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Abstract 

Background Accurate diagnosis and early treatment are essential in the fight against lymphatic cancer. The appli-
cation of artificial intelligence (AI) in the field of medical imaging shows great potential, but the diagnostic accu-
racy of lymphoma is unclear. This study was done to systematically review and meta-analyse researches concern-
ing the diagnostic performance of AI in detecting lymphoma using medical imaging for the first time.

Methods Searches were conducted in Medline, Embase, IEEE and Cochrane up to December 2023. Data extrac-
tion and assessment of the included study quality were independently conducted by two investigators. Studies 
that reported the diagnostic performance of an AI model/s for the early detection of lymphoma using medical imag-
ing were included in the systemic review. We extracted the binary diagnostic accuracy data to obtain the outcomes 
of interest: sensitivity (SE), specificity (SP), and Area Under the Curve (AUC). The study was registered with the PROS-
PERO, CRD42022383386.

Results Thirty studies were included in the systematic review, sixteen of which were meta-analyzed with a pooled 
sensitivity of 87% (95%CI 83–91%), specificity of 94% (92–96%), and AUC of 97% (95–98%). Satisfactory diagnostic 
performance was observed in subgroup analyses based on algorithms types (machine learning versus deep learning, 
and whether transfer learning was applied), sample size (≤ 200 or >  200), clinicians versus AI models and geographical 
distribution of institutions (Asia versus non-Asia).

Conclusions Even if possible overestimation and further studies with a better standards for application of AI algo-
rithms in lymphoma detection are needed, we suggest the AI may be useful in lymphoma diagnosis.
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Introduction
As a clonal malignancy of lymphocytes, lymphoma are 
diagnosed in 280,000 people annually worldwide with 
divergent patterns of clinical behavior and responses 
to treatment [1]. Based on the WHO classification, 
non-Hodgkin lymphoma (NHL) derived from mature 
lymphoid cells brings about 6,991,329 (90.36%) disa-
bility-adjusted life-years (DALYs), and Hodgkin lym-
phoma (HL) originated from precursor lymphoid cells 
accounts for 14.81% of DALYs [2, 3]. Since about 30% 
cases of NHL arise in extranodal sites [4], some are 
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considered very aggressive (i.e., Diffuse large B-cell 
lymphoma in NHL). Early and timely detection of lym-
phoma are needed to forward the qualified treatment 
and improve the post-operative quality of life.

Since lymphocyte had diverse physiologic immune 
function according to lineage and differentiation stage, 
the classification of lymphomas arising from these 
normal lymphoid populations is complicated. Imag-
ing is a useful tool in medical science and is invoked 
in clinical practice to facilitate decision making for 
the diagnosis, staging, and treatment [5]. Despite 
advances in medical imaging technology, it is difficult 
for even experienced hematopathologists to identify 
different subtypes of lymphoma. Diagnosis of lym-
phoma is firstly based on the pattern of growth and 
the cytologic features of the abnormal cells, then clini-
cal, molecular pathology, immunohistochemical, and 
genomic features are required to finalize the identifi-
cation of certain subtypes [6]. However, clinical rou-
tine methods that enable tissue-specific diagnosis, 
such as image-guided tumor biopsy and percutaneous 
needle aspiration, have the shortcomings of subjectiv-
ity, costly, and poor classification accuracy [7]. Diag-
nostic features vary widely (from 14.8 to 27.3%) due to 
inter-observer variability among experts using multi-
ple imaging methods such as computed tomography 
(CT), magnetic resonance imaging (MRI), and Whole 
Slide Image (WSI) in the same sample [8]. As diagnos-
tic accuracy of lymphoma depends largely on the clini-
cal judgment of physicians and the technical process 
of tissue sections, limited health system capacities and 
competing health priorities in more resource-deprived 
areas may lack infrastructure and perhaps the man-
power to ensure high-quality detection of lymphoma. 
Therefore, accurate, objective and cost-effective meth-
ods are required for the early diagnosis of lymphoma 
in clinical settings and ultimately provide better guid-
ance for lymphoma therapies.

Artificial intelligence (AI) offers tremendous oppor-
tunities in this field. It has the ability to extend the 
noninvasive study of oncologic tissue beyond estab-
lished imaging metrics, to assist automatic image 
classification, and to facilitate performance of cancer 
diagnosis [9–11]. As branches of AI, machine learn-
ing (ML) [12, 13] and deep learning (DL) [8, 14] have 
shown promising results for detection of malignant 
lymphoma. However, there are no studies systemati-
cally assessing the diagnostic performance of AI algo-
rithms in identifying lymphoma. Here, we performed 
a meta-analysis to assess the diagnostic accuracy of 
AI algorithms that use medical imaging to detect 
lymphoma.

Materials and methods
The study protocol was approved on the PROSPERO 
(CRD42022383386). This meta-analysis was conducted 
according to the Preferred Reporting Items for System-
atic reviews and Meta-analyses (PRISMA) 2020 guide-
lines [15]. Ethical approval was not applicable.

Search strategy and eligibility criteria
In this study, we searched Medline, Embase, IEEE and the 
Cochrane library until December 2023. No restrictions 
were applied around regions, languages, participant char-
acteristics, type of imaging modality, AI models or pub-
lication types. The full search strategy was developed in 
collaboration with a group of experienced clinicians and 
medical researchers (see Additional file 1).

Eligibility assessment was conducted independently 
by two investigators, who screened titles and abstracts, 
and selected all relevant citations for full-text review. 
Disagreements were resolved through discussion with 
another collaborator. We included all published stud-
ies that reported the diagnostic performance of a AI 
model/s for the early detection of lymphoma using medi-
cal imaging. Studies that met the following criteria were 
included in the final group: (1) Any study that analyzed 
medical imaging for diagnosis of lymphoma with AI-
based models; (2) Studies that provided any raw diagnos-
tic performance data, such as sensitivity, specificity, area 
under curve (AUC) accuracy, negative predictive values 
(NPVs), or positive predictive values (PPVs). The primary 
outcomes were diagnostic performance indicators. Stud-
ies were excluded when they met the following criteria: 
(1) Case reports, review articles, editorials, letters, com-
ments, and conference abstracts; (2) Studies that used 
medical waveform data graphics material (i.e., electro-
encephalography, electrocardiography, and visual field 
data) or investigated the accuracy of image segmentation 
rather than disease classification; (3) Studies without the 
outcome of disease classification or not target diseases; 
(4) Studies that did not use histopathology and expert 
consensus as the study reference standard of lymphoma 
diagnosis; (5) Studies that use animals’ studies or non-
human samples; (6) Duplicate studies.

Data extraction
Two investigators independently extracted study char-
acteristics and diagnostic performance data using a pre-
determined data extraction sheet. Again, uncertainties 
were resolved by a third investigator. Where possible, 
we extracted binary diagnostic accuracy data and con-
structed contingency tables at the reported thresholds. 
Contingency tables contained true-positive (TP), false-
positive (FP), true-negative (TN), and false-negative (FN) 
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values and were used to determine sensitivity and speci-
ficity. If a study provided multiple contingency tables for 
the same or for different AI algorithms, we assumed that 
they were independent of each other.

Quality assessment
The quality assessment of diagnostic accuracy studies-AI 
(QUADAS-AI) criteria was used to assess the risk of bias 
and applicability concerns of the included studies [16], 
which is an AI-specific extension to QUADAS-2 [17] and 
QUADAS-C [18].

Meta‑analysis
Hierarchical summary receiver operating characteris-
tic (SROC) curves were used to assess the diagnostic 
performance of AI algorithms. Hierarchical SROC pro-
vided more credibility to the analysis of small sample 
size, taking both between and within study variation into 
account. 95% confidence intervals (CI) and prediction 
regions were generated around averaged sensitivity, spec-
ificity, and AUCs estimates in Hierarchical SROC figures. 
Heterogeneity was assessed using the I2 statistic. We per-
formed subgroup and regression analyses to explore the 
potential effects of different sample size (≤200 or >  200), 
diagnostic performance using the same dataset (AI algo-
rithms or human clinicians), AI algorithms (ML or DL), 
geographical distribution (Asia or non-Asia), and appli-
cation of transfer learning (Yes or No). The random 
effects model was implemented since the assumed differ-
ences between studies. The risk of publication bias was 
assessed using funnel plot.

We evaluated the quality of included studies by Rev-
Man (Version 5.3). A cross-hairs plot was produced (R 
V.4.2.1) to better display the variability between sensi-
tivity/specificity estimates. All other statistical analyses 
were conducted using Stata (Version 16.0). Two-sided 
p < 0.05 was the threshold for statistical significance.

Results
Study selection and characteristics
Our search initially identified 1155 records, of which 
1110 were screened after removing 45 duplicates. 1010 
were also excluded as they did not fulfill our predeter-
mined inclusion criteria. A total of 100 full-text articles 
were reviewed, 70 were excluded, and the remaining 30 
focused on lymphomas (see Fig. 1) [1, 8, 12–14, 19–43]. 
Study characteristics are summarized in Tables 1, 2 and 
3.

Twenty-nine studies utilized retrospective data. 
Only one study used prospective data. Six studies used 
data from open access sources. Five studies excluded 
low-quality images, while ten studies did not report 
anything about image quality. Six studies performed 

external validation using the out-of-sample dataset, fif-
teen studies did not report type of internal validation 
while the others performed internal validation using 
the in-sample dataset. Seven studies utilized ML algo-
rithms and twenty-three studies used DL algorithms 
to detect lymphoma. Three studies compared AI algo-
rithms against human clinicians using the same data-
set. Among the studies analyzed, six utilized samples 
diagnosed with PCNSL, six involved samples with 
DCBCL, four studies focused on ALL, while two stud-
ies focused on NHL. Additionally, individual studies 
were conducted among patients with ENKTL, splenic 
and gastric marginal zone lymphomas, and ocular 
adnexal lymphoma. Furthermore, a variety of medical 
imaging modalities were employed across the studies: 
six studies utilized MRI, four used WSI instruments, 
four employed microscopic blood images, three utilized 
PET/CT, and two relied on histopathology images.

Pooled performance of AI algorithms
Among the included 30 studies, 16 provided enough 
data to assess diagnostic performance and were thus 
included in the meta-analysis [1, 12, 14, 20, 22–26, 
28, 29, 32, 33, 35–37]. Hierarchical SROC curves for 
these studies are provided in Fig.  2. When averaging 
across studies, the pooled SE and SP were 87% (95% 
CI 83–91%), and 94% (95% CI 92–96%), respectively, 
with an AUC of 0.97 (95% CI 0.95–0.98) for all AI 
algorithms.

Heterogeneity analysis
All included studies found that AI algorithms were use-
ful for the detection of lymphoma using medical imag-
ing when compared with reference standards; however, 
extreme heterogeneity was observed. Sensitivity (SE) had 
an I2 = 99.35%, while specificity (SP) had an I2 = 99.68% 
(p < 0.0001), see Fig.  3. The detailed results of subgroup 
and meta-regression analyses are shown in Table 4. The 
heterogeneity for the pooled specificity and sensitivity are 
still significant within each subgroup, suggesting poten-
tial sources of inter-study heterogeneity among studies 
with different sample sizes, various algorithms applied, 
geographical distribution and Al algorithms-assisted cli-
nicians versus pure clinicians. However, the results of 
meta-regression highlight that only difference in AI algo-
rithms and human clinicians remain statistically signifi-
cant, indicating a potential source of between-subgroup 
heterogeneity. Furthermore, a funnel plot was produced 
to assess publication bias, see Fig. 4. The p value of 0.49 
suggests there is no publication bias although studies 
were widely dispersed around the regression line.
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Quality assessment
The quality of included studies was summarized in Fig. 5 
by using the QUADAS-AI tool. A detailed assessment 
for each item based on the domain of risk of bias and 
concern of applicability has also been provided as Fig. 6. 
For the subject selection domain of risk of bias, fourteen 
studies were considered a high or unclear risk of bias due 
to unreported rational and breakdown of training/vali-
dation/test sets, derived from open-source datasets, or 
not performing image pre-processing. For the index test 
domain, seventeen studies were considered high or at 

unclear risk of bias due to not performing external verifi-
cation, whereas the others were considered at low risk of 
bias. For the reference standard domain, ten studies were 
considered an unclear risk of bias due to incorrect clas-
sification of target condition.

Subgroup meta‑analyses
Considering the stage of development of the algorithm 
and the difference in nature, we categorized them into 
ML and DL algorithms and did a sub-analysis. The results 
demonstrated a pooled SE of 86% (95% CI: 80–90%) for 

Fig. 1 PRISMA flow chart outlining the selection of studies for review
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ML and 93% (95% CI: 88–95%) for DL, and a pooled 
SP of 94% (95% CI: 92–96%) for ML and 92% (95% CI: 
87–95%) for DL. Additionally, six studies adopted trans-
fer learning and ten studies did not. The pooled SE for 
studies that used transfer learning was 88% (80–93%), 
and 85 (80–89%) for studies that did not. The SP was 95% 
(92–97%) and 91% (88–93%), respectively.

Three studies presented the diagnostic accuracy 
between AI algorithms and human clinicians in the same 
dataset. The pooled SE was 91% (86–94%) for AI algo-
rithms, and human clinicians had 70% (65–75%). The 
pooled SP was 96% (93–97%) for AI algorithms, and 86% 
(82–89%) for human clinicians.

Five studies had sample sizes above 200, and eleven 
studies used samples that were less than 200. For sam-
ple sizes under 200 and over 200, respectively, the 
pooled SE was 88% (84–92%) and 86% (78–91%), and 
the SP was 91% (87–94%) and 95% (92–97%).

Ten studies were geographically distributed in Asia 
and six studies were geographically distributed out-
side Asia. The pooled SE among studies in Asia was 
88% (83–91%), whereas non-Asian studies exhibited a 
SE of 83% (72–90%). The pooled SP was 94% (92–96%) 
for studies in Asia, and 91% (82–96%) in non-Asian 
studies.

Table 2 Model training and validation for the 24 included studies

NR not reported, MCL mantle cell lymphoma, PCNSL primary central nervous system lymphoma, DLBCL diffuse large B-cell lymphoma, HGL high grade lymphomas, 
FL follicular lymphoma, BL burkitt lymphoma, SLL small lymphocytic lymphoma, ENKTL nasal-type extranodal natural killer/T cell lymphoma, NHL non-Hodgkin’s 
lymphoma, ALL acute lymphoblastic leukemia, OAL ocular adnexal lymphoma, RL reactive lymphoid hyperplasia

First author and year Target condition Reference standard Type of internal validation External 
validation

Zhou Z, 2021 MCL Histopathology Five-fold cross validation Yes

McAvoy M, 2021 PCNSL Histopathology NR No

Li D, 2020 DLBCL Histopathology NR No

Miyoshi H, 2020 DLBCL, FL Histopathology or expert 
consensus

Five-fold cross-validation No

Park JE, 2020 Lymphoma Histopathology NR Yes

Mohlman JS, 2020 BL, DLBCL Histopathology Leave-one-out cross-validation No

Achi HE, 2019 DLBCL, BL, SLL Histopathology NR No

Im H, 2018 Lymphoma Histopathology Random split-sample validation No

Guan Q, 2019 NHL Histopathology NR No

Guo R, 2021 ENKTL Histopathology NR No

Xia W, 2021 PCNSL Histopathology Five-fold cross validation No

Zhang Y, 2021 PCNSL Histopathology NR No

Syrykh C, 2020 FL Histopathology NR Yes

Wang H, 2020 ENKTL Histopathology Ten-fold cross-validation No

Zhang J, 2020 NHL NR Five-fold cross validation No

Wang Q, 2017 ALL Histopathology Cross validation No

Schouten JPE, 2021 ALL Expert consensus Tenfold cross-validation No

Nakagawa M, 2018 PCNSL Expert consensus Ten-fold cross-validation No

Shafique S, 2018 ALL Expert consensus NR No

Kong Z, 2019 PCNSL Histopathology Five-fold cross validation No

Weisman AJ, 2020 Lymphoma Expert consensus Five-fold cross validation No

Kim Y, 2018 PCNSL Histopathology Ten-fold cross-validation Yes

Styczeń M, 2012 Splenic and gastric marginal 
zone lymphoma

Histopathology NR No

Guo J, 2018 OAL Histopathology NR No

Azamossadat H, 2023 B-ALL Histopathology NR No

Chava P, 2023 DLBCL, HGL Histopathology NR Yes

Jermphiphut J, 2023 PCNSL Histopathology NR No

Hikaru A, 2023 DLBCL Histopathology Five-fold cross-validation No

Manjit K, 2023 ALL Histopathology NR No

Noriaki H, 2023 DLBCL, FL and RL Histopathology Five-fold cross-validation Yes
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Discussion
To our knowledge, this is the first systematic review and 
meta-analysis on the diagnostic accuracy of AI in lym-
phoma using medical imaging. After careful selection 
of studies with full reporting of diagnostic performance, 
we found that AI algorithms could be used for the detec-
tion of lymphoma using medical imaging with an SE 
of 87% and SP of 94%. We were strictly in line with the 
guidelines for diagnostic reviews, and conducted a com-
prehensive literature search in both medical databases, 
engineering and technology databases to ensure the rigor 
of the study. More importantly, we assessed study quality 
using an adapted QUADAS-AI assessment tool, which 
provides researchers with a specific framework to evalu-
ate the risk of bias and applicability of AI-centered diag-
nostic test accuracy.

Although our results were largely consistent with pre-
vious research, confirming the worries that premier jour-
nals have recently raised [5, 44–46], none of the previous 
studies were done specifically on lymphoma. To fulfil 
this research gap, we strive to identify the best available 
AI algorithm and then develop it to enhance detection of 
lymphoma, and to reduce the number of false positives 
and false negatives beyond that which is humanly pos-
sible. Our findings revealed that AI algorithms exhibit 
commendable performance in detecting lymphoma. 

Our pooled results demonstrated an AUC of 97%, align-
ing closely with the performance of established conven-
tional diagnostic methods for lymphoma. Notably, this 
performance was comparable to emerging radiation-free 
imaging techniques, such as whole-body magnetic reso-
nance imaging (WB-MRI), which yielded an AUC of 96% 
(95% CI, 91–100%), and the current reference standard, 
18F-fluorodeoxyglucose positron emission tomography/
computed tomography (18F-FDG PET/CT), with an AUC 
of 87% (95% CI, 72–97%) [47]. Additionally, the SE and 
SP of AI algorithms surpassed those of the basic method 
of CT, with SE = 81% and SP = 41% [48]. However, the 
comparison between AI models and existing modalities 
was inconsistent across studies, potentially attributed to 
the diverse spectrum of lymphoma subtypes, variations 
in modality protocols and image interpretation methods, 
and differences in reference standards [49].

Similar to previous research in the field of image-based 
AI diagnostics for cancers [5, 50, 51], we observed sta-
tistically significant heterogeneity among the included 
studies, which makes it difficult to generalize our results 
with larger sample sizes or in other countries. Therefore, 
we conducted rigorous subgroup analyses and meta-
regression for different sample sizes, various algorithms 
applied, geographical distribution and Al algorithms-
assisted clinicians versus pure clinicians. Contrary to 

Fig. 2 Hierarchical SROC curves for studies included in the meta-analysis (16 studies with 124 tables)
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earlier findings [52], our results displayed that stud-
ies with smaller sample sizes and conducted in Asian 
regions had higher SE compared with other studies. 

Significant between-study heterogeneity emerged within 
the comparison of Al-assisted clinicians and pure clini-
cians. Despite this, other sources of heterogeneity could 

Fig. 3 Cross-hair Plot of studies included in the meta-analysis (16 studies with 124 tables)

Table 4 Summary estimate of pooled performance of artificial intelligence in lymphoma detection

a . P-Value for heterogeneity within each subgroup
b . P-Value for heterogeneity between subgroups with meta-regression analysis

No. of studies P  valueb P value

Overall 16 Sensitivity P value a I2(95%CI) Specificity P value I2 (95%CI)

Algorithm 0.11 0.83

Deep Learning 13 0.86 (0.80–0.90) < 0.05 99.41 (99.37–99.47) 0.94 (0.92–0.96) < 0.05 99.71 (99.70–99.72)

Machine Learning 3 0.93 (0.88–0.95) < 0.05 91.47 (88.74–94.21) 0.92 (0.87–0.95) < 0.05 87.72 (83.33–92.10)

Transfer Learning Applied 0.92 0.55

Yes 6 0.88 (0.80–0.93) < 0.05 99.67 (99.65–99.69) 0.95 (0.92–0.97) < 0.05 99.85 (99.84–99.85)

No 10 0.85 (0.80–0.89) < 0.05 91.29 (89.67–92.91) 0.91 (0.88–0.93) < 0.05 92.39 (91.04–93.75)

Human Clinicians 
versus Algorithms

0.01 < 0.05

Clinicians 3 0.70 (0.65–0.75) < 0.05 77.53 (69.54–85.53) 0.86 (0.82–0.89) < 0.05 84.09 (78.94–89.23)

Algorithms 13 0.91 (0.86–0.94) < 0.05 99.60 (99.58–99.62) 0.96 (0.93–0.97) < 0.05 99.81 (99.80–99.82)

Sample size 0.45 0.39

≤ 200 11 0.88 (0.84–0.92) < 0.05 98.71 (98.55–98.86) 0.91 (0.87–0.94) < 0.05 99.02 (98.91–99.13)

> 200 5 0.86 (0.78–0.91) < 0.05 99.47 (99.43–99.50) 0.95 (0.92–0.97) < 0.05 99.77 (99.76–99.78)

Geographical distribution 0.67 0.51

Asia 10 0.88 (0.83–0.91) < 0.05 99.34 (99.30–99.38) 0.94 (0.92–0.96) < 0.05 99.71 (99.70–99.72)

Non Asia 6 0.83 (0.72–0.90) < 0.05 99.23 (99.09–99.36) 0.91 (0.82–0.96) < 0.05 99.40 (99.31–99.50)
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not be explained in the results, potentially attributed to 
the broad nature of our review and the relatively limited 
number of studies included.

Unlike ML, DL is a young subfield of AI based on artifi-
cial neural networks, which are known to have the capa-
bilities to automatically extract characteristic features 
from images [53]. Moreover, it offers significant advan-
tages over traditional ML methods in the early detec-
tion and diagnostic accuracy of lymphoma, including 
higher diagnostic accuracy [8, 14], more efficient image 
analysis [13], and the greater ability to handle complex 
morphologic patterns in lymphoma accurately [1]. Most 
included studies in this review investigating the use of 
AI in lymphoma detection employed DL (n = 18), with 
only six studies using ML. For leukemia diagnosis, the 
convolutional neural networks (CNN) of DL have been 
used, e.g., to distinguish between cases with favourable 
and poor prognosis of chronic myeloid leukemia [54], or 

to recognize blast cells in acute myeloid leukemia [55]. 
However, it requires far more data and computational 
power than ML methods, and is more prone to overfit-
ting. Some included studies that used data augmentation 
methods adopting affine image transformation strategies 
such as rotation, translation, and flipping, to make up for 
data deficiencies [13, 26]. The pooled SE using ML meth-
ods was higher compared with studies using DL methods 
(93% VS 86%), while equivalent SP was observed between 
these two methods (92% VS 94%). We also discovered 
that AI models using transfer learning had greater SE 
(88% VS 85%) and SP (95% VS 91%) than models that did 
not. Transfer learning refers to the reuse of a pre-trained 
model on a new task. In transfer learning, a machine 
exploits the knowledge gained from a previous task to 
improve generalization about another. Therefore, various 
studies have highlighted the advantages of transfer learn-
ing over traditional AI algorithms including accelerated 

Fig. 4 Deeks’ Funnel Plot Asymmetry Test

Fig. 5 Risk of bias and applicability concerns summary about each QUADAS-AI domain presented as percentages across the 30 included studies
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Fig. 6 Detailed assessment for each item based on the domain of risk of bias and concern of applicability across the 30 included studies
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learning speed, reduced data requirements, enhanced 
diagnostic accuracy, optimal resource utilization, and 
improved performance in early detection and diagnostic 
precision of lymphoma [13, 56]. McAvoy et al. [20]. also 
reported that implemented transfer learning with a high-
performing CNN architecture is able to classify GBM 
and PCNSL with high accuracy (91–92%). Within this 
review, no significant differences were observed between 
studies employing transfer learning and those that did 
not, as well as studies using ML or DL models, potentially 
indicating limitations stemming from the restricted size 
of datasets examined in these studies.

Evidence also suggested that AI algorithms had supe-
rior SE (91%) and SP (96%), which manifested better 
performance than independent detection by human cli-
nicians (70 and 86%). Moreover, these differences were 
the major source of heterogeneity in the meta-regression 
analysis. Though AI offers certain advantages over physi-
cian diagnosis evidenced by faster image processing rates 
and continuous work, it does not attach importance to 
all the information that physicians rely on when evaluat-
ing a complicated examination. Of the included studies, 
only three compared the performance of integrating AI 
with clinicians and pure algorithms, which also restricts 
our ability to extrapolate the diagnostic benefit of these 
algorithms in medical care delivery. In the future, the AI 
versus physicians dichotomy is no longer advantageous, 
and an AI-physician combination would drive develop-
ments in this field and largely reduce the burden of the 
healthcare system. On one hand, future non-trivial appli-
cations of AI in medical settings may need physicians to 
combine pieces of demographic information with image 
data, optimize the integration of clinical workflow pat-
terns and establish cloud-sharing platforms to increase 
the availability of annotated datasets. On the other, AI 
could perhaps serve as a cost-effective replacement diag-
nostic tool or an initial method of risk categorization to 
improve workflow efficiency and diagnostic accuracy of 
physicians.

Though our review suggests a more promising future of 
AI upon current literature, some critical issues in meth-
odology needed to be interpreted with caution:

Firstly, only one prospective study was identified, and 
it did not provide a contingency table for meta-analysis. 
In addition, twelve studies used data from open-accessed 
databases or non-target medical records, and only eleven 
were conducted in real clinical environments (e.g., hos-
pitals and medical centers). This is well known that pro-
spective studies would provide more favorable evidence 
[57], and retrospective studies with data sources in sili-
con might not include applicable population character-
istics or appropriate proportions of minority groups. 
Additionally, the ground truth labels in open-assessed 

databases were mostly derived from data collected 
for other purposes, and the criteria for the presence or 
absence of disease were often poorly defined [58]. The 
reporting around handling of missing information in 
these datasets was also poor across all studies. Therefore, 
the developed models might lack generalizability, and 
studies utilizing these databases may be considered as 
studies for proof-of-concept technical feasibility instead 
of real-world experiments evaluating the clinical utility of 
AI algorithms.

Second, in this review, only six studies performed 
external validation. For internal validation, three studies 
adopted the approach of randomly splitting, and twelve 
used cross-validation methods. The performance judged 
by in-sample homogeneous datasets may potentially lead 
to uncertainty around the estimates of diagnostic perfor-
mance, therefore it is vital to validate the performance 
using data from a different organization to increase the 
generalizability of the model. Additionally, only five stud-
ies excluded poor-quality images and none of them were 
quality controlled for the ground truth labels. This may 
render the AI algorithms vulnerable to mistakes and uni-
dentified biases [59].

Third, though no publication bias was observed in this 
review, we must admit that the researcher-based report-
ing bias could also lead to overestimating the accuracy 
of AI. Some related methodological guides have recently 
been published [60–62], while the disease-specific AI 
guidelines were not presented. Since researchers tend 
to selectively report favorable results, the bias might be 
likely to skew the dataset and add complexity to the over-
all appraisal of AI algorithms in lymphoma and its com-
parison with clinicians.

Fourth, the majority of studies included were per-
formed in the absence of AI-specific quality assessment 
criteria. Ten studies were considered to have low risk in 
more than three evaluation domains, while nine stud-
ies were considered high risk under the AI-specific risk 
of bias tool. Previous studies most commonly used the 
quality assessment of diagnostic accuracy studies (QUA-
DAS-2) tool to assess bias and applicability encouraged 
by current PRISMA 2020 guidance [63], which does not 
address the particular terminology that arises from AI 
diagnostic test studies. Furthermore, it did not take into 
account other challenges that arise in AI research, such as 
algorithm validation and data pre-processing. QUADAS-
AI provided us with specific instructions to evaluate 
these aspects [16], which is a strength of our systematic 
review and will help guide future relevant studies. How-
ever, it still faces several challenges [16, 64] including 
incomplete uptake, lack of a formal quality assessment 
tool, unclear methodological interpretation (e.g., vali-
dation types and comparison to human performance), 
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unstandardized nomenclature (e.g., inconsistent defini-
tions of terms like validation), heterogeneity of outcome 
measures, scoring difficulties (e.g.,uninterpretable/inter-
mediate test results), and applicability issues. Since most 
of the relevant studies were more often designed or con-
ducted prior to this guideline, we accepted the low qual-
ity of some of the studies and the heterogeneity between 
the included studies.

This meta-analysis has some limitations that merit 
consideration. Firstly, a relatively small number of 
studies were available for inclusion, which could have 
skewed diagnostic performance estimates. Additionally, 
the restricted number of studies addressing diagnostic 
accuracy in each subgroup, such as specific lymphoma 
subtypes and medical imaging modalities, prevented a 
comprehensive assessment of potential sources of het-
erogeneity [65, 66]. Consequently, the generalizability of 
our conclusions to diverse lymphoma subtypes and var-
ied medical imaging modalities, particularly without the 
integration of AI models at this current stage, could be 
limited. Secondly, we did not conduct a quality assess-
ment for transparency since current diagnostic accuracy 
reporting standards (STARD-2015) [67] is not fully appli-
cable to the specifics and nuances of AI research. Thirdly, 
several included studies have methodological deficiencies 
or are poorly reported, which may need to be interpreted 
with caution. Furthermore, the wide range of imag-
ing technology, patient populations, pathologies, study 
designs and AI models used may have affected the esti-
mation of diagnostic accuracy of AI algorithms. Finally, 
this study only evaluated studies reporting the diagnostic 
performance of AI using medical image, which is difficult 
to extend to the impact of AI on patient treatment and 
outcomes.

To further improve the performance of AI algorithms 
in detecting lymphoma, based on the aforementioned 
analysis, focused efforts are required in the domains of 
robust designs and high-quality reporting. To be specific, 
firstly, a concerted emphasis should be directed towards 
fostering an augmented landscape of multi-center pro-
spective studies and expansive open-access databases. 
Such endeavors can facilitate the exploration of various 
ethnicities, hospital-specific variables, and other nuanced 
population distributions to authenticate the reproduc-
ibility and clinical relevance of the AI model. Therefore, 
we suggest the establishment of interconnected networks 
between medical institutions, fostering unified stand-
ards for data acquisition, labeling procedures and imag-
ing protocols to enable external validation in professional 
environments. Additionally, we also call for prospective 
registration of diagnostic accuracy studies, integrating a 
priori analysis plan, which would help improve the trans-
parency and objectivity of reporting studies. Second, 

we would encourage AI researchers in medical imaging 
to report studies that do not reject the null hypothesis, 
which might improve both the impartiality and clarity of 
studies that intend to evaluate the clinical performance 
of AI algorithms in the future. Finally, though time-
consuming and difficult [68], the development of “cus-
tomized” AI models tailored to specific domains, such 
as lymphoma, head and neck cancer [69], or brain MRI 
[70], emerges as a pertinent suggestion. This tailored 
approach, encompassing meticulous preparations such 
as feature engineering and AI architecture, alongside 
intricate calculation procedures like segmentation and 
transfer learning, could yield substantial benefits for both 
patients and healthcare systems in clinical application.

Conclusions
This systematic review and meta-analysis appraised 
the quality of current literature and concluded that AI 
techniques may be used for lymphoma diagnosis using 
medical images. However, it should be acknowledged 
that these findings are assumed in the presence of poor 
design, methods and reporting of studies. More high-
quality studies on the AI application in the field of lym-
phoma diagnosis with adaption to the clinical practice 
and standardized research routines are needed.
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