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Abstract

Background: Single-nucleotide polymorphisms (SNPs) selection and identification are the most important tasks in
Genome-wide association data analysis. The problem is difficult because genome-wide association data is very high
dimensional and a large portion of SNPs in the data is irrelevant to the disease. Advanced machine learning methods
have been successfully used in Genome-wide association studies (GWAS) for identification of genetic variants that have
relatively big effects in some common, complex diseases. Among them, the most successful one is Random Forests
(RF). Despite of performing well in terms of prediction accuracy in some data sets with moderate size, RF still suffers
from working in GWAS for selecting informative SNPs and building accurate prediction models. In this paper, we
propose to use a new two-stage quality-based sampling method in random forests, named ts-RF, for SNP subspace
selection for GWAS. The method first applies p-value assessment to find a cut-off point that separates informative and
irrelevant SNPs in two groups. The informative SNPs group is further divided into two sub-groups: highly informative
and weak informative SNPs. When sampling the SNP subspace for building trees for the forest, only those SNPs from
the two sub-groups are taken into account. The feature subspaces always contain highly informative SNPs when used
to split a node at a tree.

Results: This approach enables one to generate more accurate trees with a lower prediction error, meanwhile possibly
avoiding overfitting. It allows one to detect interactions of multiple SNPs with the diseases, and to reduce the
dimensionality and the amount of Genome-wide association data needed for learning the RF model. Extensive
experiments on two genome-wide SNP data sets (Parkinson case-control data comprised of 408,803 SNPs and Alzheimer
case-control data comprised of 380,157 SNPs) and 10 gene data sets have demonstrated that the proposed model
significantly reduced prediction errors and outperformed most existing the-state-of-the-art random forests. The top 25
SNPs in Parkinson data set were identified by the proposed model including four interesting genes associated with
neurological disorders.

Conclusion: The presented approach has shown to be effective in selecting informative sub-groups of SNPs potentially
associated with diseases that traditional statistical approaches might fail. The new RF works well for the data where the
number of case-control objects is much smaller than the number of SNPs, which is a typical problem in gene data and
GWAS. Experiment results demonstrated the effectiveness of the proposed RF model that outperformed the state-of-
the-art RFs, including Breiman’s RF, GRRF and wsRF methods.
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Background
The availability of high-throughput genotyping technol-
ogies has greatly advanced biomedical research, enabling
us to detect genetic variations that are associated with
the risk of diseases with much finer resolution than
before. With genome-wide genotyping of single nucleo-
tide polymorphisms (SNPs) in the human genome, it is
possible to evaluate disease-associated SNPs for helping
unravel the genetic basis of complex genetic diseases
[1]. SNPs are single nucleotide variations of DNA base
pairs, and it has been well established in the genome-
wide association studies (GWAS) field that SNP profiles
characterize a variety of diseases [2]. In light of emer-
ging research on GWAS, hundreds or thousands of
objects (with disease or normal controls) are collected,
each object is genotyped at up to millions of SNPs. This
is a typical problem of the number of SNPs is typically
thousands of times larger than the number of objects.
The task is to identify genetic susceptibility of SNPs
through assaying and analyzing SNPs at the genome-
wide scale [3].
A number of methods for analyzing of susceptibility of

SNPs in GWAS have been proposed in the literature,
where each SNP is analyzed individually [4]. However, it is
found that only a small portion of the SNPs have main
effects on the complex disease traits, but most of the SNPs
have shown little penetrance individually. On the other
hand, many common diseases in humans have been
shown to be caused by complex interactions among multi-
ple SNPs. This is known as multilocus interactions [5].
For dealing with the later challenge, one way of testing

the interactions is to exhaustive search the interactions
between all SNPs. The approach to test all two-SNPs to
see how they are related to diseases is already quite time
demanding [6]. Further exhaustive search for higher order
interactions becomes computationally impractical because
the number of tests increases exponentially with the order
of interaction [7]. One approach to overcoming the draw-
backs of the large computational cost using traditional sta-
tistical test is to first find a small set of high relevant SNPs
using univariate tests on each SNP by discarding SNPs
with high p-values, and then evaluate the interactions
within the high relevant SNP subset [8].
This paper focuses on an approach for selecting informa-

tive SNPs, i.e. a small portion of the SNPs that has main
effects on the disease, using Random Forests (RF) model
[9]. RF has been applied successfully to genetic data in var-
ious studies [10-14]. A number of studies has used RFs to
rank SNP predictors [15], to predict disease using SNPs
[16] and to identify the effects related to diseases [17].
RF is an ensemble method for classification built from a

set of decision trees that grow in randomly selected sub-
spaces of data. Each tree is built using a bootstrap sample

of objects. At each node, a random subspace of all SNPs is
chosen to determine the best split to generate the children
nodes. The size of subspace is referred to a parameter
mtry that is used in growing the trees. Each node in a
grown tree corresponds to a specific best predictor SNP in
a subspace with mtry randomly selected SNPs. A grown
tree in a forest is represented by a top-down decision tree,
in which multiple decision paths from the root to different
leaves go through the tree via various nodes. A decision
path is a sequence of multiple SNPs including potential
interactions between them in terms of hierarchial depen-
dencies. In this way, RF can normally take into account
interactions between SNPs (for details, see [18,19]).
A grown RF is able to yield a classification result and a

measure of the feature importance for each SNP [18].
Although it is anticipated that RF will help to detect the
SNP interactions, the task of selecting the relevant SNPs
associated with complex disease in high dimensional geno-
mewide data using RF method still poses significant chal-
lenges. In general, the SNP importance measure used to
select the relevant SNPs is based on the impact of an SNP
in predicting the response. The effectiveness of SNP
importance depends on the performance of the grown RF
that correctly classifies new objects of given SNPs.
A series of comprehensive studies revealed that the ori-

ginal RF implementation by Breiman is efficient to analyze
low dimensional data. Bureau et al. [10] show that RF has
worked well in a candidate gene case-control study invol-
ving only 42 SNPs. Lunetta et al. [19] show that RF can be
applied to simulated data sets with no more than 1000
SNPs. However, it is computationally inefficient to build
an accuracy RF model for high dimensional data. As a
consequence, RF has rarely been applied on the genome-
wide level for SNP selection and classification. Specifically,
the original RF implementation designed to use a small
default SNP subspace size mtry, e.g., log2M + 1, is only sui-
table for low dimensional data, where M is the total num-
ber of SNPs. For high dimensional SNP data, there is
usually a large number of SNPs that is considered to be
irrelevant to the response, and only a small number of
SNPs is relevant or informative. The simple random sam-
pling method using a small mtry selects many subspaces
without informative SNPs, and the number of objects is
usually insufficient to generate numerous nodes to make it
up to a good performance. To guarantee the performance
of the generated RF model, previous studies recommended
to use a relative large mtry in growing the trees of a RF
when dealing with high dimensional data such as SNP
data in GWA studies. However, the computational cost of
the procedure of searching such a good mtry is very high
which is dependent on the possible candidates to be
searched. In the study by Schwarz et al. [20], a multiple
sclerosis case control data set comprised of 325,807 SNPs
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in 3,362 individuals was used and it took 1 week to gener-
ate a full random forest on a server with 82 GHx CPU and
32 GB of memory, where the mtry values to search are

2
√
M, 2

√
M, 0.1M , 0.5M and M . It was found that RFs

built by small mtry values for high dimensional SNP data
had poor classification performance [21].
In this paper, we propose to use a new approach in

learning RFs model using a two-stage quality-based SNP
subspace selection method, which is specifically tailored
for high dimensional data of GWA studies. The pro-
posed R-F model is computationally efficient to analyze
GWA data sets with thousands to millions of SNPs
without the need of using a large value of mtry. Further-
more, it is able to deliver a better classification perfor-
mance than the original RF implementation using large
mtry with a large margin. Our idea is to first add sha-
dow SNPs into the original GWA data set. The shadow
SNPs do not have prediction power to the outcome.
However, they can give an indicator for the selection of
informative SNPs. We then apply a permutation proce-
dure to this extended GWA data to produce importance
scores for all SNPs. The p-value assessment is used to
find a cut-off point that separates informative SNPs
from the noisy ones. Any SNP whose importance score
is greater than the maximum importance score of the
shadow SNPs is considered as important. We then use
some statistical measures to split the set of informative
SNPs into two groups: highly informative SNPs and
weak informative SNPs. When sampling an SNP sub-
space for building trees, we only select SNPs from these
two groups. This maintains the randomness of RFs
meanwhile assuring the selection of informative SNPs.
The resulting RF model is able to achieve a lower pre-
diction error and avoid overfitting.
We conduct a series of experiments on two genome-

wide SNP data sets (Parkinson disease case-control data
set comprised of 408, 803 SNPs and Alzheimer case-
control data set comprised of 380, 157 SNPs) to demon-
strate the effectiveness of the proposed RF method. To
validate the the conjecture that the approach is effective
for problems with large M and small N , where N
denotes the number of objects, we have conducted addi-
tional experiments on 10 other gene data sets with gene
expression classification problems. Experimental results
show that the proposed RF using two-stage quality-
based SNP sampling can generate better random forests
with higher accuracy and lower errors than other exist-
ing random forests methods, including Breiman’s RF,
GRRF and wsRF methods.

Methods
Given a training data L = {(Xi,Yi)Ni=1|Xi ∈ R

M,Y ∈ Y},
where Xi are predictor SNPs, Y ∈ Y ∈ {1, 2, . . . , c} is the

outcome containing possible classes (diseases), N is the
number of training samples (also called case-control
objects) and M is the number of SNPs. Random Forests
[9] independently and uniformly samples with replace-
ment the training data L to draw a bootstrap data set
L∗
k from which a decision tree T∗

k is grown. Repeating
this process for K replicates produces K bootstrap data
sets and K corresponding decision trees T∗

1,T
∗
2, . . . ,T

∗
k

which form a RF. Given an input X = x, let ĥk(x) denote
the prediction of class j of input x ∈ R

M by the kth tree,
the RF prediction is obtained by aggregating the results
given by all K decision trees, denoted as Ŷ , that is

Ŷ = argmax
j∈Y

{
K∑
k=1

I
[
ĥk(x) = j

]}
, (1)

where I(·) denotes the indicator function.

Importance score of SNP from a RF
The importance score of SNPs can be obtained in grow-
ing trees [9]. At each node t in a decision tree, the split
is determined by the decrease in node impurity. The
node impurity is the gini index. If a sub-data set in
node t contains samples from c classes (c ≥ 2), the gini
index is defined as Gini(t) = 1

∑c

j=1
p̂2j , where p̂2j is the

relative frequency of class in t. Gini(t) is minimized if
the classes in t are skewed. After splitting t into two
child nodes t1 and t2 with sample sizes N1(t) and N2(t),
the gini index of the split data is defined as

Ginisplit(t) =
N1(t)
N(t)

Gini(t1) +
N2(t)
N(t)

Gini(t2). (2)

The SNP providing smallest Ginisplit(t) is chosen to
split the node. The importance score of each SNP is
computed over all K trees in a RF. These raw impor-
tance scores can be used to rank the SNPs.

Two-stage quality-based SNP sampling method for
subspace selection
The importance scores from a RF only give a simple
ranking of SNPs. However, it is very difficult to select
informative SNPs because of the noisy nature of the
GWA data. For better subspace selection at each node
of a tree, we first need to distinguish informative SNPs
from noisy ones. Then, the informative SNPs are divided
into two groups based on the statistical measures. When
sampling the SNP subspace, SNPs from these groups
are taken into account. Since the subspace always con-
tains highly informative SNPs which can guarantee a
better split at any node of a tree.
In the first stage we build R random forests to obtain

raw importance scores and then use Wilcoxon rank-
sum test [22] to compare the importance score of an
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SNP with the maximum importance scores of generated
noisy SNPs called shadows. The shadow SNPs are added
into the original GWA data set and they do not have
prediction power to the outcome. From the replicates of
shadow SNPs, we extracted the maximum value from
each row of the importance score of the shadow SNP
and put it into the comparison sample. For each SNP,
we computed Wilcoxon test to check whether its mean
importance score is greater than the maximum impor-
tance score of noisy SNPs. This test confirms that if a
SNP is important, it consistently scores higher than the
shadow over multiple permutations. Given a significance
threshold θ (the default setting is 0.05), any SNP whose
p-value is greater than θ is considered to be an irrele-
vant SNP and is removed from the system, otherwise,
the relationship with the outcome is assessed. This
method has been presented in [23].
In the second stage, we find the best subset of SNPs

which is highly related to the outcome. We now only con-
sider the subset of SNPs X̃ obtained from L after neglect-
ing all irrelevant SNPs and use a measure correlation
function c2(X̃, Y) to test the association between the out-
come label and each SNP Xj. Let Xs be the best subset of
SNPs, we collect all SNPs Xj whose p-value is smaller than
or equal to 0.05 as a result from the c2 statistical test. The
remaining SNPs {X̃\Xs} are added into Xw.
We independently sample SNPs from the two subsets

and merge them together as the subspace SNPs for
splitting the data at any node. The two subsets partition
the set of informative SNPs in data without irrelevant
SNPs. Given Xs and Xw, at each node, we randomly
select mtry (mtry > 1) SNPs from each group of SNPs.
For a given subspace size, we can choose proportions
between highly informative SNPs and weak informative
SNPs that depends on the size of the two groups. That
is mtrys = [mtry × (||Xs||/||X̃||)] and mtryw = [mtry ×
(||Xw||/||X̃||)], where Xs and Xw are the number of
SNPs in the groups of highly informative SNPs Xs and
weak informative SNPs Xw, respectively. ||X̃|| is the
number of informative SNPs in the input GWA data
set. These are merged to form the SNP subspace for
splitting the nodes in trees. This new sampling method
always provides highly informative SNPs for the sub-
space at any node in growing a decision tree.

The RF algorithm using two-stage quality-based SNP
sampling method
We now present the random forest algorithm called ts-
RF using a new SNP sampling method to generate splits
at the nodes of CART trees [24]. The new algorithm is
summarized as follows.
(1) Generate the extended data set of 2M dimensions

by permuting the corresponding predictor SNP values
for shadow SNPs.

(2) Build a random forest model RF from the extended
data set and compute R replicates of raw importance
scores of all SNPs and shadows with RF . Extract the
maximum importance score of each replicate to form
the comparison sample of R elements.
(3) For each SNP, take R importance scores and com-

pute Wilcoxon test to get p-value.
(4) Given a significance level threshold θ, neglect all

noisy SNPs.
(5) The c2 statistical test is used to separate the highly

and weak informative subsets of SNPs Xs and Xw,
respectively.
(6) Sample the training set L with replacement to gen-

erate bagged samples Lk, k = 1, 2, ..., K.
(7) For each Lk, grow a CART tree Tk as follows:
(a) At each node, select a subspace of mtry (mtry =

mtrys +mtryw, mtry >1) SNPs randomly and separately
from Xs and Xw and use the subspace SNPs as candidates
for splitting the node.
(b) Each tree is grown nondeterministically, without

pruning until the number of SNPs per leaf nmin is reached.
(8) Given a X = xnew, use Equation (1) to predict new

samples on the test data set.

Experiments
Evaluation measures
We used Breiman’s method as described in [9] to calculate
the average Strength (s), the average Correlation (r) and c/
s2 as performance measures of a random forest. Out-of-
bag estimates were used to evaluate the strength and cor-
relation. Given s and ρ̄, the out-of bag estimate of the c/s2
measure can be computed with r/s2. The correlation mea-
sure indicates the independence of trees in a forest
whereas the average strength correspond to the accuracy
of individual trees. Low correlation and high average
strength result in a reduction of general error bound mea-
sured by c/s2 which indicates a high accuracy RF model.
Let Dt denote a test data set and Nt denote the number

of samples in Dt. The two measures are also used to evalu-
ate the prediction performance of the RF models on Dt.
One is the Area under the curve (AUC). The other one is
the test accuracy, computed as:

Acc =
1
Nt

Nt∑
i=1

I
(
Q

(
xi, yi

) − maxj�=yiQ
(
xi, j

)
> 0

)
(3)

where I(·) is the indicator function, yi indicates the

true class of xi ∈ Dt and Q(xi, j) =
∑K

k=1
I(ĥk(xk) = j) the

number of votes for xi on class j.

Results on SNPs data sets
We conducted experiments on two genome-wide SNP
data sets whose characteristics are summarized in
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Table 1 “Abbr” column indicates the abbreviation of the
genome-wide SNP data sets used in the experiments.
The real data Alzheimer disease has been analyzed

and reported in Webster et al. [25]. It contained geno-
types of a total of 380,157 SNPs in 188 neurologically
normal individuals (controls) and 176 Alzheimer disease
patients (cases). The genotype data for Parkinson disease
patients and controls were published in [26]. This
genome-wide SNP consisted 271 controls and 270 patients
with Parkinson disease, cerebrovascular disease, epilepsy,
and amyotrophic lateral sclerosis. For raw genotype data
with phs000089.v3.p2 study accession can be found in
NCBI [1] dbGaP repository.
The 5-fold cross-validation was used to evaluate the

prediction performance of the models on GWA data
sets. From each fold, we built the models with 500 trees
and the SNP partition was re-calculated on each training
fold data set. We also compared the prediction perfor-
mance of the ts-RF model with linear kernel SVM,
taken from LibSVM [2], the values of regularization
parameter by factors C were 2-2 and 2-5, respectively.
These optimal parameter C provided the highest vali-
dated accuracy on the training data set. The number of
the minimum node size nmin was 1. The parameters R,
mtry and θ for pre-computation of the SNP partition
were 30, 0.1M and 0.05, respectively. We used R to call
the corresponding C/C++ functions from the ts-RF
model and all experiments were conducted on the six
64bit Linux machines, each one equipped with IntelR
XeonR CPU E5620 2.40 GHz, 16 cores, 4 MB cache,
and 32 GB main memory. The ts-RF and wsRF models
were implemented as multi-thread processes, while
other models were run as single-thread processes.
Table 2 shows the average of test accuracies and AUC of

the models on the two GWA data asets using 5-fold cross-
validation. We compare our ts-RF model with the Brei-
man’s RF method and two recent proposed random forests
models, that are the guided regularized random forests
GRRF model [27] and the weighting subspace random for-
ests wsRF model [28]. In the GRRF model, the weights are
calculated using RF to produce importance scores from the
out-of-bag data, in which these weights are used to guide
the feature selection process. They found that the least reg-
ularized subset selected by their random forests with mini-
mal regularization ensures better accuracy than the
complete feature set. Xu et al. proposed a novel random
forests wsRF model by weighting the input features and
then selecting features to ensure that each subspace always

contains informative features. Their efficient RF algorithm
can be used to classify multi-class data.
The latest RF [29] and GRRF [30] R-packages were

used in R environment to conduct these experiments.
For the GRRF model, we used a value of 0.1 for the
coefficient g because GRRF(0.1) has shown competitive
prediction performance in [27]. We can see that ts-RF
and wsRF always produced good results with a different
mtry value. The ws-RF model achieved higher prediction
accuracy when using mtry =

√
M. The ts-RF model using

mtry =
√
Mp outperformed the RF, GRRF, wsRF models

and SVM on both GWA data sets, where Mp = ||Xs|| +
||Xw|| denotes the number of informative SNPs. The RF
model requires a larger number of SNPs to achieve bet-
ter prediction accuracy (mtry = 0.5M). With this size,
the computational time for building a random forest is
still too high, especially for GWA data sets. It can be
seen that the ts-RF model can select good SNPs in the
subspace to achieve the best prediction performance.
These empirical results indicate that, when classifying
GWA data sets with ts-RF built from small yet informative
subspaces, the achieved results can be satisfactory.
[1] http://www.ncbi.nlm.nih.gov/
[2] http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools
Table 3 shows the prediction accuracy and Table 4

shows the c/s2 error bound of the random forest models
with different numbers of trees while mtry = ⌊log2(M ) + 1⌋
was fixed on the GWA data sets, respectively. We con-
ducted these experiments to compare the new model with

Table 1 Description of two GWA data sets.

Data set Abbr #SNPs #Cases-Controls #Classes

Alzheimer ALZ 380,157 364 2

Parkinson PAR 408,803 541 2

Table 2 omparison of different random forests models on
the SNP pair data sets with different mtry values.

Data set Model mtry setting values Acc AUC

ALZ ts-RF
√
M 45 .907 .975

wsRF log2M 19 .561 .711

wsRF (log2M)
2 361 .654 .729

wsRF
√
M 616 .692 .757

GRRF
√
M 616 .657 .706

RF log2M 19 .530 .623

RF
√
M 616 .632 .729

RF .1M 38,015 .654 .732

RF .5M 190,078 .663 .773

SVM C 2−5 .690 .716

PAR ts-RF
√
Mp 22 .895 .959

wsRF log2M 19 .754 .850

wsRF
√
M 638 .837 .917

GRRF
√
M 638 .688 .765

RF log2M 19 .564 .722

RF M 368 .799 .848

RF .1M 40,880 .808 .879

RF .5M 204,402 .827 .898

SVM C 2−2 .825 .902

Numbers in bold are the best results.
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other random forests models and observed obvious
improvement in classification accuracy on all GWA data
sets. For the comparison of the c/s2 error bound, the GRRF
model was not considered in this experiment because the
RF model of Breimen’s method [29] was used in the GRRF
model as the classifier. The efficient wsRF model [28] and
the Breimen’s method were used for comparison in the
experiment. We used the RF, wsRF and ts-RF models to
generate random forests in different sizes from 20 trees to
200 trees and computed the average accuracy of the results
from the 5-fold cross-validation. We can clearly see that
the ts-RF model outperformed other models in classifica-
tion accuracy and produced the lowest c/s2 error in most
cases on all GWA data sets.
The proposed ts-RF model was applied to the Parkinson

genome-wide data and assigned a score of importance to
each SNP. The resulting list of SNPs was investigated for
potential relevance to the Parkinson disease. Table 5
shows the results of the top 25 SNPs that are located
within gene regions studied by the previous work. For
each SNP, details including the rank value, SNP ID, gene
symbol, gene ID, and p-value obtained using Wilcoxon
test. The boldface rows in the table are the interesting
genes associated with Parkinson disease. The results of
this real data analysis validate the findings of GWA studies
such as PTPRD, EPHA4 and CAST. Results also give other
potential SNPs and genes that may be associated with the

Parkinson disease. Specifically, some of these SNPs were
found not to be strongly associated with the Parkinson
disease by traditional statistical tests because they have
relatively high p-value. This provides evidence of the
advantages of using the proposed ts-RF model to detect
potential SNPs associated with the disease. However,
interpreting results and assessing their biological plausibil-
ity is challenging. Biologists can perform further investiga-
tion to validate their relationship with the Parkinson
disease.
In summary, ts-RF is a promising method for applying

RF method to high-dimensional data such as GWA data.
The application of ts-RF to GWA data may help to
identify potential interesting SNPs that are difficult to
be found with traditional statistical approaches.

Results on gene data sets
To validate our conjecture that the proposed ts-RF model
is effective for GWA data, we have conducted additional
experiments on gene data sets. In this experiment, we
compared across a wide range the performances of the
10 gene data sets, used in [31,27]. The characteristics of
these data sets are given in Table 6. Using this type of

Table 3 The prediction test accuracy of the models on
the SNP pair data sets against the number of trees K.

Data set Model K

20 50 80 100 200

ALZ RF .517 .491 .505 .555 .533

GRRF .503 .500 .539 .533 .528

wsRF .528 .588 .527 .602 .593

ts-RF .711 .775 .791 .846 .893

PAR RF .579 .557 .553 .597 .580

GRRF .532 .604 .641 .669 .680

wsRF .647 .680 .708 .710 .745

ts-RF .852 .871 .858 .861 .871

Numbers in bold are the best results.

Table 5 Top 25 SNPs identified by ts-RF in Parkinson
case-control data set.

Rank SNP Gene ID Gene Symbol p-value

1 rs7170952 64927 TTC23 2.1E-44

2 rs850084 101928208 LOC 3.6E-13

3 rs832241 5789 PTPRD 6.8E-28

4 rs1469593 647946 LINC00669 1.0E-34

5 rs9383311 9972 NUP153 1.5E-28

6 rs17023875 55591 VEZT 1.4E-32

7 rs9952724 9811 CTIF 3.7E-11

8 rs3087584 2043 EPHA4 1.6E-04

9 rs10053056 831 CAST 6.4E-05

10 rs6900852 135112 NCOA7 2.0E-08

11 rs3790577 10207 INADL 2.4E-25

12 rs722571 30000 TNPO2 1.6E-09

13 rs7924316 723961 INS-IGF2 1.1E-06

14 rs4956263 9811 CTIF 2.8E-06

15 rs12680546 165829 GPR156 1.3E-04

16 rs10518765 440279 UNC13C 1.5E-05

17 rs12185438 8715 NOL4 7.3E-05

18 rs12364577 440040 LOC440040 4.4E-10

19 rs2157787 463 ZFHX3 3.2E-03

20 rs17649 6692 SPINT1 1.0E-04

21 rs6429429 10000 AKT3 1.3E-03

22 rs2346771 3084 NRG1 1.0E-02

23 rs2666781 64215 DNAJC1 4.2E-04

24 rs2867301 55204 GOLPH3L 3.9E-03

25 rs11819434 282973 JAKMIP3 3.8E-02

Rows in bold indicate useful genes associated with neurological disorders.

Table 4 The (c/s2) error bound results of the models on
the SNP pair data sets against the number of trees K.

Data set Model K

20 50 80 100 200

ALZ RF .2162 .1300 .0813 .0700 .0390

wsRF .2838 .1269 .0995 .1028 .0619

ts-RF .1817 .0833 .0628 .0553 .0456

PAR RF .2300 .1041 .0857 .0645 .0397

wsRF .2243 .1275 .0856 .0899 .0589

ts-RF .1191 .0712 .0718 .0654 .0716

Numbers in bold are the best results.
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data sets makes sense, since the number of genes of these
data sets are much larger than the number of patients.
For the RF method to obtain high accuracy, it is critical
to select good genes that can capture the characteristics
of the data and avoid overfitting at the same time.
For the comparison of the models on gene data sets,

we used the same settings as in [27]. For coefficient g
we used value of 0.1, because GR-RF(0.1) has shown a
competitive accuracy [27] when applied to the 10 gene
data sets. From each of gene data sets two-thirds of the
data were randomly selected for training. The other
one-third of the data set was used to validate the mod-
els. The 100 models were generated with different seeds
from each training data set and each model contained
1000 trees. The mtry and nmin parameters were set to√
M and 1, respectively. The prediction performances of

the 100 classification random forest models were evalu-
ated using Equation (3).
Table 7 shows the averages of the 100 repetitions of

the c/s2 error bound when varying the number of genes
per leaf nmin. It can be seen that the RF, wsRF models
produced lower error bound on the some data sets, for
examples, COL, BR2, NCI and PRO. The ts-RF model
produced the lowest c/s2 error bound on the remaining
gene data sets on most cases. This implies that when

the optimal parameters such as mtry =
[√

M
]
and nmin = 1

were used in growing trees, the number of genes in the
subspace was not small and out-of-bag data was used in
prediction, the results comparatively favored the ts-RF
model. When the number of genes per leaf increased, so
the depth of the trees was decreased, the ts-RF model
obtained better results compared to other models on most
cases, as shown in Table 7. These results demonstrated
the reason that the two-stage quality-based feature
sampling method for gene subspace selection can reduce
the upper bound of the generalization error in random
forests models.
Figures 1, 2, 3, 4 show the effect of the two-stage

quality-based feature sampling method on the strength

measure of random forests. The 10 gene data sets were
analyzed and results were compared to those of the ran-
dom forests by Brieman’s method and the wsRF model.
In a random forest, the tree was grown from a bagging
training data, the number of genes per leaf nmin varied
from 1 to 15. Out-of bag estimates were used to evalu-
ate the strength measure. From these figures, we can
observe that the wsRF model obtained higher strength
on the two data sets NCI and BRA when the number of
genes per leaf was 1. The strength measure of the ts-RF
model was the second rank on these two data sets and
it was the first rank on the remaining gene data sets, as
shown in Figure 1. Figures 2, 3, 4 demonstrate the effect
of the depth of the tree, the ts-RF model provided the
best results when varying the number of genes per leaf.
This phenomenon implies that at lower levels of the

Table 6 Description of 10 gene data sets.

Data set Abbr. #Genes #Patients #Classes

colon COL 2,000 62 2

srbct SRB 2,308 63 4

leukemia LEU 3,051 38 2

lymphoma LYM 4,026 62 3

breast.2.class BR2 4,869 78 2

breast.3.class BR3 4,869 96 3

nci 60 NCI 5,244 61 8

brain BRA 5,597 42 5

prostate PRO 6,033 102 2

adencarcinma ADE 9,868 76 2

Table 7 The (c/s2) error bound results of random forest
models against the number of genes per leaf nmin on
the ten gene data sets.

Data set Model nmin

1 2 5 8 10 15

COL RF .044 .032 .033 .032 .035 .034

wsRF .046 .039 .042 .040 .042 .040

ts-RF .053 .043 .044 .043 .046 .044

SRB RF .018 .019 .017 .017 .019 .019

wsRF .012 .013 .013 .013 .012 .013

ts-RF .013 .013 .011 .010 .013 .012

LEU RF .040 .037 .037 .037 .039 .039

wsRF .035 .027 .028 .029 .032 .030

ts-RF .023 .020 .021 .021 .022 .022

LYM RF .019 .013 .012 .012 .016 .014

wsRF .011 .010 .010 .010 .010 .010

ts-RF .008 .005 .005 .005 .007 .006

BR2 RF .034 .034 .033 .035 .041 .037

wsRF .038 .039 .038 .040 .042 .041

ts-RF .046 .039 .039 .039 .048 .045

BR3 RF .068 .056 .056 .054 .064 .057

wsRF .065 .057 .057 .056 .059 .058

ts-RF .086 .064 .065 .062 .076 .066

NCI RF .037 .023 .024 .025 .030 .027

wsRF .016 .017 .016 .017 .017 .017

ts-RF .044 .022 .022 .025 .031 .025

BRA RF .045 .030 .029 .029 .028 .031

wsRF .024 .025 .024 .024 .024 .025

ts-RF .041 .022 .022 .022 .021 .024

PRO RF .041 .034 .033 .032 .037 .034

wsRF .038 .033 .032 .031 .034 .032

ts-RF .043 .033 .032 .032 .038 .033

ADE RF .080 .073 .071 .072 .076 .075

wsRF .068 .064 .065 .065 .065 .066

ts-RF .054 .049 .048 .048 .051 .051

Numbers in bold are the best results.
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Figure 1 Box plots of Strength measures on the 10 gene data sets with respect to nmin = 1.

Figure 2 Same as Figure 1, but for nmin = 5.

Figure 3 Same as Figure 1, but for nmin = 10.
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tree, the gain is reduced because of the effect of splits
on different genes at higher levels of the tree. The other
random forests models reduce the strength measure
dramatically while the ts-RF model always is stable and
produces the best results. The effect of the new sam-
pling method is clearly demonstrated in this result.
Table 8 shows the average test accuracy results (mean ±

std-dev%) of the 100 random forest models computed

according to Equation (3) on the gene data sets. The aver-
age number of genes selected by the ts-RF model, from
100 repetitions for each data set, are shown on the right of
Table 8, divided into a strong group Xs and a weak group
Xw. These genes were used by the two-stage quality-based
feature sampling method in growing trees in ts-RF.
The results from the application of GRRF on the ten

gene data sets were presented in [27]. From these

Figure 4 Same as Figure 1, but for nmin = 15.

Table 8 Test accuracy results (mean ± std-dev%) of random forest models against the number of genes per leaf nmin

on the ten gene data sets.

Data set Model 1 genes 2 genes 5 genes 8 genes 10 genes 15 genes Xs Xw

COL RF .844 ± 0.5 .818 ± 0.8 .832 ± 0.7 .830 ± 0.6 .849 ± 0.3 .853 ± 0.4

GRRF .865 ± 0.5 .832 ± 0.6 .848 ± 0.5 .838 ± 0.6 .853 ± 0.3 .859 ± 0.3

wsRF .845 ± 0.5 .837 ± 0.4 .857 ± 0.5 .834 ± 0.6 .844 ± 0.4 .848 ± 0.5

ts-RF .877 ± 0.4 .863 ± 0.4 .879 ± 0.3 .863 ± 0.5 .874 ± 0.3 .874 ± 0.3 245 317

SRB RF .959 ± 0.3 .957 ± 0.2 .961 ± 0.2 .944 ± 0.5 .914 ± 1.0 .777 ± 1.2

GRRF .976 ± 0.2 .972 ± 0.1 .972 ± 0.2 .941 ± 0.7 .898 ± 1.1 .802 ± 1.1

wsRF .968 ± 0.3 .967 ± 0.3 .966 ± 0.3 .957 ± 0.3 .912 ± 0.5 .771 ± 0.2

ts-RF .977 ± 0.2 .974 ± 0.1 .977 ± 0.1 .962 ± 0.4 .922 ± 1.1 .812 ± 1.1 606 546

LEU RF .826 ± 1.2 .849 ± 0.9 .866 ± 0.9 .879 ± 0.9 .871 ± 1.0 .874 ± 1.0

GRRF .873 ± 0.9 .867 ± 0.7 .880 ± 0.9 .878 ± 0.9 .876 ± 0.9 .885 ± 0.9

wsRF .848 ± 1.0 .848 ± 0.9 .863 ± 1.0 .858 ± 1.1 .851 ± 1.0 .866 ± 1.1

ts-RF .893 ± 0.7 .885 ± 0.6 .906 ± 0.7 .908 ± 0.7 .913 ± 0.7 .905 ± 0.7 502 200

LYM RF .972 ± 0.2 .983 ± 0.1 .979 ± 0.3 .930 ± 1.1 .855 ± 1.2 .823 ± 0.6

GRRF .991 ± 0.1 .989 ± 0.1 .983 ± 0.3 .928 ± 1.1 .840 ± 1.1 .805 ± 0.4

wsRF .981 ± 0.2 .982 ± 0.2 .975 ± 0.4 .928 ± 0.2 .845 ± 0.3 .801 ± 0.2

ts-RF .993 ± 0.1 .995 ± 0.0 .987 ± 0.3 .935 ± 1.1 .856 ± 1.2 .828 ± 0.7 1404 275

BR2 RF .627 ± 0.7 .618 ± 0.7 .608 ± 0.7 .622 ± 0.7 .601 ± 0.7 .640 ± 0.7

GRRF .713 ± 0.9 .623 ± 0.8 .615 ± 0.8 .627 ± 0.7 .617 ± 0.8 .643 ± 0.7

wsRF .634 ± 0.7 .627 ± 0.8 .618 ± 0.8 .619 ± 0.9 .604 ± 0.8 .626 ± 0.7

ts-RF .788 ± 0.7 .766 ± 0.8 .776 ± 0.9 .776 ± 0.8 .765 ± 1.1 .780 ± 0.8 194 631

BR3 RF .560 ± 0.7 .568 ± 0.7 .560 ± 0.7 .581 ± 0.6 .563 ± 0.8 .567 ± 0.8

GRRF .635 ± 0.8 .580 ± 0.6 .574 ± 0.7 .586 ± 0.6 .568 ± 0.7 .580 ± 0.8
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prediction accuracy results in Table 8, the GRRF model
provided slightly better result on SRB data set in case
nmin = 15 and PRO in case nmin = 1, respectively. The
wsRF model presented the best result on BRA and NCI
data sets in case nmin = 15. In the remaining cases on
all gene data sets, the ts-RF model shows the best
results. In some cases where ts-RF did not obtain the
best results, the differences from the best results were
minor. This was because the two-stage quality-based
feature sampling was used in generating trees in the ts-
RF, the gene subspace provided enough highly informa-
tive genes at any levels of the decision tree. The effect
of the two-stage quality-based feature sampling is clearly
demonstrated in these results.

Conclusion
We have presented a two-stage quality-based random
forests for genome-wide association data classification
and SNPs selection. The presented approach has shown
to be effective in selecting informative sub-groups of
SNPs and potentially associated with diseases that tradi-
tional statistical approach might fail. The proposed ran-
dom forests model works well for the data where the
number of case-control objects is much smaller than the
number of SNPs, which is a typical problem in GWAS.
We have conducted a series of experiments on the two

genome-wide SNP and ten gene data sets to demonstrate
the effectiveness of the proposed RF model. The top 25
SNPs in Parkinson data set were identified by the proposed
RF model including some interesting genes associated with
neurological disorders. Experimental results have shown

the improvement in increasing test accuracy for GWA
classification problems and reduction of the c/s2 error in
comparison with other state-of-the-art random forests,
including Breiman’s RF, GRRF and wsRF methods.
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