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Abstract

Background: The rapid adoption of electronic health records (EHRs) holds great promise for advancing medicine
through practice-based knowledge discovery. However, the validity of EHR-based clinical research is questionable
due to poor research reproducibility caused by the heterogeneity and complexity of healthcare institutions and
EHR systems, the cross-disciplinary nature of the research team, and the lack of standard processes and best
practices for conducting EHR-based clinical research.

Method: We developed a data abstraction framework to standardize the process for multi-site EHR-based clinical
studies aiming to enhance research reproducibility. The framework was implemented for a multi-site EHR-based
research project, the ESPRESSO project, with the goal to identify individuals with silent brain infarctions (SBI) at Tufts
Medical Center (TMC) and Mayo Clinic. The heterogeneity of healthcare institutions, EHR systems, documentation,
and process variation in case identification was assessed quantitatively and qualitatively.

Result: We discovered a significant variation in the patient populations, neuroimaging reporting, EHR systems, and
abstraction processes across the two sites. The prevalence of SBI for patients over age 50 for TMC and Mayo is 7.4
and 12.5% respectively. There is a variation regarding neuroimaging reporting where TMC are lengthy, standardized
and descriptive while Mayo’s reports are short and definitive with more textual variations. Furthermore, differences
in the EHR system, technology infrastructure, and data collection process were identified.

Conclusion: The implementation of the framework identified the institutional and process variations and the
heterogeneity of EHRs across the sites participating in the case study. The experiment demonstrates the necessity
to have a standardized process for data abstraction when conducting EHR-based clinical studies.

Keywords: Electronic health records, Reproducibility, Clinical research informatics, Data quality, Multi-site studies,
Learning health system
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Background
The rapid adoption of electronic health records (EHRs)
holds great promise for transforming healthcare with
EHR enabled continuously learning health systems
(LHS), first envisioned by the Institute of Medicine in
2007 [1]. A continuously learning health system can en-
able efficient and effective care delivery with the ability
to discover practice-based knowledge and the seamless
integration of clinical research with care practice [2, 3].
To achieve such a vision, it is critical to have a robust
data and informatics infrastructure with the following
properties: 1) high-throughput and real-time methods
for data extraction and analysis, 2) transparent and re-
producible processes to ensure scientific rigor in clinical
research, and 3) implementable and generalizable scien-
tific findings [1, 2, 4–7].
One common approach to practice-based knowledge

discovery is chart review, a process of extracting infor-
mation from patient medical records to answer a specific
clinical question [8, 9]. Traditionally, chart review is per-
formed manually and follows a pre-defined abstraction
protocol [10]. Since a significant portion of clinical infor-
mation is embedded in text, this manual approach can
be time-consuming and costly [10–14]. With the imple-
mentation of EHRs, chart review can be automated by
extracting data from structured fields systematically and
leveraging natural language processing (NLP) techniques
to extract information from text. Multiple studies have
been reported to leverage NLP for extracting informa-
tion from a diverse range of document types, such as
clinical notes, radiology reports, and surgical operative
reports [15–17], resulting in an effort reduction of up to
90% in chart review [18]. The development and evalu-
ation of NLP algorithms for a specific chart review task
requires the manual creation of a gold standard clinical
corpus, however, there is a lack of standard processes or
best practices for creating such a corpus [19, 20].
Meanwhile, reproducibility is crucial in the field of

medicine where findings of a single site study must
be able to be independently validated at different sites
[21–24]. It is very challenging to validate an EHR-
based study, due to the heterogeneity and complexity
of EHR systems, the challenge of collaboration across
diverse research stakeholders (i.e. physician, informati-
cian, statistician, and IT), and the lack of standard
processes and best practices for conducting EHR-
based studies [19, 20, 25]. The lack of detailed study
protocols, such as annotation guidelines and abstrac-
tion forms, can cause a study to not be reproducible,
even at the same site [26]. For example, Gilbert et al.
reviewed research articles published in three emer-
gency medicine journals and discovered that among
all studies related to retrospective chart review, only
11% reported the use of an abstraction form [14].

Challenges faced in leveraging EHR data lie in the vo-
luminous, complex, and dynamic data being generated
and maintained in heterogeneous sources. Madigan et al.
systematically assessed the variability of 10 different clin-
ical databases and discovered that between 20 to 40% of
observational database studies can alter from statistically
significant in one direction to an opposite direction [27].
A research study conducted by Sohn at el, assessing clin-
ical documentation variations across two different EHRs,
discovered potential corpus variability (i.e. number of
clinical concepts per patient and number of clinical con-
cepts per document are different) in unstructured text
[28]. Another challenge found between heterogeneous
EHRs is missing and noisy data [29]. Since different
EHRs may have different causes underlying their missing
data, unintentional bias may be introduced if the issue is
ignored or poorly handled [30]. These variations and
challenges need to be considered when developing solu-
tions for information extraction and knowledge transla-
tion. To facilitate multi-site studies [4], efforts are
underway to link EHRs across institutions and to
standardize the definition of phenotypes for large-scale
studies of disease onset and treatment outcomes in rou-
tine clinical care [31–34], however, unstructured data
still remains a challenge.
In the clinical NLP community, efforts have been made

to standardize corpus development including building and
sharing annotated lexical resources, normalizing data ele-
ments, and developing an ontology-based web tool [13,
35–37]. However, to the best of our knowledge, there has
been little informatics investigation done regarding the
impact of using EHRs for clinical research in multi-
institutional settings. Here, we conducted a multi-site
EHR-based case study in the ESPRESSO (Effectiveness of
Stroke Prevention in Silent Stroke) [38] project involving
multiple steps to generate a corpus for the development of
complex phenotype algorithms. The heterogeneity of
healthcare institutions, EHR systems, documentation, and
process variation in case identification was assessed quan-
titatively and qualitatively.

Methods
Data abstraction framework for EHR-based clinical
research
We developed a data abstraction framework to standardize
the process for multi-site EHR-based clinical studies aiming
to enhance research reproducibility. The development of
the proposed framework was designed after review of the
existing guidelines and best practices, including Corpus An-
notation Schemes [39]; Fundamentals of clinical trials [40];
and Research data management [41]. Figure 1 presents the
process of creating annotated corpora for EHR-based clin-
ical research.

Fu et al. BMC Medical Informatics and Decision Making           (2020) 20:60 Page 2 of 12



The framework summarizes the linear process of
extracting or reviewing information from EHRs and as-
sembling a data set for various research needs. The
processes consider important action items and documen-
tation checklist to identify, evaluate and mitigate varia-
tions across sites. Depending on the study design, the
order of processes and selection of activities can be al-
tered. We considered four types of variations: institutional
variation, EHR system variation, documentation variation,
and process variation (Fig. 1, yellow boxes). Table 1 sum-
marizes the definitions, potential implication and assess-
ment methodologies of these variations.

A case study – the ESPRESSO study
This ESPRESSO study is an EHR-based study aiming to
estimate the comparative effectiveness of preventive ther-
apies on the risk of future stroke and dementia in patients
with incidentally-discovered brain infraction [38, 42]. The
study has been approved by the Mayo Clinic and Tufts
Medical Center institutional review boards. Mayo Clinic is
a tertiary care, nonprofit, academic medical center. Mayo
Clinic is a referral center with major campuses in three re-
gions of the U.S. including Rochester, Minnesota; Jackson-
ville, Florida; and Phoenix/Scottsdale, Arizona as well as
Mayo Clinic Health System locations that serve more than

Fig. 1 Data Abstraction Framework for EHR-based Clinical Research

Fu et al. BMC Medical Informatics and Decision Making           (2020) 20:60 Page 3 of 12



70 communities in Iowa, Wisconsin and Minnesota. The
organization attends to nearly 1.2 million patients each
year, who come from throughout the United States and
abroad. The Saint Mary’s (1,265 licensed beds) and Roch-
ester Methodist (794 beds) campuses are two main hospi-
tals located in Rochester, Minnesota. Tufts Medical
Center is similarly a tertiary care, nonprofit, academic
medical center that is located in Boston, MA and is the
principal teaching hospital of the Tufts University School
of Medicine. The 415 licensed bed medical center pro-
vides comprehensive patient care across a wide variety of
disciplines with disease-specific certifications through the
Joint Commission as a Comprehensive Stroke Center and
transplant center. TMC is the referral center for the Well-
Force network serving communities throughout Eastern
Massachusetts and New England (Maine, New Hamp-
shire, Vermont, Rhode Island). The medical center is ac-
tively engaged in clinical research and medical education
with ACGME-accredited residencies and fellowships.
Silent brain infarction (SBI) is the presence of one or

more brain infarcts, presumed to be due to vascular oc-
clusion, found by neuroimaging in patients without clin-
ical manifestations of stroke [43–45]. It is more
common than a stroke and can be detected in 20% of
healthy elderly people [43–45]. Early detection of SBI
may prompt efforts to mitigate the risk of stroke by of-
fering preventative treatment plans. In addition to SBI,
white matter disease (WMD) or leukoaraiosis is another
common finding in neuroimaging of older patients. SBI
and WMD are related, but it is unclear whether they re-
sult from the same, independent, or synergistic processes
[46, 47]. Since SBIs and WMDs are usually incidentally
detected, there are no related International Classification
of Diseases (ICD) codes in the structured fields of EHRs
to facilitate large-scale screening. Instead, the findings

are usually recorded in neuroimaging reports, so NLP
techniques offer an opportunity to systematically identify
SBI and WMD cases in EHRs.
In the study, we demonstrated the process of using

EHRs for developing complex phenotypes to identify in-
dividuals with incidentally-discovered SBIs and WMDs.
The process was assessed by corpus statistics, screening
ratio, prevalence ratio, inter-annotator agreement, and
qualitative interview.

Methodologic process of using EHRs
Protocol development
A screening protocol was co-developed by the two insti-
tutions using procedure codes, diagnosis codes, and
problem lists. The protocol included ICD-9 and ICD-10
codes to identify non-incidental clinical events. The
codes were expanded with the corresponding descrip-
tions to enable us to perform a text search. The full
ICD-9 and ICD-10 codes and key terms are listed in the
Additional file 1. The initial criteria were developed by a
vascular neurologist at TMC and were evaluated by two
neuroradiologists and one internist. The inclusion cri-
teria were defined as individuals with neuroimaging
scans between 2009 and October 2015. The exclusion
criteria included patients with clinically-evident stroke,
transient ischemic attack (TIA), and dementia any time
before or up to 30 days after the imaging exam. TIA was
considered an exclusion criterion as TIA is sometimes
incorrectly assigned on occasion by clinicians as the
diagnosis in the setting of transient neurologic symp-
toms and positive evidence of brain infarction on neuro-
imaging. Dementia was an exclusion criterion because of
a projected future application of the NLP algorithm in
identifying patients for comparative effectiveness studies
or clinical trials for which both stroke and dementia

Table 1 Variation Assessment Table for Data Abstraction

Variation Type Definition Potential Implication Example of Assessment Method

Institutional variation Variation in practice patterns,
outcomes, and patient
sociodemographic characteristics

Inconsistent phenotype
definition; unbalanced
concept distribution

• Compare clinical guideline, protocol,
and definition

• Calculate the number of eligible patients
divided by screening population

• Calculate the ratio of the proportion of the
persons with the disease over the proportion
with the exposure

EHR system variation Variation in data type and format
caused by different EHR system
infrastructure

Inconsistent data type;
different data collection
processes

• Compare data type, document structure, and
metadata

• Conduct a semi-structured interview to obtain
information about the context of use

Documentation variation Variation in reporting schemes
during the processes of generating
clinical narratives

Noisy data • Compare the cosine similarity between two
documents represented by vectors

• Conduct a sub-language analysis to assess
syntactic variation

Process variation Variation in data collection and
corpus annotation process

Poor data reliability,
validity, and reproducibility

• Calculate the degree of agreement among
abstractors

• Conduct a semi-structured interview to
obtain information about the context of use
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could be outcomes of interest. The systematic reviews
suggested that the U.S. population over 50 years old had
a high average prevalence of SBI [44]. By identifying a
large cohort of patients with SBIs, age restriction was ap-
plied to exclude individuals 50 years of age or younger at
the time of the first neuroimaging scan.

Data collection
At TMC, the data was aggregated and retrieved from
three EHR systems: General Electric Logician, eClinical-
Works, and Cerner Soarian. The EHRs in TMC were
implemented in 2009 with 1,031,159 unique patient re-
cords. At Mayo Clinic, the data was retrieved from the
Mayo Unified Data Platform (UDP), an enterprise data
warehouse which loads data directly from Mayo EHRs.
Mayo EHR was implemented in 1994. Currently, there
are 9,855,533 unique patient records. To allow data
sharing across the sites, we de-identified the data by ap-
plying the de-identification tool DEID [48], a Java-based
software that automatically removes protected health in-
formation (PHI) in neuroimaging reports with manual
verification where an informatician, an abstractor and a
statistician manually reviewed all the output from DEID.

Cohort screening
At Mayo Clinic, an NLP system, MedTagger [49], was
utilized to capture mentions from the exclusion list in
the clinical notes. As the system has a regular expression
component, language variations such as spelling and ab-
breviations were able to be captured. Structured ICD-9
and ICD-10 codes were obtained by an informatician
from the UDP. A clinician and an abstractor manually
compared the screened cohort with the EHRs to ensure
the validity of the screening algorithm.
At TMC, due to infrastructure limitations, this process

was conducted through manual chart review. To ensure
reproducibility, we carefully documented each step of
the workflow (Additional file 3). Briefly, a vascular neur-
ologist and three research assistants conducted manual
chart review in order to determine whether individuals
were included or excluded appropriately at each step.
This process was performed using a list of free text ex-
clusion criteria associated with the exclusionary ICD-9
and ICD-10 codes. It involved review of the full text of
any discharge summaries associated with the encounter
during which the neuroimaging scan was obtained in
Cerner Soarian, if present, as well as review of the neu-
roimaging scan indication in the neuroimaging report.
Each site randomly selected 500 eligible reports to

form the raw corpus for guideline development and cor-
pus annotation. The cohort consisted of 1400 reports
with 400 duplications for double reading. Among the
total 400 double-read reports, 5 reports were removed

because of invalid scan types. The remaining 395 reports
were comprised of 207 from Mayo and 188 from TMC.

Guideline development
A baseline guideline was created by a vascular neurolo-
gist based on domain knowledge and published litera-
ture. To develop the annotation guideline, 40 reports
pooled from the two institutions were annotated by two
neuroradiologists and one neurologist using the baseline
guideline. Inter-annotator agreement (IAA) was calcu-
lated and a consensus was organized to finalize the
guideline, which included task definitions, annotation in-
structions, annotation concepts, and examples. The full
guideline is provided in the Additional file 2.

Corpus annotation
The annotation processes consist of two tasks: neuroim-
aging report annotation and neuroimage interpretation.
Neuroimaging report annotation is the process of read-
ing and extracting SBI and WMD related sentences or
concepts from text documents. Neuroimage interpret-
ation is the process of identifying SBIs or WMDs from
CT or MRI images. Figure 2 provides an example of two
tasks.

Neuroimaging report annotation The purpose of the
annotation task was to annotate the findings of SBI and
WMD lesions in both the body (Findings) and summary
(Impression and Assessment) sections of neuroimaging
reports. The annotation was organized into two itera-
tions. The first iteration extended from the finalization
of the process guideline until the midpoint when half of
the reports were annotated. The goal of the first iter-
ation was to identify new problems that were not cap-
tured in the sample data. After the first iteration, all
problematic cases were reviewed by the two senior clini-
cians, and the guidelines were updated. The second iter-
ation of annotation then commenced using the updated
guidelines. Several consensus meetings were organized
to resolve all disagreements after the annotation process
was completed. All conflicting cases were adjudicated by
the two senior clinicians. All of the issues encountered
during the process were documented.
The annotation team was formed with members from

both institutions. Two third-year residents from Mayo
and two first-year residents from TMC performed the
annotation. The experts for quality control were two se-
nior radiologists from Mayo and one senior internist
and one vascular neurologist from TMC. We used
Multi-document Annotation Environment (MAE) [50], a
Java-based natural language annotation software pack-
age, to conduct the annotation.
Prior to annotation, training was conducted for all four

annotators including one online video session and two
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on-site training sessions. The online video provided
demonstrations and instructions on how to download,
install, and use the annotation software. The on-site
training conducted by two neuroradiologists contained
initial annotation guideline walkthroughs, case studies,
and practice annotations. The same clinicians supervised
the subsequent annotation process.

Neuroimage interpretation To assess the validity of
the corpus, we obtained a balanced sample of images
with and without SBI from the annotated neuroimaging
reports. From each site, 81 neuroimages were de-
identified and reformatted to remove institution-specific
information and then pooled together for the sample
group. We invited four attending neuroradiologists, two
from each site, to read grade the imaging exams. Each
exam was graded twice by two neuroradiologists inde-
pendently. The image reading process followed the pro-
posed best practices including guideline development,
image extraction form, training, and consensus building.
The level of agreements between the research grade
reading of the neuroimages and the corresponding anno-
tation of the reports was calculated.

Assessment of heterogeneity
The screening ratio was calculated on the post screened co-
hort. Cohen’s kappa [51] and F-measure [52] were adopted
to measure the IAA during the annotation and image read-
ing processes. Corpus statistics were used to measure the
variations in clinical documentation across institutions. The
analysis compared corpus length, number of SBI and WMD
concepts, number of documents with SBI and WMD con-
cepts, and distribution of SBI related concept mentions.
Document similarity was calculated by comparing the cosine

similarity between two vectors created by term frequency-
inverse document frequency (tf-idf), where each corpus was
represented by a normalized tf-idf vector [28]. Age-specific
prevalence of SBI and WMD were calculated and compared
with the literature. To analyze the cohort characteristics be-
tween Mayo and TMC, Student’s t-test was performed for
continuous variables. Comparison of categorical variables
was calculated with frequency tables with Fisher’s exact test.
Qualitative assessments were conducted to evaluate

the abstraction process and an assessment protocol
was created to facilitate the post abstraction interview.
The protocol was designed to focus on three main
areas: 1) evaluation of the abstraction process, 2) lan-
guage patterns in the reports, and 3) abstraction tech-
niques. Four back-to-back interviews were conducted
with the four abstractors following the guidelines of
Contextual Interview (CI) suggested by Rapid Con-
textual Design [53]. Each interview was conducted by
an informatician and lasted approximately 30 min.
Questions and issues raised by each annotator during
the two iterations of annotation were collected and
qualitatively assessed. The data were then classified
into six categories: data, modifier, medical concept,
annotation rules, linguistic, and other.

Results
Corpus annotation
Neuroimaging report annotation
The average inter-annotator agreements across 207
Mayo reports and 188 TMC reports on SBI and WMD
were 0.87 and 0.98 in kappa score and 0.98 and 0.99 in
F-measure, respectively. Overall, both Mayo and TMC
annotators achieved high inter-annotator agreements.

Fig. 2 Example of neuroimaging report annotation (left) and neuroimage interpretation (right) for SBI (yellow) and WMD (blue)
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Neuroimage interpretation
The average inter-annotator agreement among four neu-
roradiologists was 0.66 in kappa score and 0.83 in F-
measure. The average agreement between neuroimaging
interpretation and corpus annotation was 0.68 in kappa
score and 0.84 in F-measure. The result suggested high
corpus validity outcomes.

Assessment of heterogeneity
Institutional variation
The process of screening eligible neuroimaging reports
across two institutions was variant. At Mayo, 262,061 re-
ports were obtained from Mayo EHR based on the CPT
inclusion criteria. 4015 reports were randomly sampled
for cohort screening. 749 were eligible for annotation
after applying the ICD exclusion criteria (structured and
unstructured). At TMC, 63,419 reports were obtained
from TMC EHR based on CPT inclusion criteria. 12,092
reports remained after applying the ICD exclusion cri-
teria (structured). 1000 reports were randomly selected
for text screening, a method of identifying eligible pa-
tients using NLP techniques to extract eligibility criteria
from patient clinical notes. 773 reports were eligible for
annotation. Among the total 1522 eligible (Mayo 749,
TMC 773) neuroimaging reports, 1000 (Mayo 500, TMC
500) reports were randomly selected.
The prevalence of SBI and WMD for Mayo and TMC pa-

tients at age of 50, 60, 70 and 80 is listed in Table 2. Despite
the variation, the results were consistent with the published
literature, between 10 and 20% [43–45], and the number in-
creased with age in both computed tomography (CT) and
magnetic resonance imaging (MRI) as anticipated.
The average age of Mayo and TMC patients 65 and

66, respectively. The number of female patients in the
Mayo and TMC cohort were 243 and 274, respectively.
We found a moderate variation in the presence of SBI
and WMD and a high variation in the WMD grading. A
significant variation in the missing documentation of
WMD grading between Mayo and TMC was found (p =
0.0024). Table 3 summarizes the cohort characteristics
across two institutions.

EHR system variation
There was a high variation in the EHR system vendors,
the number of EHR systems per site, and the extract,

transform, and load (ETL) processes for the different
EHR systems between Mayo and TMC. At TMC, the
data was obtained directly from three EHR systems:
General Electric Logician, eClinicalWorks, and Cerner
Soarian. The data retrieval process involved difference
abstraction processes due to the different interface de-
sign and data transfer capabilities. At Mayo Clinic, there
was an ETL process to aggregate the data from Mayo
EHRs to the enterprise data warehouse. Since data could
be linked and transferred through direct queries, the ab-
straction process was less variant.

Documentation variation
There was variation between Mayo and TMC in express-
ing SBI and WMD in neuroimaging reports. Corpus sta-
tistics identified the three most frequent expressions of
negated infarction in neuroimaging reports (Table 4). In
the TMC reports, “no acute territorial infarction” is a
common phrase to describe negated SBI concepts. This
expression was never discovered in Mayo reports. When
describing the grade measure for WMDs, definitive ex-
pressions such as “mild”, “moderate” and “severe” were
used by Mayo physicians. On the other hand, TMC phy-
sicians used more descriptive expressions in describing
the grade measure for WMDs. In regards to documenta-
tion styles, TMC used a template-based reporting
method whereas Mayo did not adopt any reporting sche-
mas. The average numbers of tokens per document on
Mayo and TMC reports were 217 and 368, respectively.
The corpus similarity between TMC and Mayo Clinic
radiology reports was 0.82 and suggested a potential
moderate-to-high semantic similarity. Overall, Mayo’s
reports are definitive and varied, whereas TMC reports
are lengthy, standardized and descriptive.

Process variation
The process map of the ESPRESSO data abstraction is il-
lustrated in Fig. 3 – Part I. The map provides an overview
of the relationship and interaction between people and
technology in the context of the data abstraction process.
The analysis suggested that the variations of EHR systems
and technology infrastructures between the two sites have
resulted in differences in the number of processing steps,
experts, and duration (Fig. 3 – Part II).

Table 2 The prevalence of SBI and WMD for Mayo and TMC patients at age of 50, 60, 70 and 80

CT Scan (%) - SBI MRI Scan (%) - SBI CT Scan (%) - WMD MRI Scan (%) - WMD

Age Mayo TMC Mayo TMC Mayo TMC Mayo TMC

> = 50 12.5 7.4 11.3 7.7 28.7 55.0 69.2 51.7

> = 60 16.0 9.4 14.0 9.7 35.1 65.9 75.3 60.2

> = 70 23.5 11.4 20.2 12.2 47.1 80.7 84.6 65.3

> = 80 26.3 18.4 26.5 20.8 52.6 94.7 85.3 66.7
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Recommended practices for EHR-based data abstraction
Throughout this case study, we encountered many chal-
lenges during the data abstraction process. Here we
summarize some lessons learned and provide a few em-
pirical recommendations to promote the best practices
of using EHRs for clinical research.

Institutional variation
It is inevitable to encounter variabilities across different
institutions. Being aware of the degree of variation can
help estimate biases and prevent inaccurate study con-
clusions. Thus, it is always helpful to apply informatics

techniques to capture and assess the variation to ensure
transparent and informed EHR-based clinical research.

Documentation plan and checklist
A comprehensive documentation plan for a study allows
interventions aimed at process replication and error pre-
vention to be designed into the data abstraction. The
plan should explicitly mention what, where, and when to
document experimental elements such as protocols,
guidelines, codes, operations manuals, and process work-
flows. Ensuring adequate time is devoted to documenta-
tion is critical in order to prevent details from being

Table 3 Analysis of Cohort Characteristics Between Mayo and TMC

Variables Mayo (n = 500) TMC (n = 500) p Value

Age (mean) 65 (+ − 10.6) 66 (+ − 9.7) 0.1197

Gender (female) 243 (48.6) 274 (54.8) 0.0576

SBI 57 (11.4) 38 (7.6) 0.0516

Acuity

Acuity/subacute 6 (1.2) 6 (1.2) 1.0000

Chronic 44 (8.8) 29 (5.8) 0.0882

Non-specified 7 (1.4) 3 (0.6) 0.3407

Location

Lacunar/subcortical 27 (5.4) 10 (2.0) 0.0065

Cortical/juxtacortical 9 (1.8) 13 (2.6) 0.5188

Both 0 (0) 3 (0.6) 0.2492

Non-specified 21(4.2) 12 (2.4) 0.1558

WMD 291 (58.2) 264 (52.8) 0.9800

WMD grading

Mild 191 (38.2) 154 (30.8) 0.0165

Mild/moderate 21 (4.2) 0 (0.0) 7.6963e-7

Moderate 42 (8.4) 45 (9.0) 0.8226

Moderate/severe 2 (0.4) 0 (0) 0.4995

Severe 8 (1.6) 11 (2.2) 0.6443

No mention of quantification 27 (5.4) 54 (10.8) 0.0024

Definition of abbreviations: CI confidence interval, OR odds ratio

Table 4 Example of Language Variation between Two Data Sources

Mayo – Non-SBI TMC – Non-SBI

• No restricted diffusion.
• No focal masses, focal atrophy, or foci of
restricted water diffusion.

• No evidence for acute ischemia on the
diffusion weighted images.

• There is no acute territorial infarct.
• No acute territorial infarct.
• There is no decreased diffusion to indicate an acute infarct.

Mayo – WMD TMC – WMD

• Mild leukoaraiosis
• Minimal leukoaraiosis
• Moderate leukoaraiosis

• There are scattered foci of hypodensity in the subcortical and periventricular white
matter, a non-specific finding but likely reflecting the sequela of chronic microangiopathy

• Areas of white matter hypodensity are a non-specific finding but may represent the sequela
of chronic microangiopathy

• There are multiple foci of t2 flair hyperintensity in the periventricular, deep and subcortical
white matter, a non-specific finding but likely reflecting the sequela of chronic microangiopathy

Fu et al. BMC Medical Informatics and Decision Making           (2020) 20:60 Page 8 of 12



overlooked or omitted. A documentation checklist en-
sures important study details are documented. Examples
of important metadata elements are data identifier (i.e.
document id, document date, and patient clinic num-
ber), cohort definition (i.e. inclusion and exclusion cri-
teria), steward, and description of the data (when the
data is created, moved, modified, or filtered). During
data abstraction, process logs, tools, data definitions, and
methodologies need to be carefully analyzed and expli-
citly stated.

Concept definitions and protocol co-development
To ensure data validity, the variables of the study should
be strictly defined. Standardized terminology codes, such
as ICD, SNOMED-CT, CPT-4, or RxNorm are useful for
describing observable medical characteristics. Protocol co-
development and consensus building helped reduce insti-
tutional and process variance in our study (Figs. 1 and 3).
Particularly, having a well-represented expert panel (from
all sites) for developing and evaluating inclusion and ex-
clusion criteria and annotation guidelines helped the cre-
ation of high-quality protocol documents.

Abstraction and annotation training
Proper training and education can help reduce process
inconsistency and increase transparency, especially for a

cross disciplinary team. When the training sessions were
applied, a shared understanding of rigorous experimental
design, research standards, and objective evaluation of
data was ensured. Some example training activities in-
cluded discussing the overall study goal, going through
the contents of the annotation guideline and definitions
of interest, and practicing using the annotation tool (i.e.
allowing people to work on a sample of 5–10 notes).

Process iteration and consensus building
A consensus reaching process is an iterative and dy-
namic process for building agreement on any potential
issues and disagreements. A consensus meeting should
be organized when developing screening protocols and
annotation guidelines. Routine discussions ensure guide-
lines and protocols are scientifically valid and robust.

Adoption of appropriate informatics tools
Successfully leveraging informatics techniques can im-
prove process efficiency, data quality, and reproducibil-
ity. For example, automatic data retrieval techniques
(such as application programming interface and struc-
tured query language) and cohort screening tools (such
as i2b2 [54]) can enable a high-throughput data abstrac-
tion process. Using annotation tools ensures a standard-
ized and reproducible annotation process. It is more

Fig. 3 Overview of ESPRESSO Data Abstraction Process. Total Annotation Issues during Two Iterations
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important to choose an appropriate informatics solution
than an advanced solution. In the study, we chose a light
and standalone version of annotation software over an
advanced web-based tool due to its high feasibility and
efficiency. In situations that require extensive validation
for processes, such as de-identification, human valida-
tions are needed after applying the informatics tools.

Discussion
We conducted a multi-site EHR-based case study in the
implementation of the ESPRESSO project to assess the
impact of EHR heterogeneity for clinical research. The
case study discovered significant variation regarding pa-
tient population, neuroimaging reporting, EHR systems,
and abstraction processes. Despite the variation, the
evaluation of the final corpus yielded high reliability and
validity.
The assessment through the ESPRESSO discovered a

high variation in the reported prevalence of SBIs be-
tween Mayo and TMC. There are two potential reasons
for the low prevalence of SBIs in TMC. First, the two lo-
cations have different patient sociodemographic charac-
teristics at the two locations. Although both Mayo and
TMC are referral centers, Mayo may have a larger pro-
portion of patients who are referred from distant loca-
tions whereas TMC may have predominantly local and
regional referrals. Second, low SBI prevalence may be
due to the different documentation priorities during the
routine practice. For further investigation, a qualitative
assessment was utilized to learn how clinicians report
neuroimaging interpretations. Based on the analysis of
cohort characteristics between Mayo and TMC (Table 3)
and the post abstraction interview, we discovered a por-
tion of SBIs were under-documented by TMC neurora-
diologists due to their historical perceptions of
potentially low clinical significance for SBIs. For ex-
ample, the descriptions about the clinical utility of
reporting on small and presumably asymptomatic brain
lesions that could represent infarcts were very uncertain.
Compared with TMC, the wording describing SBIs on
the Mayo reports was more definitive.
Although the average kappa score on the Mayo reports

was lower than the TMC reports, the score still reflected
an exceptionally high agreement between all annotators.
We believe this was achieved by a well-designed process.
During guideline development, we found that variation
could be reduced by adding an instruction manual to
the guidelines. Due to the large number of reports that
were assigned to each resident, the de-identified reports
were equally distributed to individuals as a “take home”
assignment. The instruction manual helped to guide an-
notation activities, such as suggesting the number of re-
ports that needed to be annotated per day. One of the
most commonly raised issues was the lack of precise

modifier definitions for WMD. To reduce the abstrac-
tion variation caused by different interpretation of modi-
fiers, we created a normalization mapping schema. For
example, the level of grading for WMDs was explicitly
defined to be mild, mild/moderate, moderate, moderate/
severe, and severe.
The qualitative assessment of the annotation process

(Fig. 1 - process 5 - box 2) identified that medical con-
cepts (i.e. mention of SBI and WMD) and modifiers (i.e.
acuity and location) were the primary issues during the
first iteration of annotation. Additional training was of-
fered to address the primary issues experienced during
the first iteration of annotation and thus, decreased the
occurrence of issues during the second iteration (Fig. 3).
All four annotators noted that with the combination of
training and comprehensive annotation guidelines, anno-
tation time was shortened, effort redundancy was re-
duced, and annotation consistency was improved.

Limitations and future work
Since the study was conducted on two sites with one
case scenario, the generalizability of the process is lim-
ited by the scope of the study. Our next step is to ex-
pand our investigation on pragmatic clinical trials by
incorporating more sites and case scenarios. Further-
more, we plan to develop a standardized process frame-
work for EHR-based clinical research to ensure the
validity, reliability, reproducibility and transparency of
research findings.

Conclusion
We conducted a case study based on the ESPRESSO
project identified the institutional and process variations
and the heterogeneity of EHRs across sites. Our experi-
ment demonstrates the necessity to have a standardized
process for the use of EHRs for clinical studies.
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