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Abstract 

Background Cesarean section-induced postpartum hemorrhage (PPH) potentially causes anemia and hypovolemic 
shock in pregnant women. Hence, it is helpful for obstetricians and anesthesiologists to prepare pre-emptive preven-
tion when predicting PPH occurrence in advance. However, current works on PPH prediction focus on whether PPH 
occurs rather than assessing PPH amount. To this end, this work studies quantitative PPH prediction with machine 
learning (ML).

Methods The study cohort in this paper was selected from individuals with PPH who were hospitalized at Shiji-
azhuang Obstetrics and Gynecology Hospital from 2020 to 2022. In this study cohort, we built a dataset with 6,144 
subjects covering clinical parameters, anesthesia operation records, laboratory examination results, and other 
information in the electronic medical record system. Based on our built dataset, we exploit six different ML models, 
including logistic regression, linear regression, gradient boosting, XGBoost, multilayer perceptron, and random forest, 
to automatically predict the amount of bleeding during cesarean section. Eighty percent of the dataset was used 
as model training, and 20% was used for verification. Those ML models are constantly verified and improved by root 
mean squared error(RMSE) and mean absolute error(MAE). Moreover, we also leverage the importance of permutation 
and partial dependence plot (PDP) to discuss their feasibility.

Result The experiment results show that random forest obtains the highest accuracy for PPH amount prediction 
compared to other ML methods. Random forest reaches the mean absolute error of 21.7, less than 5.4% prediction 
error. It also gains the root mean squared error of 33.75, less than 9.3% prediction error. On the other hand, the experi-
mental results also disclose indicators that contributed most to PPH prediction, including Ca, hemoglobin, white 
blood cells, platelets, Na, and K.

Conclusion It effectively predicts the amount of PPH during a cesarean section by ML methods, especially random 
forest. With the above insight, ML predicting PPH amounts provides early warning for clinicians, thus reducing compli-
cations and improving cesarean sections’ safety. Furthermore, the importance of ML and permutation, complemented 
by incorporating PDP, promises to provide clinicians with a transparent indication of individual risk prediction.
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Introduction
Cesarean section hemorrhage is one of the common 
complications in cesarean section [1]. Blood loss exceed-
ing 1000 milliliters within the first 24 hours after the 
cesarean section is qualified as postpartum hemorrhage 
(PPH). PPH is a significant global health concern [2]. 
Severe hemorrhage caused by cesarean section poten-
tially brings serious consequences, even maybe maternal 
death [3]. Hence, it is significant to accurately predict the 
amount of PPH during cesarean section and take early 
preventive measures to improve the delivery safety of 
pregnant women [4]. Currently, clinicians mainly rely on 
clinical experience to use statistical models to predict the 
occurrence of PPH. It heavily relies on healthcare profes-
sionals’ clinical practice and statistical abilities [5].

Statistical prediction methods are not conducive to 
situations with a shortage of professional clinicians [6]. 
There is potential to enhance predictive accuracy by 
applying machine learning (ML) methods [7]. Compared 
to traditional statistical models, ML has gained signifi-
cant attention due to its superior predictive capabilities 
[8]. ML offers advantages such as processing non-addi-
tive relationships and incorporating complex interactions 
between indicators without needing pre-specification [9]. 
The ML model has been widely used in PPH prediction 
of cesarean section. These models can be trained through 
large-scale clinical data and output corresponding hem-
orrhage predictions based on input predictive indicators 
[10]. The model mainly uses mainstream ML methods, 
such as support vector machine (SVM), random forest, 
and artificial neural network (ANN) to predict PPH.

However, current works about PPH prediction mainly 
focus on constructing classification models [11]. Because 
PPH accounts for no more than 8 % of all pregnant 
women, the research data is highly imbalanced. Even the 
final classification accuracy of the classification model is 
high. But the missed detection rate is also high, causing a 
low recall rate [8].

Comparing predicting whether PPH occurs, the advan-
tages of quantitative prediction of PPH are apparent. 
First, quantitative prediction of PPH can intuitively pre-
dict the specific amount of bleeding. It provides conveni-
ence for clinicians to conduct preoperative evaluations. 
Second, it is conducive to establishing a graded diagnosis 
and treatment system. Clinicians can transfer critically 
sick pregnant women to advanced hospitals in advance to 
avoid the waste of cutting-edge medical resources. Third, 
It is beneficial for clinicians to allocate blood transfusion 

resources reasonably. At present, a blood transfusion unit 
is a bag of 100 milliliters. It needs to be thawed one hour 
in advance. The PPH regression model could reasonably 
arrange blood transfusion volume and thawing time [12].

Therefore, studying and evaluating the amount of 
cesarean section hemorrhage is significant. This study 
aims to identify and assess predictive indicators related 
to bleeding volume and establish reliable quantitative 
prediction models. The quantitative prediction mod-
els can help clinicians accurately determine the risk of 
hemorrhage during cesarean section and take treatment 
measures [13]. There are three contributions to the quan-
titative prediction of PPH in this study:

• A self-organized dataset. The study cohort in this 
research was drawn from individuals hospitalized at 
Shijiazhuang Obstetrics and Gynecology Hospital 
from 2020 to 2022. Within this study cohort, a data-
set comprising 6,144 subjects was constructed. This 
dataset encompassed an array of clinical parameters, 
anesthesia operation records, laboratory examination 
results, and other pertinent information extracted 
from the electronic medical record system.

• Verification and comparison of various ML meth-
ods. Utilizing the dataset we constructed, we employ 
six distinct ML models. The ML models comprise 
logistic regression, linear regression, gradient boost-
ing, XGBoost, multilayer perceptron, and random 
forest. The ML models achieve the prediction of 
hemorrhage volume during cesarean sections. These 
ML models receive verification and refinement 
through a self-learning mechanism. Additionally, we 
employ permutation importance and partial depend-
ence plot (PDP) to evaluate their feasibility.

• Important indicators discovery. We discover the 
most risk indicators for the quantitative prediction 
of PPH. It relies on reasonable data processing and 
comparing different ML models. The importance of 
risk indicators is sorted.

Related works
Indicator exploration
Many researchers are striving to identify risk indicators 
highly associated with PPH. Kumar et  al. [14] designed 
an automated method using wearable devices to prevent 
PPH in pregnant women. The wearable devices assess 
parameters including perspiration rate, temperature, 
pulse rate, and blood pressure. The method incorporates 
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fuzzy neural-based rules for each parameter to predict 
the risk of PPH. The accuracy of this method is evalu-
ated by decreasing morbidity and mortality rates associ-
ated with PPH. The type of emergency cesarean section 
is related to whether the uterine incision is longitudinal 
or transverse [15]. Wu et al. [16] endeavored to construct 
a nomogram that integrates both clinical and radiomic 
features of the placenta to forecast the risk of PPH occur-
ring in a cesarean section. Radiomic features are selected 
based on their correlation with PPH. Various methods, 
including clinico-radiomic, radiomic, radiological, clini-
cal, and clinico-radiological approaches, are developed 
for predicting PPH risks in all individuals. The method 
with superior predictive accuracy is validated through 
the clinical application, discrimination ability assess-
ment, and calibration curve analysis.

Krishnamoorthy et  al. [17] presented an approach for 
predicting PPH by introducing the oppositional binary 
crow search algorithm (OBCSA) coupled with an opti-
mal stacked autoencoder (OSAE) model, denoted as 
OBCSA-OSAE. This technique encompasses OBCSA-
based feature selection methods strategically employed 
to determine an optimal subset of features. They found 
that influencing preoperative indicators include mater-
nal age, weight, gestational age, pregnancy complica-
tions (such as preeclampsia, placental abruption, etc.), 
and abnormal coagulation function. Heesen et  al. [18] 
found out indicators such as older pregnant women, ear-
lier gestational weeks, and the presence of preeclampsia 
were associated with a higher rate of PPH. It is necessary 
to build a reasonable dataset and identify the indicators 
strongly correlated with PPH. It is the key to compre-
hensively understanding the indicators influencing these 
predictions.

Prediction tasks
Many studies have identified multiple predictive indica-
tors associated with the occurrence of cesarean section 
hemorrhage, primarily focusing on the prediction of clas-
sification of whether PPH occurs or not. Those studies try 
to find the indicators that have a strong correlation with 
PPH rather than the prediction of the volume of PPH 
[19]. These indicators can be divided into preoperative, 
intraoperative, and postoperative indicators. Betts et  al. 
[10] aimed to predict the risks of general maternal post-
partum complications in inpatient care. They employed 
a gradient boosting tree with 5-fold cross-validation to 
compare method accuracy. The methods demonstrating 
superior performance for all outcomes were subsequently 
evaluated in independent data. The methods were vali-
dated by the area under curve (AUC) and receiver oper-
ating characteristic (ROC) method.

Zhong et  al. [20] analyzed to identify risk indica-
tors associated with various degrees of PPH in patients 
with pregnancy-induced hypertension. They applied a 
line graph to construct the predictive model. The study 
revealed that the severity of the disease, gestational week 
upon onset, gestational week upon delivery, degree of 
proteinuria, systolic blood pressure, diastolic blood pres-
sure, and uterine atony are significant indicators. The 
indicators influence the incidence of PPH in patients 
with hypertensive disorder complicating pregnancy. The 
resulting prediction model, based on these indicators, 
demonstrates accurate capabilities in assessing the risk 
of diverse degrees of PPH in patients with hypertensive 
disorders complicating pregnancy. The datasets in the 
studies exhibit limited sample sizes, rendering them less 
representative of the broader population for quantitative 
prediction. Consequently, even if a model is constructed 
with high classification accuracy, its practical utility for 
real-world quantitative prediction research is diminished.

Model selection
ML has been increasingly integrated into scientific dis-
covery to accelerate research in recent years. The appli-
cation of ML methods for developing PPH classification 
prediction models has become increasingly prevalent. 
Venkatesh et  al. [15] employed logistic regression with 
and without lasso regularization, constituting two dis-
tinct statistical approaches. Additionally, they utilized 
XGBoost and random forest as the two ML methods 
for the prediction of PPH. Model accuracy assessment 
involved using calibration, decision curves, and C-statis-
tics. The results show that the XGBoost model provided 
the most significant net benefit. Liu et al. [21] created a 
dataset comprising 850 cases of PPH and applied various 
ML models to enhance the precision of predicting PPH 
in vaginal delivery. The study compared the accuracy of 
predictions among an assessment table, classical statisti-
cal models, and ML models to assess their clinical utility. 
The assessment table featured 16 key risk indicators for 
PPH prediction. The classical statistical model employed 
was logistic regression. The ML models included random 
forest, k-nearest neighbor (KNN), and a hybrid model 
integrating light gum and logistic regression. Model per-
formance was evaluated through metrics such as AUC, 
specifically C-statistic, calibration curve brier score, deci-
sion curve, F-measure, sensitivity, and specificity. Among 
the evaluated models, the ML model light gum + logistic 
regression demonstrated superior performance in pre-
dicting PPH.

Paydar et  al. [22] implemented a univariate logis-
tic regression method to select important features 
(P<0.01). Subsequently, they employed multiple ANN 
and binary logistic regression methods to predict PPH, 
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encompassing radial basis function (RBF), multilayer 
perceptron, and backpropagation in the neural network 
methods. The identification and comparison of precise 
networks were conducted using the ROC curve and the 
confusion matrix. There is scant research on the quanti-
tative prediction of PPH. The absence of interpretability 
and intuitive comprehension in ML models is a signifi-
cant impediment to PPH research.

Methodology
We aimed to develop and validate quantitative prediction 
models for PPH using data processing and ML method 
selection. We analyzed preoperative and intraoperative 
data in cesarean section. We comprehensively analyzed 
the correlation between these data and the prediction of 
bleeding volume. We compared the ability of various ML 
and deep learning models to utilize these predictive data. 
Finally, a random forest regression method is applied to 
predict the amount of cesarean section PPH effectively. 
This study used preoperative and intraoperative examina-
tion data for preprocessing and selected reasonable and 
adequate indicators. The indicators were applied to the 
appropriate ML methods to predict bleeding volume. It 
is helpful for the following work, such as analyzing effec-
tive indicators in the prediction model and providing ref-
erences for clinicians. Figure 1 shows the main research 
steps.

Dataset acquisition
The data in this study were selected from delivery women 
hospitalized at the Shijiazhuang Obstetrics and Gynecol-
ogy Hospital from 2020 to 2022. The hospital has an aver-
age annual delivery volume of 28,000. There are a total of 
6,144 pieces of individuals in this dataset. A total of 54 
indicators were collected per patient. According to pre-
vious studies [14, 17–19], we selected 27 indicators that 

were potentially clinically related to PPH. All data comes 
from the medical electronic case system. In terms of the 
maternal bleeding situation, there is a class imbalance in 
the dataset. This issue is solved by establishing feature 
engineering when using different ML methods for train-
ing. The study adopts a retrospective analysis method 
[23]. Based on the guidelines for the management and 
prevention of PPH issued by obstetrics and gynecology, 
we use both volumetric and gravimetric methods to cal-
culate blood loss. We conduct regular training sessions 
for evaluators. First, we calculate blood loss using the 
volumetric method. During a cesarean section, an assis-
tant uses a vacuum suction device to collect as much 
amniotic fluid as possible after the amniotic sac is rup-
tured. The assistant records the amount of amniotic fluid 
in the suction device. The volumetric blood loss is equal 
to the volume in the suction device minus the amount 
of amniotic fluid and irrigation fluid. Then, we calculate 
the remaining blood loss on the operating table using the 
gravimetric method. The weight of surgical drapes and 
perineal pads is calculated before and after the surgery. 
Gravimetric blood loss (ml) = (post-surgery pad weight - 
pre-surgery pad weight) / 1.05. The total blood loss is the 
sum of the blood loss calculated by the volumetric and 
gravimetric methods.

We extract subject information from the hospital medi-
cal record information system. The indicators include 
fundamental information about pregnant women, such 
as age, height, weight, operation diagnosis, number of 
pregnancies (NOP), gestational week, complications, 
blood pressure, and infant weight (IW). The indicators 
include hematological indices such as hemoglobin (HB), 
white blood cell (WBC), and platelet (PLT). The indi-
cators include coagulation function indicators such as 
prothrombin time (PT), international standardized ratio 
(INR), activated partial thromboplastin time (APTT), 

Fig. 1 Flow chart
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thrombin time (TT), and fibrinogen quantification (FIB). 
The indicators include liver function tests, such as bili-
rubin, ALT, and AST. The indicators include renal func-
tion tests such as urea and creatinine. The indicators 
include ion examination such as Na, K, Cl, and Ca. The 
indicators also include surgical indicators such as anes-
thesia method, ASA, and emergency treatment (ET). The 
selection of these indicators is mainly based on previous 
research and the professional experience of clinicians. In 
the dataset, HB, WBC, PLT, PT, INR, APTT, TT, FIB, Na, 
K, Cl, Ca, bilirubin, urea, creatinine, weight, height, IW, 
age, NOP, gestational week, blood pressure, complica-
tion, PPH are continuous data. The anesthesia method, 
ASA, ET, and complications are categorical data.

Exploratory data analysis
Exploratory data analysis (EDA) is a critical task in pre-
dicting PPH. In this paper, we conducted an EDA on the 
amount of hemorrhage and related research indicators, 
including the patient’s physical examination, data distri-
bution, missing data, outliers, etc. EDA helps us explore 
the characteristics of hemorrhage volume data, identify 
data quality issues, and prepare for further data process-
ing and analysis [24]. Meanwhile, the data we obtained is 
not complete. The obtained data contains specific miss-
ing data. A certain proportion of missing data exists due 
to the negligence of recording personnel. The missing 

data analysis in this paper is shown in Fig.  2. It is also 
helpful for the following model development.

There is a small number of missing data in APTT, INR, 
PT, TT, FIB, PLT, WBC, HB, K, Na, Cl, Ca, etc. It is due 
to the loss of clinical personnel records. Complication_1, 
complication_2, and complication_3 belong to the cat-
egory of prenatal complications. Only some pregnant 
women have one or several related diseases. So, a large 
proportion of missing data is expected. Bilirubin, urea, 
and creatinine have high miss rates. The reason is that 
many pregnant women have not undergone this exami-
nation before cesarean section. It requires reasonable 
processing in the following part of data processing.

The next step is to conduct a correlation analysis of the 
data. Correlation analysis can help researchers reveal the 
relationships between indicators [25]. This paper deter-
mines the strength of the correlation between indica-
tors by calculating the Pearson correlation coefficient. 
Analysis of the correlation between different indicators 
of hemorrhage helps researchers reveal patterns, trends, 
and dependencies in the data. It provides a theoreti-
cal basis for subsequent modeling and prediction [26]. 
We explored which indicators have a strong correlation 
with maternal hemorrhage. The correlation of the indica-
tors is valuable for feature selection. Because it can help 
researchers eliminate features that have a weak relation-
ship with the target indicator, it helps to improve the 

Fig. 2 Missing data analysis
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effectiveness and efficiency of modeling. We further 
explore multivariate relationships. This study explores 
the overall correlation pattern between multiple indica-
tors by calculating the correlation coefficients between 
hemorrhage volume and other continuous indicators. 
This study discovers complex interactions between indi-
cators and analyzes some indicators strongly correlated 
with hemorrhage. The correlation matrix obtained is 
shown in Fig. 3.

This work provides a foundation for the follow-up 
feature engineering through the hemorrhage EDA. By 
observing and analyzing the indicators of the dataset, 
essential indicators related to the target indicator can be 
preliminarily identified. Some indicators could be trans-
formed, combined, or derived. In this paper, we made 
a bar chart and a box chart to show the distribution of 
hemorrhage. We found that there was uneven distribu-
tion in the dataset. According to conventional operating 
methods, researchers maintain the original distribution 
pattern for subsequent prediction modeling. Considering 
the possibility of massive hemorrhage, outliers were not 
processed in this paper. We maintain the actual distribu-
tion pattern for the following prediction model. The data 
distribution analysis is shown in Fig. 4. We could see that 
PPH occurs at low frequency. The study on the accurate 
amount of PPH is meaningful.

Data preprocessing
Mean and mode imputation Two primary strategies for 
mitigating the challenges posed by missing data are dele-
tion and imputation. Deletion methods involve ignoring 
missing data and are straightforward procedures that rely 
on fully recorded samples, as exemplified by Zhou et al. 
[27]. While deletion is convenient, caution should be 
exercised in its application, as it can potentially introduce 
bias into the analysis [28]. Regarding imputation meth-
ods, their primary purpose is to substitute or replace 
missing data with predicted values, typically estimated 
from the observed data. Predominant techniques encom-
passed within statistical and ML frameworks involve 
mean imputation, regression imputation, stochastic 
regression imputation, hot-deck imputation, and KNN 
imputation.

• Mean imputation is a principal approach to handling 
missing data. It involves replacing missing data with 
the arithmetic mean of observed data points. The 
rationale behind mean imputation lies in its capacity 
to preserve the overall distribution of the indicators. 
It is particularly effective when confronted with sym-
metrically distributed indicators.

• Mode imputation is germane to categorical indica-
tors. It involves replacing missing data with the mode 

Fig. 3 Correlation analysis of some indicators
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and representing the most frequently occurring cat-
egory. The application of mode imputation is apt 
when particular categories substantially dominate the 
distribution. It is particularly effective when the cat-
egorical nature of the indicator precludes the use of 
mean or median imputation.

In this study, the missing data significantly impacted 
subsequent ML modeling work. Considering that there 
are continuous and categorical indicators in the data-
set, the processing method in this study uses the mean 
value to fill in the continuous indicators and the mode 
value to fill in the categorical indicators. This processed 
method can maintain the overall distribution and mean 
of the data unchanged. The advantage of completing by 
the mean value is that it is simple and easy to implement 
without introducing new deviations. This paper fills in 
indicators including APTT, INR, PT, TT, FIB, PLT, WBC, 
HB, K, Na, Cl, and Ca with mean values. The missing 
rate for the three indicators, including bilirubin, urea, 
and creatinine, is over 75% . Because the missing rate is 
too high, we delete the indicators directly and discard the 
dirty data. We split blood pressure values into diastolic 
blood pressure (DBP) and systolic blood pressure (SBP).

For the missing categorical indicators in this study, 
such as ASA, the mode value can be calculated by the 
non-missing data. We fill in the missing data by the mode 
value for the categorical indicators. Mode imputation can 
maintain the distribution characteristics and relative pro-
portion of data without introducing new categories. Both 
methods are effective interpolation methods and are suit-
able for dealing with situations where missing data are 
randomly distributed in this study.

The bucket method

Discretization plays a crucial role in preparing data for 
predictive modeling. It requires transforming continuous or 
categorical indicators into categorical representations. The 
bucket method involves partitioning the range of a categori-
cal indicator into distinct intervals. Each distinct interval 
represents a categorical entity. This study applies the bucket 
method to convert numeric representations into categorical 
representations, facilitating model interpretation and poten-
tially capturing nonlinear relationships. The bucket method 
is used to process categorical indicators in the dataset to 
make them more effective in the subsequent model predic-
tion process. The primary operating process is as follows:

• We divide the prenatal symptoms of complications into 
pregnancy with hypothyroidism (PWH), pregnancy 
thrombocytopenia (PT), preeclampsia, placental abrup-
tion (PAB), gestational diabetes (GD), intrapartum fever 
(IF), pregnancy associated with hysteromyoma (PAH), 
chorioamnionitis, pregnancy-induced hypertension 
(PIH), placenta, placenta accreta (PAC), other prenatal 
symptoms (OPS), no prenatal symptoms (NPS).

• We divide anesthesia methods into combined spinal-
epidural anesthesia (CSEA), epidural block anesthe-
sia (EBA), general anesthesia (GA), spinal anesthesia 
(SA), and other anesthesia methods (OAM).

• We divide anesthesia level into ASA_L1, ASA_L2, 
ASA_L3, ASA_L4, ASA_L5.

• We divide emergency treatment into ET_emergency, 
ET_predict.

• We use a natural language processing method to 
record the parity of pregnant women from pregnancy 
detection records.

• We create an indicator of whether the pregnant 
woman has a twin by 1 and 0.

Fig. 4 Hemorrhage bar chart and box chart
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For missing data in categorical indicators, the mode 
imputation is applied. Table  1 shows the final selected 
prediction indicators.

After completing data cleaning and processing, 5,468 
pieces of experimental data can be used for various ML 
models for research. Three pieces of the processed data 
in the study were shown in Table 2. We presented some 
processed data for a more intuitive understanding of 
data generation. It can be seen that the missing continu-
ous and categorical indicators were reasonably processed 
by mean and mode imputation. Employing the bucket 
method, we transformed categorical data into a data form 
that the ML model can process. It facilitates the next step 
of building a PPH quantitative prediction model.

Model development
To quantitatively predict PPH, we utilized six ML mod-
els on the processed dataset. They are logistic regression, 
linear regression, gradient boosting, XGBoost, multilayer 
perceptron, and random forest.

• Logistic regression. Logistic regression algorithm 
is a statistical model used for probabilistic nonlin-
ear regression, estimating the probability of an event 
occurrence based on input indicators. It is particu-
larly suited for problems where the outcome is cat-
egorical.

Table 1 Prediction indicators

Index Column Index Column Index Column

1 HB 17 NOP 33 Parity

2 WBC 18 DBP 34 Twins

3 PLT 19 SBP 35 OAM

4 PT 20 PWH 36 CSEA

5 INR 21 POD 37 EBA

6 APTT 22 Preeclampsia 38 GA

7 TT 23 PAB 39 SA

8 FIB 24 GD 40 ASA_L1

9 Na 25 IF 41 ASA_L2

10 K 26 PAH 42 ASA_L3

11 Cl 27 Chorioamnionitis 43 ASA_L4

12 Ca 28 PIH 44 ASA_L5

13 Weight 29 Placenta 45 ET_emergency

14 Height 30 PAC 46 ET_predict

15 IW 31 OPS 47 Pregnancy_Days

16 Age 32 NPS

Table 2 Processed data preview

ID 1 2 3 ID 1 2 3

HB 117 117 97 GD 0 0 0

WBC 11.89 11.89 10.6 IF 0 0 0

PLT 383 383 200 PAH 0 0 0

PT 11.4 11.4 11.7 Chorioamnionitis 0 0 0

INR 0.95 0.95 0.98 PIH 0 0 0

APTT 32.3 32.3 36.1 Placenta 0 0 0

TT 14.3 14.3 14.1 PAC 0 0 0

FIB 3.6 3.6 4.24 OPS 1 1 1

Na 137.5 137.5 137 NPS 0 0 0

K 3.98 3.98 3.88 Parity 1 1 1

Cl 102.5 102.5 101.6 Twins 1 1 0

Ca 2.15 2.15 1.99 OAM 0 0 0

Ph 573 573 547 CSEA 1 1 0

Weight 62 62 70 EBA 0 0 1

Height 160 160 158 GA 0 0 0

IW 1530 990 3530 SA 0 0 0

Age 29 29 27 ASA_L1 0 0 0

NOP 1 1 1 ASA_L2 1 1 1

DBP 80 80 78 ASA_L3 0 0 0

SBP 128 128 122 ASA_L4 0 0 0

PWH 1 1 0 ASA_L5 0 0 0

POD 0 0 0 ET_emergency 0 0 1

Preeclampsia 0 0 0 ET_predict 1 1 0

PAB 0 0 0 Pregnancy_Days 233 233 276
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• Linear regression. Linear regression is a founda-
tional statistical technique for predicting a continu-
ous outcome. It needs to model the linear relation-
ship between the dependent indicators.

• Gradient boosting. Gradient boosting is an ensem-
ble ML method that builds a predictive model 
incrementally. It minimizes error in prediction by 
combining weak learners.

• XGBoost. XGBoost is an optimized implementation 
of gradient boosting, recognized for its efficiency 
and performance in predictive modeling. It excels 
in both regression and classification tasks, often 
outperforming other algorithms.

• Multilayer perceptron. Multilayer perceptron is a 
type of ANN with multiple layers of interconnected 
nodes. It can capture complex patterns and rela-
tionships within a dataset, making it suitable for 
intricate regression tasks.

• Random forest. Random forest is an ensemble 
learning algorithm that constructs multiple deci-
sion trees during training. It aggregates their pre-
dictions to enhance accuracy in regression tasks, 
which is particularly beneficial for handling noisy 
data and avoiding overfitting.

Experiments
Evaluation metrics
After completing the data processing, we compared dif-
ferent ML models for analysis. When selecting an ML 
regression model in this article, the following criteria 
are comprehensively considered:

• The model’s performance is the primary criterion 
for selecting the model. This study applies sev-
eral common evaluation indicators to measure 
the performance of the hemorrhage prediction 
model, including root mean squared error(RMSE) 
and mean absolute error(MAE). Both of them are 
defined in Equation 1 and 2, respectively. The lower 
error value indicates that the model’s prediction is 
more accurate. 

• The interpretability of the model is another criterion 
for selecting the model. As a medical research pro-
ject, the interpretability of hemorrhage prediction 

(1)RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2

(2)MAE =
1

n

n

i=1

|yi − ŷi|

models is significant, especially when it is necessary 
to understand the relationships between indica-
tors [29]. The ML model used in this study has good 
interpretability and can help explain the influence 
relationships between indicators [30]. This paper uses 
PDP to illustrate the marginal impact of the given 
indicators on the experiment result to show inter-
pretability.

Considering the above Criteria comprehensively, we 
analyze the generalization abilities of ML models and the 
characteristics of the data set. This paper selects random 
forest regression as an optimal algorithm. Random for-
est regression is adaptable to high-dimensional datasets 
with many indicators and can select the most critical 
indicators from the dataset. Because the random forest 
comprises multiple decision trees, each tree can capture 
different nonlinear patterns in the data. So, the random 
forest model can deal with the nonlinear relationship 
between characteristic indicators and prediction values.

Experimental setup
This work is based on Python 3.8 and utilizes Sklearn’s 
ML toolkit to complete the modeling work. We apply 
the grid search method to decide the best parameters for 
the random forest regression. The grid search method’s 
search range of random forest is [10,500]. The search 
scope for internal nodes is (2,5,10). The parameters of the 
leaf node are set to (1,2,4,8). We divide the collected hem-
orrhage data into training and testing sets in an 8:2 ratio. 
The parameters obtained by grid search are n_estimators: 
1250, min_samples_split: 2, min_samples_leaf: 1, max_
features: sqrt, max_depth: 90. This study suggests trying 
multiple models and comparing their performance.

Experimental results
Quantitative performances
This paper selects logistic regression, linear regression, 
gradient boosting, XGBoost, multilayer perception (The 
hidden laters size is 20,30,10), and random forest regres-
sion for regression analysis. The average amount of 
postpartum bleeding is 397 milliliters. The MAE of the 
random forest regression prediction model is 21.7 mil-
liliters, which is less than the 5.4% prediction error. The 
RMSE of the random forest regression prediction model 
is 33.75 milliliters, which is less than the 9.3% prediction 
error. The predicted results are shown in Table  3. The 
results show that random forest regressor have better 
performance than other methods.

Multiple ML prediction models were applied to the test 
set for analysis, and the fitting results obtained are shown 
in Fig. 5. We could see that random forest performs bet-
ter than other ML methods. Its MAE is 1.97 less than 
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that of the second-best-performing model, XBGoost. 
Its RMSE is 0.94 less than that of the second-best-per-
forming model, XBGoost. The multilayer perceptron is 
the worst-performing model. From the perspective of 
model principles, random forest is an ensemble learning 
method that combines the predictions of multiple deci-
sion trees. The superior performance of random forest in 
PPH prediction can be attributed to its ensemble nature, 
robust handling of nonlinear relationships, and efficient 
processing of large datasets. XGBoost follows closely, lev-
eraging its computational efficiency and generalization 

capabilities. On the other hand, XGBoost performs well 
as it is an advanced implementation of gradient boosting 
and is known for its efficiency, scalability, and high pre-
dictive accuracy. In contrast, the multilayer perceptron 
may perform comparatively worse because it is sensitive 
to the scale and distribution of input features. It requires 
extensive tuning of hyperparameters and is susceptible to 
overfitting, especially when dealing with small datasets 
like those in PPH prediction.

Permutation importance
Permutation importance constitutes an initial tool for 
comprehending ML models. It serves as a valuable tech-
nique for elucidating the predictive potential of each 
indicator within these models. This method involves 
systematically altering individual indicators in the vali-
dation dataset and observing resultant changes in accu-
racy. The significance of each indicator is established 
through ranking, with the top value denoting the most 
influential, while the bottom value signifies relatively 
lesser importance. Through the indicator importance 
analysis of the random forest with the best prediction 
effect, Ca, HB, WBC, PLT, Na, and K are the top six 

Table 3 Comparasion for different methods on the in-house 
dataset

Model MAE RMSE

Multilayer Perceptron 63.35 101.65

Logistic Regression 59.43 104.16

Linear Regression 59.11 88.45

Gradient Boosting 53.97 73.23

XGBoost 23.67 34.69

Random Forest 21.70 33.75

Fig. 5 Regression analysis results of several ML methods
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indicators contributing to the prediction model. The his-
togram analysis of the importance of indicators is shown 
in Fig. 6.

Specifically, electrolyte detection, such as Ca, Na, and 
K ion content, is critical in the predictive modeling of 
bleeding volume. These indicators contribute to hemor-
rhagic events. These ions play essential roles in various 
physiological processes, and their contents can poten-
tially affect blood coagulation, vessel integrity, and other 
hemostatic mechanisms. Investigating the relationship 
between the concentrations of Ca, Na, and K ions and 
the prediction of bleeding volume is integral for gaining 
insights into the underlying physiological mechanisms. 
It enhances the accuracy of predictive models. Ca, in 
particular, is a critical cofactor in the blood coagulation 
cascade. It activates various clotting factors that are nec-
essary for forming a stable blood clot [31]. Low calcium 
levels can impair clot formation, leading to increased 

bleeding risks during and after cesarean sections. Na 
plays a vital role in maintaining fluid balance and blood 
pressure [32]. Hyponatremia can lead to hemodilution, 
affecting coagulation and increasing bleeding risks. K is 
crucial for cellular function and maintaining the electri-
cal conductivity of cells [33]. Abnormal potassium levels 
can affect muscle contractions, including those of the 
uterine muscles, potentially leading to increased bleeding 
during childbirth.

Furthermore, blood examinations for HB, PLT, 
and WBC are essential in predicting PPH. HB is cru-
cial for oxygen transport and indicates the blood’s 
oxygen-carrying capacity. Low hemoglobin levels, 
known as anemia, are associated with an increased 
risk of bleeding during and after childbirth. Adequate 
hemoglobin levels are essential for maintaining hemo-
stasis and preventing excessive bleeding [34]. HB is 
crucial for oxygen transport and indicates the blood’s 

Fig. 6 Permutation importance of the indicators
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oxygen-carrying capacity. Low HB levels, known as 
anemia, may result in increased bleeding risk during 
and after childbirth [35]. PLTs are critical components 
in blood clotting. Adequate platelet levels are neces-
sary for the formation and stability of blood clots. Low 
platelet counts, or thrombocytopenia, can impair clot-
ting and contribute to PPH. WBCs are integral to the 
immune system and inflammation response. Elevated 
or decreased white blood cell counts may indicate 
underlying infections or inflammatory conditions that 
could impact the body’s ability to manage postpartum 
bleeding. Monitoring WBC counts can help identify 
and manage potential complications that could exacer-
bate bleeding risks [36].

Partial dependence plot
PDP serves as a post-visual interpretability method, 
delineating the marginal impact of a specified feature 
on the anticipated outcome [37]. Within the PDP, the 
black line epitomizes the alteration in the prediction 
of bleeding volume, traversing the entire spectrum of 
conceivable values for the focal indicator while keeping 
other indicators constant. Six indicators, Ca, HB, WBC, 
PLT, Na, and K, were meticulously chosen for con-
structing a comprehensive partial dependence graph, as 
delineated in Figs.  7, 8, 9, 10, 11 and 12. We kept the 

other indicators constant to see how these indicators 
influence the prediction of PPH.

• For the Ca as shown in Fig.  7, When the composi-
tion of Ca was less than 0.42, the bleeding volume 
gradually increased. When the composition of Ca 
was more than 0.42, the bleeding volume would not 
change. This prompts us to pay attention to the con-
centration of Ca ions in the body of delivery women 
and the remaining risk of calcium deficiency in deliv-
ery women.

• For the HB as shown in Fig. 8, When the content of 
HB is between 0.32 and 0.35, the amount of bleeding 
will increase accordingly. When the content of HB is 
less than 0.32 or greater than 0.35, there is almost no 
change.

• For the WBC as shown in Fig.  9, when the content 
of WBC is between 0.08 and 0.22, the bleeding will 
slowly decrease. When the content of HB exceeds 
0.22, the amount of bleeding will not change accord-
ingly.

• For the PLT as shown in Fig.  10, when the con-
tent of PLT is between 0.4 and 0.45, the bleed-
ing will increase accordingly. When the content of 
HB exceeds 0.45, the amount of bleeding slowly 
decreases as it increases.

Fig. 7 The PDP of indicator Ca
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Fig. 8 The PDP of indicator HB

Fig. 9 The PDP of indicator WBC
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Fig. 10 The PDP of indicator PLT

Fig. 11 The PDP of indicator Na
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• For the Na as shown in Fig. 11, When the content of 
Na is between 0.45 and 0.55, the amount of bleeding 
will decrease accordingly. When the content of Na is 
less than 0.45 or greater than 0.55, there is almost no 
change.

• For the K as shown in Fig. 12, When the content of 
K is between 0.45 and 0.5, the amount of bleeding 
will decrease accordingly. When the content of K is 
less than 0.45 or greater than 0.5, there is almost no 
change.

 PDPs show that these indicators provide important refer-
ence values for constructing predictive models. Medical 
staff can pay attention to these indicators of the delivery 
women before the cesarean section. As explained in the 
previous section, the mechanism by which each indicator 
plays a role in the quantitative predicting model is differ-
ent. The PDP generated by each indicator is also vastly 
different.

Discussion
ML methods, distinguished by the absence of assump-
tions about input indicators and their relationships with 
output, offer a compelling advantage through entirely 
data-driven learning. This feature eliminates the need 

for rule-based programming, making ML a logical and 
feasible option for complex predictive tasks. Increas-
ingly, research has focused on applying ML techniques 
to predict PPH. Various models, such as logistic regres-
sion, gradient boosting regressor, XGBoost, and random 
forest, have been utilized to evaluate the risk of PPH. The 
gradient boosting regressor reduces prediction errors by 
combining weak learners, while logistic regression offers 
insights into the protective or hazardous nature of spe-
cific indicators. The XGBoost algorithm is renowned for 
its fast computation, robust generalization capabilities, 
and high predictive performance. Similarly, the random 
forest algorithm, which constructs multiple decision 
trees, excels in handling large and nonlinear datasets, 
thereby enhancing accuracy in identifying critical predic-
tive features.

Despite the promising performance observed in prior 
studies, evidence of the quantitative prediction applica-
tion of ML in the context of PPH is limited. This study 
employed six ML methods, including logistic regression, 
linear regression, gradient boosting regressor, XGBoost, 
multilayer perceptron, and random forest, to identify 
the optimal quantitative prediction model for PPH. An 
interpretable ML-based quantitative prediction of PPH 
was assessed, with the random forest model outperform-
ing the other algorithms. The MAE of the random forest 

Fig. 12 The PDP of indicator K
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regression prediction model was 21.7 milliliters, repre-
senting a prediction error of less than 5.4% . The RMSE of 
the random forest regression prediction model was 33.75 
milliliters, indicating a prediction error of less than 9.3% . 
The superior performance of the random forest regres-
sion in predicting PPH can be attributed to several rea-
sons, as follows.

• Ensemble Learning: Random forest is an ensemble 
learning method that combines the predictions of 
multiple decision trees. By aggregating the predic-
tions of several weak learners (individual decision 
trees), random forest can mitigate overfitting and 
improve predictive accuracy.

• Robustness to Noise: Random forest is robust to 
noisy data and outliers because it uses multiple deci-
sion trees. Each tree in the forest is trained on a ran-
dom subset of the data and features, reducing the 
impact of individual noisy data points.

• Feature Importance: Random forest measures feature 
importance, indicating the relative contribution of 
each input indicator to the predictive performance. 
This feature selection mechanism helps identify the 
most relevant predictors of PPH.

• Handling Nonlinearity: Random forest can capture 
complex nonlinear relationships between input 
indicators and the target indicator (PPH). This flex-
ibility allows it to effectively model the intricate 
interactions among various risk indicators associ-
ated with PPH.

Additionally, recognizing the general poor interpret-
ability of ML, which may hinder diagnostic strategy 
formulation by physicians and impede patients’ under-
standing and cooperation, we employed interpretable 
ML tools and techniques. Permutation importance 
analysis highlighted that Ca, HB, WBC, PLT, Na, and 
K are the top six indicators contributing to the predic-
tion model. Subsequently, PDPs were generated for 
six selected indicators (Ca, HB, WBC, PLT, Na, and 
K), providing an intuitive visualization of the impact 
of each indicator’s change trend on the quantitative 
prediction of PPH. The key risk indicators identified 
in this study differ from those highlighted in previ-
ous classification prediction models. This discrepancy 
is due to our focus on quantitative regression predic-
tion, in contrast to the predominantly qualitative clas-
sification predictions of earlier research. By explicitly 
considering the sample size and statistical power, we 
ensured that our dataset of 6,144 patients was suffi-
ciently robust to detect significant predictors of bleed-
ing volume. It helps enhance the reliability and validity 
of our findings.

Conclusions
Based on our self-organized dataset, we applied 
machine learning methods to quantitatively predict 
PPH. The random forest method achieved the best 
performance. And it helped us identify critical predic-
tive indicators. The permutation importance analysis 
showed that Ca, HB, WBC, PLT, Na, and K were the 
most critical indicators in predicting PPH. PDPs pro-
vided an intuitive visualization of the impact of each 
indicator’s change trend on the quantitative prediction 
of PPH.

This study highlights that the random forest model 
can effectively predict the amount of PPH, providing cli-
nicians with a valuable tool for early intervention. The 
integration of ML with permutation importance and 
PDP offers a transparent approach to individual risk pre-
diction, enhancing the safety of cesarean sections and 
reducing complication rates. By employing a sample size 
of 6,144, we ensured adequate statistical power to detect 
significant predictors of bleeding volume, supporting the 
robustness and reliability of our findings.

Future research will focus on improving ML model 
accuracy and further exploring the mechanisms behind 
the identified predictive indicators. Collecting more sam-
ples, especially high PPH amounts of samples, is very 
helpful for model training. Additionally, it will be valu-
able to study how these important risk indicators affect 
the quantitative prediction of PPH, thereby providing cli-
nicians with deeper insights into managing and mitigat-
ing the risks associated with cesarean sections.
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