indicates that our method can construct regulatory 
networks of time-series gene expression data by linking knockout techniques. In order 
to comprehensively consider the experimental results under different thresholds, we 
choose AUROC and AUPR values as evaluation criteria. Due to the randomness of the 
NN, the results will be different from run to run. In our experiments, these methods are 
ran 10 times and the results are presented in Fig. 4. For Network 4, the GENIE3 method 
outperforms the rest on AUROC. In InSilico_Size100 Networks 1–3 and 5, our method 
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has higher average AUROC, and the average AUPR number on Networks 1–5 is better 
than other methods.

For the E.coli dataset, we sorted the edges predicted by all methods and set the pre-
dicted value of the first 3080 edges to 1, and the value of the other predicted edges 
to 0. The FPR, TPR, MCC, ACC, and F1 measures are calculated between the pre-
dicted labels and the ground truth labels. The results are shown in Table 5. As shown 
in Table 5, Our methods perform the best. In order to consider the case of different 
thresholds, we show the results of ten average runs of all methods in Fig. 5. In par-
ticular, all available methods obtain worse results with less than 0.05 AUPR values 
on E.coli network (Fig. 5). This is due to the fact that AUPR tends to present smaller 
values on large-scale networks. Compared with the other five methods, our method 
achieves the best AUROC and the best AUPR. To test the efficiency of our method, 
we compare the running time of the six methods on a 32GB RAM, Intel(R) Xeon(R) 
CPU E5-2630 computer. The comparison results on the DREAM4 InSilico_Size100 
and E.coli datasets are shown in Table 6. The table shows the average running time 

Fig. 4 The AUROC and AUPR of GENIE3, BiXGBoost, SIGNET, GNIPLP, PoLoBag and our methods on DREAM4 
InSilico_Size100 five networks
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values of the six algorithms executed 10 times. Our method is relatively faster than 
other state-of-the-art methods.

Application to the Xenopus Brachyury (XBra)

In this section, real data are used to demonstrate the effectiveness of our method in a 
complex situation—the Activin/GSC/Xbra System. This is a well-researched system, 
including experiments and modeling [41]. Here, the fully connected data network model 
is used to solve the inverse problem, finding the core gene regulatory network given the 
observed gene expression of the Xenopus Brachyury as the desired output. The results 
obtained by NN were compared with known biological networks.

Table 4 Evaluating GRN inferring methods on DREAM4 InSilico_Size100

Method TPR FPR MCC ACC F1

Network_1

 GENIE3 0.098 0.001 0.232 0.981 0.168

 BiXGBoost 0.226 0.006 0.310 0.976 0.302

 SIGNET 0.190 0.005 0.288 0.976 0.268

 GNIPLP 0.180 0.004 0.286 0.966 0.218

 PoLoBag 0.215 0.006 0.307 0.979 0.298

Our methods 0.392 0.007 0.342 0.98 0.348

Network_2

 GENIE3 0.134 0.004 0.241 0.972 0.201

 BiXGBoost 0.182 0.006 0.263 0.964 0.239

 SIGNET 0.210 0.006 0.274 0.937 0.293

 GNIPLP 0.234 0.007 0.284 0.945 0.294

 PoLoBag 0.253 0.007 0.294 0.937 0.295

Our methods 0.321 0.007 0.312 0.956 0.303

Network_3

 GENIE3 0.104 0.003 0.239 0.962 0.227

 BiXGBoost 0.178 0.005 0.243 0.943 0.213

 SIGNET 0.21 0.007 0.279 0.952 0.288

 GNIPLP 0.183 0.006 0.273 0.913 0.302

 PoLoBag 0.174 0.005 0.251 0.929 0.291

Our methods 0.227 0.007 0.322 0.943 0.316

Network_4

 GENIE3 0.172 0.004 0.238 0.937 0.206

 BiXGBoost 0.211 0.007 0.281 0.923 0.291

 SIGNET 0.193 0.006 0.293 0.953 0.273

 GNIPLP 0.199 0.005 0.301 0.947 0.285

 PoLoBag 0.214 0.007 0.293 0.932 0.293

Our methods 0.247 0.008 0.362 0.974 0.382

Network_5

 GENIE3 0.143 0.005 0.263 0.983 0.194

 BiXGBoost 0.175 0.003 0.271 0.955 0.237

 SIGNET 0.193 0.006 0.289 0.932 0.283

 GNIPLP 0.163 0.003 0.284 0.925 0.249

 PoLoBag 0.175 0.004 0.291 0.943 0.302

Our methods 0.203 0.007 0.320 0.949 0.319



Page 11 of 17Mao et al. BMC Bioinformatics          (2022) 23:503  

Gene regulation in Fig.  6 follows the NN modeling in Fig.  1a, where g and f are 
three-dimensional vectors (Activin, Goosecold, Xbra) and input signal g1(Bcd). The 
expression of three genes is taken from the study of Green et al. [41], and the morpho-
genetic gradient (Bcd) is regarded as static. The results of 40 repetitions of NN train-
ing were all overlapped with the target graph (as shown in Fig. 6). When using the link 
knockout method, the gene regulatory network obtained is consistent with the known 
network structure. In Tables 7, the frequency with which the link is activated, non-
existent, and inhibited by 40 repetitions of training is listed, and in accordance with 
the majority coloring (orange activated, blue inhibited), the majority network (Fig. 6 
on the right) has a very similar structure to the known biological network revealed in 
experiment [41]. This experiment helps demonstrate the effectiveness of our method 
on real data.

Fig. 5 E. coli network including 1484 genes. Each bar represents the performance of one method in which 
the abscissas are the corresponding AUROC (right) and AUPR (left) values

Table 5 Evaluating GRN inferring methods on E.coli

Method TPR FPR MCC ACC F1

GENIE3 0.142 0.024 0.086 0.970 0.083

BiXGBoost 0.183 0.028 0.118 0.951 0.134

SIGNET 0.191 0.027 0.132 0.956 0.151

GNIPLP 0.162 0.024 0.103 0.97 0.102

PoLoBag 0.204 0.026 0.142 0.934 0.169

Our methods 0.367 0.025 0.275 0.961 0.286

Table 6 The running time comparison of the algorithms

DataSet GENIE3 BiXGBoost SIGNET GNIPLP PoLoBag Our methods

DREAM4 InSil-
ico_Size100

10 min 36 s 9 min 10 s 11 min 3 s 9 min 43 s 10 min 23 s 8 min 52 s

E. coli 5 h 55 min 4 h 45 min 6 h 13 min 5 h 45 min 6 h 11 min 5 h 7 min
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Discussion
In this paper, we propose a multi-layer perceptron-based differential equation 
method, which operates by training a fully connected neural network (NN) to sim-
ulate the transcription rate of genes in traditional differential equations. From the 
dataset validation results, our algorithm is superior to other methods, and its good 
performance is attributed to the use of neural networks to simulate unknown dynam-
ical systems. This has many advantages. First, there is no detailed mathematical equa-
tion format for using the input-output function of a multilayer perceptron. Training 
a neural network is to establish the necessary logical connections between input 
and output nodes, without specific constraints. Second, fully connected neural net-
works can speed up model training and scale to large-scale complex gene regulatory 
networks. Finally, neural networks are well suited for building gene regulatory net-
works on time-series gene expression data due to their limited short-term memory 
advantage.

Our goal is to visually explain how gene regulatory networks (GRNs) achieve con-
centration-dependent responses. However, the number of different mechanisms that 
may exist in cells, such as feedback or local cell-cell communication, is unclear. Some 
well-defined biological functions may have broad kinetic interpretations (even for rel-
atively simple three-gene networks and limited forms of modeling). There are more 

Fig. 6 the activin/gsc/Xbra system. The Activin gene was activated by the input signal of morphogenetic 
gradient (Bcd), so it began to imitate its gradient mode. The Activin gene activated Xbra gene and opened 
the positive feedback of Xbra gene at a certain threshold. The Activin gene activates the Goosecold gene, 
and when the concentration of the two genes accumulates high enough, it forces the Xbra gene down. 
However, the concentration is highest only on the left side, when the concentration of Goosecold gene is 
low and its inhibitory effect is low, so that Xbra gene reaches a stable state

Table 7 Statistical data of gene regulation network obtained by 40 repetitions of training NN

Known biological interactions Act./Null/Inh.

From To

Goosecold Activin Xbra

Bcd 0/38/2 40/0/0 4/36/0

Goosecold 0/30/10 1/38/1 0/1/39

Activin 39/0/1 0/40/0 32/8/10
Xbra 5/35/0 0/40/0 36/0/4
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complex cellular processes that cannot simply be attributed to activating or repressive 
regulation. The structure of the regulatory network itself should be re-explored in a 
more comprehensive context. The method developed here can provide ideas for fur-
ther exploration of reconstructed gene regulatory networks in the future, and inter-
esting future research topics can apply our method to different real-world biological 
and biomedical data problems.

Conclusions
A long-standing question in biology is how complex biological networks perform com-
plex regulatory functions. One strategy is to exhaustively search all possible biological 
networks for single or multiple functions, which is only suitable for small gene networks. 
For a biological network of four genes, the computational complexity of the exhaustive 
search method is enormous. In this study, we propose a multi-layer perceptron-based 
differential equation method. Figure 1a illustrates the specific work of the whole frame-
work. Our method utilizes time-series gene expression data to train a regulatory func-
tion that simulates the transcription rate of a gene, which is a fully connected neural 
network (NN) with a four-layer structure. The fully connected neural network is trained 
by using the gene expression of the previous moment to predict the gene expression of 
the next moment, and using the loss function between the obtained prediction result 
and the real gene expression for feedback training. After the model is obtained after 
training, the link knockout technique is used to set the expression value of a gene to 0, 
and the regulatory relationship between genes can be judged by looking at the effect of 
the gene on the synthesis rate.

First we verify the adaptation function of our method. The adaptive function is per-
formed by training a NN, and our method also performs well in the presence of Gauss-
ian white noise on the internal and external stimulus signals. Then, through the link 
knockout technique, redundant links are eliminated from the gene regulatory net-
work trained by NN, and an effective core gene regulatory network is finally obtained. 
Finally, to validate our approach on large-scale datasets, we use InSilico_Size100 time 
series simulation data and E.coli real datasets. Our model is compared with three state-
of-the-art regression models on these two datasets. Experiments show that our method 
performs well in all six networks, which proves the good scalability and adaptability of 
our method. In addition to validating on a large-scale real dataset, we also validate our 
method on a real dataset (Xenopus laevis) with five genes to demonstrate its effective-
ness. Our method can help discover the regulatory logic and network topology of com-
plex tasks. For the resulting network topologies, it is possible to intuitively explain how 
their structures generate their functions, thus linking network topology to function.

Methods
Nonlinear ordinary differential equation models

In the gene regulation system, the time effect variable xi is used to represent the expres-
sion level of the ith gene at time t, and the value of this variable is non-negative. Then, 
the regulatory relationship between n genes in the system can be expressed by ordinary 
differential equations: One is a regulatory network that can adapt to the influence of 
gaussian white noise, and the other is the simulation of link knockout. The regulatory 
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network obtained by training NN has redundancy, and the most core gene regulatory 
network can be obtained by link knockout. The last is the use of linked knockouts to 
build large-scale gene regulatory networks.

The above equations are also called kinetic equations. where dxidt
 indicates the rate of 

change of the expression level of the i-th gene at time t, x1, x2, . . . , xn represents the 
expression level of each gene. Therefore, the expression change rate of the i-th gene at 
time t depends on the expression levels of other genes, including its own expression level 
xi . The structure of the function fi(x1, x2, . . . , xn) on the right-hand side of Equation 1 
indicates the internal regulatory mechanism between genes, that is, the structure of the 
regulatory network.

In most cases, the interactions between genes exhibit complex nonlinear relationships. 
At this time, the nonlinear regulation function fi(x) can better explain the real situation 
in the organism, it is usually considered that the function f is a continuously differenti-
able and monotonically increasing bounded function. Here, we use the hill function to 
model the complex GRN structure. The dynamics of this GRN can be modeled as:

Here h+ij =
bijg

n
j

Kn
ij+gnj

 represents the activation item, and h−il =
Kn
il

Kn
il+gnl

 represents the inhibi-

tory item. For simplicity, we set the Hill coefficient n = 2 in the enumeration study. Each 
activation link h+ij  has two parameters K and b, while the inhibitory link h−il  has only one 
parameter K. For each network topology, the network topology is considered ’successful’ 
when the parameters (K and b) are sampled independently of the exponential distribu-
tion p(x) = e−x(refer to the study of Ehsan et al. [42]), 100,000 groups of random param-
eters are sampled and no less than 2 groups of parameters are obtained. The exhaustive 
search of hill function model used in this paper is only a verification step, and some false 
positives do not affect our conclusions.

Fully connected neural network model

In this paper, multilayer perceptron is used to obtain the gene synthesis rate f in time 
series gene expression data. In biological cells, the regulatory relationship between genes 
may be time-lag. Therefore, the input layer of multi-layer perceptron in our algorithm is 
the expression level of all genes at the t time point, and the output layer is the synthesis 
rate f of corresponding genes at the t time point. In this paper, the activation function of 
the hidden layer shown in Fig. 1a is ReLU, and the activation function of the output layer 
is sigmoid, so the value of the synthesis rate f is between 0 and 1. They are respectively 
expressed as:

(1)dxi
dt

= fi(x1, x2, . . . , xn), 1 ≤ i ≤ n.

(2)fi = j h
+
ij l h

−
il

(3)ReLU(x) = max(0,wTx + b).

(4)Sigmoid(x) = 1

1+e−x .
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As shown in Fig. 1b using three genes as an example, the ordinary differential equation 
of the corresponding gene regulatory network is expressed as:

where the fi(g1, g2, g3) function contains the regulatory relationship between genes. The 
Euclidean distance between ĝ(t + dt) calculated by the ordinary differential equation 
formula in Fig. 1a and the expression level of gene g(t + dt)(time step is 1) at the next 
moment used as the training loss function of NN, Loss = 2

√

∑

t(ĝ(t + dt)− g(t + dt))2 . 
�gi represents the degradation term, we simply set � = 1 . In reality the degradation term 
can be represented by the diagonal term of the synthetic term f.

In Fig. 1b, three genes are used as an example to demonstrate that our method can intui-
tively construct gene regulatory networks. Taking g1 as the stimulus signal, the neural 
network training principle is shown in Fig. 1b(1), and Fig. 1b(2) represents the cross-sec-
tional information obtained by training the NN. When f1 = 0 is satisfied, what is shown in 
Fig. 1b(2) is that f2 (blue dotted line) and f3 (orange dotted line) increase with the increase 
of g1 , that is, g1 activates g2 , and g1 activates g3 , inhibited by g3 after g3 reaches a steady state. 
The regulatory network extracted from the information of Fig.  1b(2) is composed of an 
incoherent feedforward loop, and b(3) is the regulatory network obtained from the cross-
sectional information of the neural network of Fig. 1b(2).

Link knockout technique

For regulatory networks with many more genes, direct visualization of the f-function is 
difficult. Once we have a predictive model between all the genes and the synthetic term f, 
we question which genes in the gene pool have a strong influence on the synthetic term 
f. Therefore, we introduced the linked knockout technique, which passes raw data to the 
data for gene knockout, i.e., sets the expression of one gene at a time to 0, and uses the 
expression of the remaining genes as input to predict a specific synthetic term expres-
sion status. Therefore, this method can effectively improve the ability of constructing the 
regulatory network without reading the weight of NN. A disadvantage of this method is 
that when the synthesis rate of gj is strongly inhibited by the highly expressed gi gene. 
that is, when the expression of gene gi is set to 0, the value of synthesis rate fj obtained 
through neural network training will be very large. Therefore, a more accurate measure 
of the change in fj with a fold change in gi is:

This formula represents the link knockout experiment. µ represents discount factor, 
µ = 0 represents link knockout. We truncated the domain where transcription factor i 
binds to gene j. With the regulatory link from node i to j being knocked down by a fac-
tor µ , the NN output (synthesis term fj ) changes accordingly. �ij reflect the regulation 
effect of gi on gj . A more intuitive example in Fig. 3 depicting the mutational trajectory 
where the regulatory link from g3 to g2 is knocked out is given by:

(5)dgi
dt

= fi(g1, g2, g3)− �gi; i = 1, 2.

(6)�ij = fj(g1, . . . , gi)− fj(g1, . . . ,µgi); 0 < µ < 1.

(7)

{

dg2
dt

= f2(µg3, g2)− �g2
dg3
dt

= f3(g3, g2)− �g3
; 0 < µ < 1
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Figure 3(1) first panel shows that the increase of g3 level means that g2 negatively regu-
lates or inhibits g3 , whereas the decrease of g3 level means that g2 positively regulates or 
promotes g3.
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