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Abstract

Background: Existing resources to assist the diagnosis of rare diseases are usually curated from the literature that
can be limited for clinical use. It often takes substantial effort before the suspicion of a rare disease is even raised to
utilize those resources. The primary goal of this study was to apply a data-driven approach to enrich existing rare
disease resources by mining phenotype-disease associations from electronic medical record (EMR).

Methods: We first applied association rule mining algorithms on EMR to extract significant phenotype-disease
associations and enriched existing rare disease resources (Human Phenotype Ontology and Orphanet (HPO-
Orphanet)). We generated phenotype-disease bipartite graphs for HPO-Orphanet, EMR, and enriched knowledge
base HPO-Orphanet + and conducted a case study on Hodgkin lymphoma to compare performance on differential
diagnosis among these three graphs.

Results: We used disease-disease similarity generated by the eRAM, an existing rare disease encyclopedia, as a gold
standard to compare the three graphs with sensitivity and specificity as (0.17, 0.36, 0.46) and (0.52, 0.47, 0.51) for
three graphs respectively. We also compared the top 15 diseases generated by the HPO-Orphanet + graph with
eRAM and another clinical diagnostic tool, the Phenomizer.

Conclusions: Per our evaluation results, our approach was able to enrich existing rare disease knowledge resources
with phenotype-disease associations from EMR and thus support rare disease differential diagnosis.
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Background
Rare diseases, although individually rare, collectively affect
one in ten Americans. Approximately 7000 rare diseases
exist, with more being discovered each year [1]. Patients
with rare diseases face diagnostic delay: 40% of rare dis-
ease patients are diagnosed incorrectly before reaching a
final diagnosis, of which 25% spend between 5 to 30 years
on a chaotic journey through numerous referrals, investi-
gations, and disease evolutions from early symptoms to a
confirmatory diagnosis of their disease [2]. Although there
are many genetic tests available for delivering precision
medicine, how to identify patients who may benefit from
those genetic tests is not obvious. Many rare diseases can
be misdiagnosed as common diseases due to their rarity.
It often takes substantial clinical time and effort before a
rare disease is even a suspected diagnosis [3].

The diagnosis pathway of rare diseases is highly
dependent on the associated clinical phenotypes, i.e., the
observable characteristics, at the physical, morphologic,
or biochemical level, of an individual [4]. Symptoms
could be treated as phenotypes in symptomatic diagno-
sis. Taking Hodgkin lymphoma as an example, since
symptoms of Hodgkin lymphoma are very similar to
other diseases or conditions, such as Cytomegalovirus,
Sarcoidosis, and Toxoplasmosis [5], it is meaningful to
use underlying disease-phenotype associations to accel-
erate early differential diagnosis and largely shorten the
diagnostic odyssey for patients.
Rare disease knowledge resources exist to assist the

diagnosis of rare diseases. For example, the Genetic and
Rare Diseases (GARD) resource provides curated infor-
mation for more than 4700 rare diseases, including their
symptoms, causes, inheritance, treatments, and progno-
ses as well as the latest research [6]. Orphanet [7] pro-
vides an expert-vetted and up-to-date encyclopedia of
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rare diseases along with their associated genes. The Hu-
man Phenotype Ontology (HPO) [8] provides a con-
trolled vocabulary for clinical phenotypes by mining and
integrating clinical phenotype knowledge from literature
and a variety of rare disease resources.
Some other existing studies investigated the mining of

associations between diseases and genes. For example,
Zhang et al. combined the Latent Dirichlet Allocation
(LDA) [9] with network-based computational approach
[10] to discover disease-gene associations from large
amount of PubMed literature [11]. Piro et al. developed
a classification approach to predict disease-gene associa-
tions [12]. By leveraging a network distance measure
and a random walk algorithm, Kohler et al. presented a
method to prioritize candidate genes for hereditary dis-
orders [13]. However, all of these studies focused solely
on extracting information from literature or knowledge
bases. It often takes substantial time and effort before
the suspicion of a rare disease is even raised to utilize
those resources due to its rarity.
There are some related studies utilizing either elec-

tronic medical record (EMR) or literature or both to in-
vestigate diseases, phenotypes and their associations. For
example, Xu et al. introduced text mining result of
disease-phenotype associations by analyzing sentences
from MEDLINE [14]. In another study, Garcelon et al.
described a text mining based analysis leveraging
TF-IDF to discover associations between clinical pheno-
types and rare diseases [15]. Their results showed that
phenotypes identified in EMR can be a useful source of
evidence to provide rare disease specialists with candi-
date phenotypes. The eRAM is an encyclopedia of rare
disease annotations mined from 10 million scientific
publications and EMR [16]. Authors of the eRAM im-
plemented a web-based tool to provide clinicians with
next-step information of disease-disease associations in
addition to disease-phenotype associations. The tool sys-
tematically incorporates disease-phenotype associations
of rare diseases from both published medical literatures
and clinical data. Hassan et al. investigated on extracting
associations between rare diseases and phenotypes to
enrich existing ontology [17]. The Phenomizer [18] is a
clinical diagnostic tool that aims to help clinicians to
identify the potential diagnostic candidates. It is built
based on the HPO, Orphanet and Online Mendelian In-
heritance in Man (OMIM) [19]. Unfortunately, EMR
was not incorporated in [17, 18].
Here, we used the HPO annotation file named “pheno-

type_annotation.tab” accessed in July 2017 for associ-
ation information between HPO terms and rare diseases
in Orphanet [20]. These associations, which we referred
to as HPO-Orphanet associations, were treated as rare
disease knowledge resource in this study. We propose to
enrich the HPO-Orphanet through mining association

information between clinical phenotypes and diseases
using EMR. Such enriched information, named as
HPO-Orphanet+, can be used to link similar rare/com-
mon diseases and provide differential diagnostic decision
aid at the point of care for rare disease diagnosis.
In the following, we first introduce the methods used

in our study. We then describe our experimental evalua-
tions. Results are presented next followed by discussion.
We conclude our study with potential future work.

Methods
Materials
All clinical notes during the years of 2010 to 2015 from
Mayo Clinic EMR were used for the study, including
Consultant Notes (CON), Subsequent Visit Notes (SV),
Emergency Medicine Notes (EMV), Hospital Admission
Notes (ADM), and so on. For each note type, we focused
on the diagnosis section of the notes which summarizes
problems for each patient. The resulting corpus contains
12.8 million clinical notes corresponding to 729,000 pa-
tients. In our previous work, we have developed a
phenotype-disease annotation pipeline that utilized the
HPO and the Unified Medical Language System (UMLS)
[21] to extract phenotypic and disease terms from clin-
ical narratives [22, 23], where disease and phenotype ap-
peared in the same clinical note was considered to be a
phenotype-disease association. Specifically, the HPO was
used to identify rare diseases and their phenotypic
characterization mentioned in clinical narratives, and
the UMLS was utilized to detect synonyms for any
phenotypic terms. We limited our annotation to sections
containing problems and diagnoses where 38,097 patients
were found to have at least one diagnosis of a rare disease.
Leveraging this pipeline, we extracted 2808 unique pheno-
types from notes and 9,292,969 phenotype-disease associ-
ations in total, from which 164,792 associations were
related to 1449 rare diseases and the rest were generated
from 13,821 common diseases.
Semantic MEDLINE Database (SemMedDB), a reposi-

tory of semantic predications extracted from the titles and
abstracts of all PubMed citations [24–27], was used in this
study to quantify the explanatory power of enriched asso-
ciations. We used SemMedDB Version 25 in this study.
We used the eRAM to build a gold standard on dis-

ease differential diagnosis and used the gold standard to
evaluate performance among three bipartite graphs. In
addition, we compared the top 15 differential diagnostic
candidates generated by the HPO-Orphanet+, Phenomi-
zer, and eRAM. Specifically, the HPO-Orphanet+ and
eRAM ranked diagnostic candidates by the descending
order of Jaccard similarity score [28], and the Phenomi-
zer ranked diagnostic candidates by the descending
order of Information Content (IC)-based similarity score
proposed in [18].
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System design
The overall workflow of our study is shown in Fig. 1.
After obtaining raw phenotype-disease pairs from
EMR using the previously developed annotation pipe-
line, we formulated the task of mining association in-
formation between clinical phenotypes and diseases as
an association rule mining task [29]. Specifically, pa-
tients are considered as transactions and their pheno-
types and diseases are considered as items. The
phenotype-disease association discovery can be de-
fined as one item rule {Phenotype} ➔ {Disease}. We
leveraged the support and confidence metrics (Eqs. 1
and 2) to measure the importance of discovered
phenotype-disease relationships [30].
Given phenotype P and disease D, support is calculated as:

support Pð Þ ¼ #of unique patients having Phenotype P
#of unique patients

support Dð Þ ¼ #of unique patients having Disease D
#of unique patients

support PDð Þ ¼ #of unique patients having Phenotype P &Disease D
#of unique patients

ð1Þ

confidence is calculated as:

confidence P⇒Dð Þ ¼ support PDð Þ
support Pð Þ ð2Þ

In addition, we filtered out less important phenotype-
disease associations. In our previous study [31], we have
demonstrated the use of odds ratio [32, 33] to detect
significant phenotype-disease associations from a huge
number of patient data, therefore, in this study, the odds
ratio was applied on any disease-phenotype associations
to find significant phenotypes for diseases. For any pair
of disease D and phenotype P, the odds ratio OR(D, P) is
defined as:

OR D; Pð Þ ¼

#associations contain both D and Pð Þ �
#associations contain neither D nor Pð Þ

#associations contain D and phenotypes except Pð Þ �
#associations contain P and diseases except Dð Þ

ð3Þ

In this study, we used a bipartite graph to represent
associations between diseases and phenotypes. Given
two disjoint and independent sets U and V, let U denote
disease sets and V denote phenotype sets, the bipartite
graph G is defined as a graph such that each edge con-
nects a vertex in U to one in V [34].
Given a collection of phenotype-disease associations

C, we implemented a heuristics for generating differen-
tial diagnostic candidates. For a disease D, we first se-
lected those phenotypes with the corresponding lower
bound of odds ratio values larger than one [35]. A
phenotype-disease bipartite graph was then generated.
Jaccard similarity was commonly adopted on detecting
disease similarity [28], hence in this study, we applied
Jaccard similarity on disease level, aiming to measure
the similarity among diseases based on significant
phenotypic features selected by odds ratio. Given two
diseases Di and Dj, denoting phenotype sets for Di and
Dj as {Pi} and {Pj} respectively, the Jaccard similarity J
(Di, Dj) is defined as:

J Di;Dj
� � ¼ j Pif g∩ P j

� � j
fPij g∪ P j

� � j ð4Þ

The derived HPO-Orphanet+ graph stored diseases as
nodes and weighted edges as Jaccard similarity scores
between diseases.

Results
Evaluation approach
Evaluation of our system comprised of three major
components: 1) Enrichment of phenotype-disease associ-
ations, 2) Bipartite graph comparison, and 3) Perform-
ance on rare disease differential diagnosis.

Fig. 1 System workflow
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Enrichment of phenotype-disease associations
We used phenotype-disease associations reported in the
SemMedDB to quantify the explanatory power of
enriched associations mined from EMR. We set average
support and average confidence as minimum thresholds
to pick top associations. We leveraged the increment of
explanatory power (IEP) [36] to quantify the enrichment
on HPO-Orphanet.

Increment of explanatory power (IEP)
We used explanatory power (EP) as defined in the study
[36] to represent the associations explained by HPO-
Orphanet:

EP ¼ #of associations explained by knowledge base

ð5Þ
We then quantified the knowledge increment by find-

ing the increment of explanatory power (IEP) [36] for
the enriched knowledge base generated by our approach
compared to the initial HPO-Orphanet annotations:

IEP ¼ UKi−UKn

UKi
ð6Þ

where UKi is the number of unexplained associations
from the initial HPO-Orphanet knowledge and UKn is
the number of unexplained associations in the enriched
knowledge resource HPO-Orphanet+.

Bipartite graph comparison
We limited our associations to diseases appearing in both
EMR and HPO-Orphanet. We compared graph features
for three bipartite graphs based on associations mined from
EMR alone, HPO-Orphanet alone, and the combination of
the prior two, HPO-Orphanet+. Graph characterization
measurements we used were defined as follows:

Density
For undirected simple graphs, the graph density was
defined as [37].

Density Gð Þ ¼ 2 Ej j
Vj j Vj j−1ð Þ ð7Þ

where E is the number of edges in the graph and V is
the number of vertices in the graph.

Average degree
The average degree of a vertex of a graph is the average
number of edges connected to the vertex [38], and is
defined as follows:

Δ Gð Þ ¼
P

deg vð Þ
Vj j ¼ 2 j E j

Vj j ð8Þ

where E is the number of edges in the graph and V is
the number of vertices in the graph.

Performance on rare disease differential diagnosis
We compared performance for generating differential
diagnostic candidates among HPO-Orphanet graph,
EMR graph, and HPO-Orphanet+ graph.
To prepare the experiment, for any disease to be tested,

we used the three aforementioned graphs to rank
suggested diseases with descending order of Jaccard simi-
larity score. We combined two disease-phenotype associ-
ation files namely “eRAM Integrated Phenotype.txt” and
“eRAM Integrated Symptom.txt” provided by the eRAM.
Since those two files were manually annotated by domain
experts, in this study, we considered the associations pro-
vided by the merged files as correct ones to prepare the
gold standard. Based on 5356 curated diseases and their
associated phenotypes/symptoms obtained from the files,
we calculated Jaccard similarity score between each pair of
diseases using Eq. 4. Such disease-disease similarity was
used as a gold standard on differential diagnosis. In this
evaluation, we first validated diagnostic candidates gener-
ated by the three bipartite graphs using the gold standard.
We then compared the top 15 differential diagnostic can-
didates generated by the HPO-Orphanet+ graph, Pheno-
mizer, and eRAM.
Table 1 shows the confusion matrix for performance

evaluation. For any given tested disease, sensitivity and
specificity were defined as shown in Eqs. 9 and 10.

Sensitivity ¼ TP
TP þ FN

ð9Þ

Specificity ¼ TN
TN þ FP

ð10Þ

Evaluation results
Metrics comparison and optimal threshold selection
Since HPO-Orphanet is a rare disease dominant
knowledge resource, we focused on the enrichment of

Table 1 Confusion matrix for performance evaluation

Differential diagnosis candidates in the
eRAM gold standard

Differential diagnosis candidates not in the
eRAM gold standard

Differential diagnosis candidates generated
by each graph

True Positive (TP) False Positive (FP)

Differential diagnosis candidates not generated
by each graph

False Negative (FN) True Negative (TN)
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HPO-Orphanet with associations between phenotypes
and rare diseases mined from EMR. To select the opti-
mal associations, we set average support score 5E-06 as
the threshold to first select 31,211 frequent itemsets and
we then set average confidence score 0.05 as the mini-
mum confidence to finalize 13,742 associations (see
Additional file 1). To further validate the selection of
thresholds, as shown in Fig. 2, we found that both sup-
port and confidence value didn’t have much fluctuation
after dropping below their average values (the threshold
point is marked on the curve).
We also characterized the associations using a heatmap

as shown in Fig. 3. Specifically, x-axis indicates support
value ranges from 1.24E-06 to 1.37E-05 and y-axis
indicates confidence value ranges from 0.0005 to 1. From
Fig. 3, we observed that the number of rules get decreased
with the increment of both support and confidence.

Enrichment of phenotype-disease associations
As shown in Table 2, 379 rare diseases, 324 phenotypes,
and 1775 associations were found from EMR but not ap-
peared in HPO-Orphanet.
10,132 and 4742 pairs of associations can be found

from 124,989 associations in literature for EMR and
HPO-Orphanet respectively. According to Eq. 6, IEP for
enrichment of phenotype-disease associations is 4.48%,
quantifying the enrichment after EMR mining.

IEP ¼ UKi−UKn

UKi
� 100

¼ ð124; 989−4; 742Þ−ð124; 989−10; 132Þ
ð124; 989−4; 742Þ � 100

¼ 4:48%

Enrichment of disease differential diagnosis

Bipartite graph analysis We constructed three bipartite
graphs for the HPO-Orphanet, EMR, and HPO-Orpha-
net+ based on 97 shared diseases. As shown in Table 3,

although EMR provided fewer phenotypes than HPO-
Orphanet, associations between disease and phenotypes
were richer, resulting in an enriched bipartite graph after
combination. We also observed that EMR graph has a
higher density than HPO-Orphanet graph, indicating
that some phenotype-disease pairs held too many associ-
ations and imbalanced the entire graph density. The
density for the HPO-Orphanet+ graph was the lowest
among all graphs. The increment of average degree for
combined graph indicated that novel phenotype-disease
associations were mined from EMR to enrich HPO-
Orphanet. According to Eqs. 7 and 8, for a given graph
G, Density(G) is calculated by ΔðGÞ/(|v|-1). Although the
HPO-Orphanet+ held the highest average degree, since
vertices got enriched, resulting a relative lower density for
the HPO-Orphanet+.
We also listed top 15 diseases with highest degrees for

each bipartite graph as shown in Table 4. After combin-
ing the two datasets, we found that some diseases with
highest degree mined from EMR graph were still domin-
ant in the HPO-Orphanet+ graph, such as multiple
myeloma, hodgkin lymphoma, giant cell arteritis, and
follicular lymphoma. But some dominant diseases in
HPO-Orphanet graph were not ranked high in the
HPO-Orphanet+ graph, such as 22q11.2 deletion syn-
drome, granulomatosis with polyangiitis, and marfan
syndrome. In addition, we observed that neurofibroma-
tosis type1 is the one that didn’t appear in the top list for
either EMR or HPO-Orphanet, denoting that the com-
bination of EMR and HPO-Orphanet enriched the
phenotypic sets for neurofibromatosis type1 and thus
increased its connectivity.

Rare disease differential diagnostic suggestions – Use case
study
We carried a use case study on Hodgkin lymphoma to
compare the performance for three different bipartite

Fig. 2 Plotted curve between association ranking and two metrics
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graphs. The number of unique differential diagnostic
suggestions for Hodgkin lymphoma generated by
HPO-Orphanet, EMR, and HPO-Orphanet+ is 2663,
10,064, and 11,439 respectively.
Hodgkin lymphoma is a type of lymphoma that results

from white blood cells called lymphocytes. Common
symptoms related to Hodgkin lymphoma are painless
swelling of lymph nodes in neck, armpits or groin, persist-
ent fatigue, fever and chills, night sweats, rapid weight
loss, itching, increased sensitivity to the effects of alcohol
[39]. Sensitivity and specificity for generating differential
diagnostic suggestions for Hodgkin lymphoma with dif-
ferent graphs is shown in Fig. 4. The HPO-Orphanet+

graph shows the highest sensitivity for detecting the
right similar diseases according to the eRAM gold stand-
ard, while using the HPO-Orphanet graph yields the
lowest sensitivity. In addition, specificity does not show
significant differences among three graphs, indicating
that all of them have similar performance on rejecting
non-relevant diseases for Hodgkin lymphoma. In general,
we observed that the HPO-Orphanet+ graph enriched
the existing rare disease knowledge resources and thus
be able to provide better diagnostic suggestions. A
web-based tool was implemented to visualize diagnostic
suggestions and Fig. 5 shows an example of this differen-
tial diagnostic decision aid interface by considering
Hodgkin lymphoma as a center node.
Table 5 shows top 15 differential diagnostic candidates

for Hodgkin lymphoma between the HPO-Orphanet+
graph and two existing diagnostic tools (Phenomizer and
eRAM). The HPO-Orphanet+ graph identified 46.7% (7
out of 15) common diseases and 53.3% (8 out of 15) rare
diseases. Specifically, chronic obstructive airway disease,
diabetes mellitus, atrial fibrillation, glaucoma, coronary
heart disease, degenerative polyarthritis, and chronic kid-
ney insufficiency are common diseases that share the
most similar phenotypes with Hodgkin lymphoma, which
are considered to be potential candidates for misdiag-
nosis of Hodgkin lymphoma. In addition, based on litera-
ture and online material review, we found that 10 out of
15 diagnostic candidates were proved to be strongly
associated with Hodgkin lymphoma based on similar
comorbidities or complications [5, 40–48]. For example,
lung adenocarcinoma has similar characterizations with
Hodgkin lymphoma [46], and glomerulonephritis is a
well-recognized complication of Hodgkin disease [49].
Few evidences were detected for dilated cardiomyopathy,
abdominal aortic aneurysm, degenerative polyarthritis,

Fig. 3 Characterization of associations

Table 2 Statistics between EMR and HPO-Orphanet on the
number of rare diseases, phenotypes, and phenotype-disease
associations

Number of Unique Rare Diseases Count

HPO-Orphanet 2664

EMR 476

HPO-Orphanet and EMR 97

In EMR but not in HPO-Orphanet 379

Number of Unique Phenotypes Count

HPO-Orphanet 4577

EMR 1337

HPO-Orphanet and EMR 1013

In EMR but not in HPO-Orphanet 324

Number of Unique Associations Count

HPO-Orphanet 7529

EMR 1973

HPO-Orphanet and EMR 198

In EMR but not in HPO-Orphanet 1775
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atrial fibrillation, and glaucoma from online materials
and scientific literature, indicating that the associations
mined from patients’ data provided new evidences for
differential diagnosis of Hodgkin lymphoma.
While differential diagnostic candidates provided by

the Phenomizer are all rare disease. Similarly, the eRAM
generates 93.3% (14 out of 15) rare diseases but only
6.7% (1 out of 15) common diseases.
Since many rare diseases are commonly misdiagnosed

as common diseases, it is essential to link common and
rare diseases at the early time of diagnosis to assist in
diagnostic decision support. Compared to the Phenomi-
zer and eRAM, the HPO-Orphanet+ graph is more cap-
able of detecting such associations.

Discussion
Our system can benefit the clinical practice by continu-
ously mining knowledge from EMR to make a enriched
rare disease knowledge resource incorporating information
from both knowledge and data-driven insights, which is
currently lacking in other systems [50–52]. However, false
positive phenotype-disease relationships contributed by
comorbidities are hard to detect. The odds ratio can

address this issue to some extent. We will extend our
current singleton frequent item set association rule mining
to include two items and three items (e.g., bigram and tri-
gram) to better support elimination of false positives. In
addition, according to some existing and our previous
studies [53–56], we also set thresholds as the average of
metrics to select optimal associations. In the future, we
will make an optimal threshold selection scheme
combining both average value and elbow criterion [57] in
association rule mining. Moreover, for those novel
disease-phenotype associations mined from data and can-
not be validated by biomedical literature, online database
or knowledge base, we will recruit domain experts to pro-
vide a manual evaluation and curate the enriched know-
ledge base in the future work. More evaluation metrics
(e.g., precision, recall, and F-measure) will be applied
based on experts’ judgements.
In this study, we extracted the co-occurrence informa-

tion between a phenotype and a disease from diagnosis
section contained in clinical notes. Specifically, we first
split the entire notes into sentences and then applied the
aforementioned annotation pipeline on each sentence. In
addition, problems in those documents are generally

Table 3 Graph characterization for bipartite graphs generated from the HPO-Orphanet, EMR, and HPO-Orphanet+ (based on 97
shared diseases)

HPO-Orphanet Graph EMR Graph HPO-Orphanet+ Graph

# of Disease Nodes 97 97 97

# of Phenotype Nodes 722 670 1194

# of Edges 1973 2071 3914

Density 0.006 0.007 0.005

Average Degree 4.818 5.4 6.064

Table 4 Top 15 diseases with the highest degree in bipartite graphs generated from the HPO-Orphanet, EMR, and HPO-Orphanet+

HPO-Orphanet Graph EMR Graph HPO-Orphanet+ Graph

22q11.2 deletion syndrome multiple myeloma multiple myeloma

melas hodgkin lymphoma hodgkin lymphoma

granulomatosis with polyangiitis follicular lymphoma giant cell arteritis

marfan syndrome giant cell arteritis follicular lymphoma

neurofibromatosis type 1 primary sclerosing cholangitis primary sclerosing cholangitis

trisomy 18 myasthenia gravis 22q11.2 deletion syndrome

eosinophilic granulomatosis with polyangiitis granulomatosis with polyangiitis granulomatosis with polyangiitis

giant cell arteritis pulmonary arterial hypertension melas

acromegaly liposarcoma myasthenia gravis

primary sclerosing cholangitis eosinophilic esophagitis rheumatic fever

systemic sclerosis rheumatic fever marfan syndrome

dermatomyositis klatskin tumor dermatomyositis

osteogenesis imperfecta tetralogy of fallot pulmonary arterial hypertension

addison disease cystic fibrosis craniopharyngioma

cushing syndrome craniopharyngioma neurofibromatosis type1
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itemized entries as either phrases (e.g., Allergic rhinitis/
vasomotor rhinitis) or short sentences (e.g, Her asthma
appeared to be very mild), therefore, we didn’t use
window size to limit the distance between phenotype
and disease. In the future, to generalize the association
mining on larger size of documents, we will seek to
investigate the selection of appropriate window size for a
better performance [58]. Moreover, some network analysis
approaches [59] with knowledge network discovery
algorithms [60, 61] will be incorporated with association
rule mining to reveal hidden relations among diseases.

We used the SemMedDB to measure the IEP of know-
ledge enrichment. However, some evidences indicated
that the SemMedDB is not so accurate due to the limita-
tion of the extraction algorithms used. For example, the
SemRep (the generator for SemMedDB) yielded about
75% precision on information extraction [62]. In the
future, we will incorporate more disease and phenotype
knowledge bases with human annotated associations to
measure the knowledge enrichment.
We compared the HPO-Orphanet+ with both the Phe-

nomizer and eRAM in this study on differential diagnostic

Fig. 4 Comparison on differential diagnostic suggestion performance for Hodgkin Lymphoma

Fig. 5 Interactive web-based tool for differential diagnostic suggestion (CD stands for Common Disease, and RD stands for Rare Disease)
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suggestions. Results showed that the HPO-Orphanet+ is
capable of providing a diagnostic graph mixed with both
rare and common diseases, which has potential usage in
rare disease differential diagnosis, especially for those rare
diseases sharing similar symptoms with common diseases.
In the future, we will upgrade the HPO-Orphanet+ by
mining disease-gene information from literature [11, 63].
In addition, one recent research proposed a novel idea by
introducing the concept of “property” as a third layer in
addition to traditional two-layer disease-phenotype rela-
tionship [64]. This study was able to calculate the prob-
ability of getting specific diseases from a multisymptom
Naïve Bayes algorithm. The third layer of “property” or
multisymptoms is an interesting concept that may be in-
volved in our future work.

Conclusions
In this study, we proposed a data-driven approach to mine
phenotype-disease associations buried in EMR so as to en-
rich current rare disease knowledge with newly extracted
associations as well as differential diagnostic suggestions.

Additional file

Additional file 1: Top Associations. This file includes 13,742 top
phenotype-disease associations selected by support and confidence.
(XLSX 218 kb)
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HPO-Orphanet+ Graph Phenomizer eRAM

B-cell lymphoma (RD): 0.626 Classic hodgkin lymphoma (RD): 3.986 Nodular lymphocyte predominant hodgkin
lymphoma (RD): 0.458

Diffuse large b-cell lymphoma (RD): 0.62 Behcet syndrome (RD): 3.189 Schnitzler syndrome (RD): 0.273

Chronic Obstructive Airway Disease (CD): 0.595 Aggressive systemic mastocytosis (RD): 3.176 Mantle cell lymphoma (RD): 0.25

Dilated cardiomyopathy (RD): 0.594 Alveolar echinococcosis (RD): 3.085 Pulmonary blastoma (RD): 0.25

Abdominal aortic aneurysm (RD): 0.592 Systemic lupus erythematosus (RD): 2.997 Aggressive systemic mastocytosis (RD): 0.22

Glomerulonephritis (RD): 0.591 Legionellosis (RD): 2.878 Anemia, autoimmune hemolytic (RD): 0.219

Diabetes Mellitus, Non-Insulin-Dependent
(CD): 0.588

Takayasu arteritis (RD): 2.731 Hughes syndrome (RD): 0.219

Multiple myeloma (RD): 0.588 Cystic echinococcosis (RD): 2.648 Follicular lymphoma (RD): 0.214

Atrial Fibrillation (CD): 0.585 Eosinophilic granuloma (RD): 2.647 Thymic carcinoma (RD): 0.214

Glaucoma (CD): 0.58 Whipple disease (RD): 2.638 Mast cell sarcoma (RD): 0.2

Myeloid leukemia (RD): 0.58 Familial thrombocytosis (RD): 2.632 American trypanosomiasis (CD): 0.2

Coronary heart disease (CD): 0.58 Systemic mastocytosis (RD): 2.622 Alpha-heavy chain disease (RD): 0.194

Degenerative polyarthritis (CD): 0.573 Emberger syndrome (RD): 2.549 Klatskin tumor (RD): 0.192

Lung adenocarcinoma (RD): 0.572 Hypocomplementemic urticarial vasculitis (RD): 2.548 Legionellosis (RD): 0.189

Chronic Kidney Insufficiency (CD): 0.571 Babesiosis (RD): 2.499 Babesiasis (RD): 0.182
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