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Abstract
Background  Systemic inflammatory response syndrome (SIRS) is a predictor of serious infectious complications, 
organ failure, and death in patients with severe polytrauma and is one of the reasons for delaying early total surgical 
treatment. To determine the risk of SIRS within 24 h after hospitalization, we developed six machine learning models.

Materials and methods  Using retrospective data about the patient, the nature of the injury, the results of general 
and standard biochemical blood tests, and coagulation tests, six models were developed: decision tree, random 
forest, logistic regression, support vector and gradient boosting classifiers, logistic regressor, and neural network. The 
effectiveness of the models was assessed through internal and external validation.

Results  Among the 439 selected patients with severe polytrauma in 230 (52.4%), SIRS was diagnosed within the first 
24 h of hospitalization. The SIRS group was more strongly associated with class II bleeding (39.5% vs. 60.5%; OR 1.81 
[95% CI: 1.23–2.65]; P = 0.0023), long-term vasopressor use (68.4% vs. 31.6%; OR 5.51 [95% CI: 2.37–5.23]; P < 0.0001), 
risk of acute coagulopathy (67.8% vs. 32.2%; OR 2.4 [95% CI: 1.55–3.77]; P < 0.0001), and greater risk of pneumonia 
(59.5% vs. 40.5%; OR 1.74 [95% CI: 1.19–2.54]; P = 0.0042), longer ICU length of stay (5 ± 6.3 vs. 2.7 ± 4.3 days; P < 0.0001) 
and mortality rate (64.5% vs. 35.5%; OR 10.87 [95% CI: 6.3–19.89]; P = 0.0391). Of all the models, the random forest 
classifier showed the best predictive ability in the internal (AUROC 0.89; 95% CI: 0.83–0.96) and external validation 
(AUROC 0.83; 95% CI: 0.75–0.91) datasets.

Conclusions  The developed model made it possible to accurately predict the risk of developing SIRS in the early 
period after injury, allowing clinical specialists to predict patient management tactics and calculate medication and 
staffing needs for the patient.

Level of evidence  Level 3.

Trial registration  The study was retrospectively registered in the ClinicalTrials.gov database of the National Library of 
Medicine (NCT06323096).
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Introduction
Balancing the timely provision of intensive care with early 
surgical intervention is difficult in managing patients 
with severe polytrauma because of its complex patho-
physiology [1–4]. Hasty surgical intervention against the 
background of an acute homeostasis disorder leads to 
an increased risk of death due to the aggravation of con-
comitant complications of trauma [5]. In turn, excessive 
postponement of surgery can lead to late complications 
such as bone fusion disorders, sepsis, thrombosis, or late 
death [6, 7]. In both cases, the treatment of such patients 
leads to excessive economic costs and the excessive use of 
clinical resources [8–10].

Systemic inflammatory response syndrome (SIRS) is a 
formidable complication of acute trauma. It is a hyper-
ergic reaction of the immune system to stress factors 
for the localization and elimination of an endogenous 
or exogenous source of damage. Despite the initial pro-
tective mechanism, the cytokine storm underlying the 
pathogenesis of SIRS can cause a massive inflammatory 
cascade, leading to reversible or irreversible dysfunction 
of internal organs [6, 11–13]. The incidence of SIRS and 
its frequent complications (sepsis, acute renal injury, and 
multiple organ dysfunction syndrome) among patients 
with polytrauma increases with age [14–17]. In addition, 
SIRS is one of the main predictors of mortality in poly-
trauma patients. Baek et al. reported that the presence of 
two clinical signs of the syndrome is significantly associ-
ated with mortality [12]. According to a survey of doc-
tors by the European Society of Trauma and Emergency 
Surgery, among respondents, the fact that a patient with 
an injury has SIRS is a reason for postponing secondary 
(definitive) surgery in 67.2% of cases [18].

The prediction of clinical outcomes is a complex task 
owing to indirect correlations between health indica-
tors and the clinical picture, which are usually left unno-
ticed by doctors [19]. The use of machine learning (ML) 
in such cases is beneficial. ML models can easily operate 
with a large amount of data and identify nonlinear rela-
tionships between clinical features [20]. The ease of use 
of the final product is reliable and increases the clinical 
effectiveness of young professionals [21].

Our study aimed to create an ML model capable of 
accurately predicting the risk of developing SIRS 24  h 
after admission to the emergency department, which is 
a barrier to early surgical intervention in patients with 
severe polytrauma. This model potentially allows the 
identification of patients who may benefit from addi-
tional preoperative preparations. In addition, reasoned 
planning of the management scheme will reduce the 

financial costs of treating the case and reduce the burden 
on the staff.

Methods
Patient selection
Patients were selected through a retrospective-pro-
spective study of electronic medical records (EMRs) of 
patients who were urgently hospitalized for multiple inju-
ries between January 2018 and January 2024. Study data 
were collected from the EMRs of two regional medical 
centers and the “National Scientific Center of Traumatol-
ogy and Orthopedics” in the Republic of Kazakhstan (the 
service populations are 610, 1135, and 1400 thousand 
people, respectively).

We used the Berlin definition of polytrauma [22], with a 
change in severity criteria, as the basis to identify suitable 
patients. The original definition requires an Injury Sever-
ity Score (ISS) greater than 15 points, which in a minimal 
form can be represented as one “serious” (AIS post-dot 
code 3) and two “moderate” (AIS post-dot code 2) inju-
ries. However, given the superiority of the New Injury 
Severity Score (NISS) over the ISS in terms of improved 
accuracy and simplified scoring [23], the NISS scale was 
used as the final evaluation tool. Thus, the study included 
adult patients (≥ 18 years old) who met both expanded 
criteria:

1.	 Severity of injury according to NISS > 16 points.
2.	 The presence of one or more physiological risk 

factors and/or primary hospitalization in the ICU. 
Physiological risk factors are represented by the 
following indicators: systolic arterial pressure 
(SAP) ≤ 90 mmHg; Glasgow Coma Scale (GCS) 
score ≤ 8 points; base excess ≤-6.0 mmol/L; 
international normalized ratio (INR) ≥ 1.4 or 
activated partial thromboplastin time (APTT) ≥ 40 s; 
and age ≥ 70 years.

The obligatory inclusion criterion was the complete-
ness of the EMRs in terms of laboratory and instrumen-
tal studies, and the protocol of therapeutic and surgical 
treatment. The EMRs were considered acceptable in the 
presence of up to 10% empty values for the features of 
interest.

The following patients were excluded: those seeking 
primary care 24 h after the injury; those who were trans-
ferred or required transfer between departments and 
hospitals for rehabilitation or other stages of therapy; 
those with prematurely interrupted treatment; those with 
an injury combined with suffocation, drowning, frostbite, 
electrical trauma, chemical and/or thermal burns; those 
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with pathological fractures; pregnant women; and those 
with dominant severe craniocephalic (GCS ≤ 7 points 
for more than 5 days) or spinal injury (deep paresis and 
plegias).

Systemic inflammatory response syndrome
We determined the presence of SIRS in patients if any 
two of the listed clinical signs [24] manifested continu-
ously for more than 4 h in the first 24 h after admission, 
and were related to the injury.

 	• Body temperature < 36 °C or > 38 °C.
 	• Heart rate > 90 beats/min.
 	• Respiratory rate > 20 per minute or pCO2 < 32 

mmHg.
 	• White blood cell count > 12 × 109/L, < 4 × 109/L, or 

> 10% of immature forms.

Data collection
At the time of admission of each patient to the emer-
gency department, health indicators were evaluated and 
entered into the EMRs by qualified medical personnel. 
The volume of visible injuries was assessed by the senior 
doctor on duty in the emergency room, with the involve-
ment of other specialists in conducting additional instru-
mental and laboratory examination methods. Based on 
the severity of the injuries and the clinical data obtained, 
patients were moved along one of the following routes: 
to the polytrauma department; to the antishock hall with 
subsequent redetermination of the route; to the ICU; to 
the operating unit.

Clinical features were collected from anonymized 
EMRs and divided into two groups.

1.	 Baseline variables – patient data collected upon 
admission to the emergency department, which 
included sex; age; list of Abbreviated Injury Scale 
(AIS update 2008) confirmed codes [25]; NISS; vital 
signs during hospitalization (pulse, blood pressure, 
respiratory rate, body temperature); clinical tests: 
general blood tests (hemoglobin, erythrocytes, 
hematocrit, platelets, leukocytes); biochemical blood 
parameters (total protein, total bilirubin, glucose, 
urea, creatinine); and coagulation tests (INR, APTT, 
fibrinogen).

2.	 Outcome variables – features characterizing the 
development of the following complications in a 
patient: SIRS, acute traumatic coagulopathy (ATC), 
bleeding over 25% of the circulating blood volume 
(BV), a new case of pneumonia, the outcome of 
hospital stay, the length of hospital stay (LOS), and 
the length of stay in the ICU after admission (ICU 
LOS).

Data preprocessing
First, the AIS scores were transformed into nine new fea-
tures corresponding to AIS anatomical areas. The square 
root of the AIS severity of each confirmed injury was 
calculated and summed with the values of other existing 
injuries for this anatomical area. Next, there was a multi-
variate imputation of the missing values because of all the 
baseline variables values (n = 8770); only 33 (0.38%) were 
missing. We used iterative imputation based on linear 
regression (all missing values were quantitative), using 
an ascending order of imputation based on the k-nearest 
neighbors. Additionally, the values for MCH, MCHC, 
and MCV were calculated in accordance with gener-
ally accepted formulas. Using the reference values from 
our laboratory, additional binary features reflecting the 
decrease and excess of laboratory values were generated. 
Then, low-informative synthetic variables were removed. 
Thus, the final data table contained 60 features for base-
line variables and 7 features for outcome variables (a total 
of 67 features).

Finally, the database was divided into three sets of data: 
training, internal, and external validation (Fig.  1). First, 
25% of the randomly selected patients were included 
in the external validation set. The remaining data were 
divided at a ratio of 3:1 into training and internal valida-
tion sets (furtherly defined as a “development set” when 
mentioned together). An independent value normal-
ization strategy (MinMaxScaler, Python Scikit-Learn 
library) for quantitative features was applied to each of 
the three sets. Although the number of cases in the data-
base was relatively small, we did not use any synthetic 
techniques to increase or decrease the datasets. Only 
stratification based on the SIRS values was used.

Model development
To predict the risk of developing SIRS within 24 h after 
admission to the emergency department, six models were 
developed: decision tree classifier (DTC), random for-
est classifier (RFC), gradient boosting classifier (GBC), 
and support vector classifier (SVC), logistic regression 
(LR) and neural network (black box classification, BBC). 
When building decision trees (DTC, RFC) and train-
ing SVC, parameter autotuning with cross-validation 
(Scikit-Learn GridSearchCV) was used. For LR and 
GBC, recursive feature elimination with cross-validation 
(Scikit-Learn RFECV) was used to select the most signifi-
cant features. The dimensionality of the neural network 
was reduced recursively by removing the features that 
brought the least weight to the overall result of the model 
until the best result in the test.

Graphs and performance indicators were obtained 
based on the results of the developed models. All models 
were tested on an external validation sample with a re-
evaluation of the performance indicators. The choice of 
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the best model was based on a scoring system [26] that 
included 11 metrics (precision, recall, and F1-score by 
class; accuracy, overall false-positive rate (FPR) and true-
positive rate (TPR), area under receiver operating charac-
teristic curve (AUROC), and area under precision-recall 
curve (AUPRC)), each of which was rated from 1 to 6, 

where the highest score correlated with the best predic-
tive ability. The scoring system ranged from 0 to 66. This 
system was used twice, during development and external 
validation. Then, both score tables were summarized in a 
weight ratio of 0.33 from the development table and 0.67 
from the validation table. The model with the highest 

Fig. 1  Schematic representation of the study. Study design and machine learning process. The experimental design included data collection, data pre-
processing, data splitting, model development, model validation and performance evaluation. Various modeling techniques have been utilized, including 
decision tree classification (DTC), random forest classification (RFC), support vector classification (SVC), logistic regression (LR), gradient boosting clas-
sification (GBC), and artificial neural network (ANN) methods
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final score was considered the most predictably effective. 
The SHapley Additive exPlanation (SHAP) method was 
used to analyze the importance of the features in the best 
model.

Statistical analysis
Continuous data are expressed as numbers (n), percent-
ages (%), mean values (µ), standard deviations (SD), 
and interquartile ranges (IQRs). Categorical data are 
expressed as frequencies and percentages. Numeric vari-
ables were tested with an independent samples t-test, 
and categorical variables were tested with Pearson’s chi-
squared test. All tests were two-sided, and statistical sig-
nificance was set at P < 0.05.

To assess the performance of the models, we used spec-
ificity, sensitivity, precision, recall, F1-score, accuracy, 
overall FPR, and TPR. Receiver operating characteristic 
(ROC) curves and calibration plots were generated for 
the developed models.

All the statistical analyses were conducted using “The 
R Project for Statistical Computing” (version 4.2.3; R 
Core Team, GNU GPL v2, r-project.org). We used the 

Scikit-Learn package (version 1.3; www.scikit-learn.
org), the Anaconda Python programming environment 
(Conda version 23.10.0; www.anaconda.com; Python ver-
sion 3.10.0; www.python.org), and Jupyter Notebooks 
(jupyter.org) for data processing and model building.

Results
Between January 2018 and January 2024, 6087 patients 
with acute injuries to at least two anatomical areas were 
analyzed. As shown in Figs.  1 and 5648 patients were 
excluded for various reasons. A total of 439 patients who 
met the inclusion criteria were included in the study.

The general characteristics of the sample are presented 
in Tables 1 and 2. There were 128 women (29.2%) and 311 
men (70.8%). In 230 (52.4%) patients, SIRS was diagnosed 
in the first 24 h of stay, which was confirmed by the pro-
longed (> 4  h) presence of two or more criteria: pulse 
(84.7 ± 14.6 vs. 100.1 ± 17.5 beats per minute; P < 0.0001), 
respiratory rate (18.7 ± 2.1 vs. 20.2 ± 3.1 breaths per 
minute; P < 0.0001), white blood cell count (14 ± 6.8 vs. 
18.2 ± 6.5 × 10⁹/L; P < 0.0001), and fever (12.8% vs. 87.2% 
of patients; OR 11.05, 95% CI: 5.92–22.34; P < 0.0001). 

Table 1  Patient characteristics of the non-SIRS and SIRS groups (continuous values)
Non-SIRS = 209 SIRS = 230 Total = 439 Difference in means [95% CI] P value

Age (years) 47.2 (15.3) 41.9 (15.1) 44.4 (15.4) -5.4 [-8.2 to -2.6] 0.0003
NISS 26 (9) 29.8 (11.4) 28 (10.5) 3.8 [1.8 to 5.8] 0.0003
Pulse (min) 84.7 (14.6) 100.1 (17.5) 92.8 (17.9) 15.4 [12.2 to 18.6] < 0.0001
SAP (mmHg) 114.4 (22.3) 101.4 (26.6) 107.6 (25.5) -13.0 [-17.7 to -8.4] < 0.0001
DAP (mmHg) 71.4 (15.2) 63.4 (17.8) 67.2 (17.1) -8.0 [-11.0 to -5.1] < 0.0001
Respiration Rate (min) 18.7 (2.1) 20.2 (3.1) 19.5 (2.8) 1.5 [1.0 to 1.9] < 0.0001
RBC (x10¹²/L) 4.2 (0.7) 4.1 (0.8) 4.1 (0.7) -0.1 [-0.2 to 0.04] 0.3129
Hematocrit (%) 36.2 (6.1) 35.5 (6.9) 35.8 (6.5) -0.8 [-2.0 to 0.5] 0.3601
Hemoglobin (g/L) 124.3 (21.6) 121.9 (24.7) 123 (23.3) -2.5 [-6.7 to 1.8] 0.5402
MCH (pg) 29.9 (3.1) 30.1 (3.2) 30 (3.2) 0.2 [-0.4 to 0.8] 0.6961
MCHC (g/L) 343 (15.5) 343.4 (20.8) 343.2 (18.5) 0.5 [-2.8 to 3.7] 0.8127
MCV (fL) 87.1 (8.1) 87.5 (7.5) 87.3 (7.8) 0.4 [-1.2 to 1.9] 0.8168
WBC (x10⁹/L) 14 (6.8) 18.2 (6.5) 16.2 (7) 4.2 [2.9 to 5.4] < 0.0001
Platelets (x10⁹/L) 239 (85.5) 244.3 (79.1) 241.8 (82.2) 5.3 [-9.9 to 20.5] 0.1906
Total protein (g/L) 64.2 (8.6) 61.4 (8.7) 62.7 (8.8) -2.8 [-4.4 to -1.2] 0.0010
Total bilirubin (mcmol/L) 13.8 (8.9) 12.1 (7.5) 12.9 (8.3) -1.8 [-3.2 to -0.4] 0.0081
Glucose (mmol/L) 8 (2.9) 9 (3.7) 8.5 (3.4) 1.0 [0.4 to 1.6] 0.0018
Creatinine (mcmol/L) 83.7 (29.9) 88.6 (27.7) 86.3 (28.8) 4.9 [-0.4 to 10.2] 0.0136
Urea (mmol/L) 5.5 (2.4) 5.5 (2.3) 5.5 (2.4) 0.007 [-0.4 to 0.5] 0.8277
RBC (units) 0.7 (1.5) 1.4 (2.3) 1.1 (2) 0.7 [0.4 to 1.1] 0.0001
Plasma (units) 0.4 (1.6) 1.2 (2.6) 0.9 (2.2) 0.8 [0.4 to 1.2] 0.0001
Fibrinogen (g/L) 2.8 (1.1) 2.5 (1.1) 2.6 (1.1) -0.3 [-0.5 to -0.1] 0.0022
INR 1.1 (0.2) 1.2 (0.3) 1.1 (0.2) 0.1 [0.02 to 0.1] 0.0324
APTT (s) 27.6 (5) 28.4 (7.7) 28 (6.6) 0.8 [-0.4 to 2.0] 0.9229
First total care (day) 4.9 (5.2) 4.3 (5.1) 4.6 (5.2) -0.6 [-1.5 to 0.3] 0.0540
LOS in ICU (days) 2.7 (4.3) 5 (6.3) 3.9 (5.6) 2.3 [1.3 to 3.2] < 0.0001
LOS in Hospital (days) 16 (8.1) 16.9 (10.9) 16.5 (9.7) 0.9 [-0.9 to 2.7] 0.6792
The data are presented as the mean (standard deviation); SAP, systolic arterial pressure; DAP, diastolic arterial pressure; LOS, length of stay; ICU, intensive care unit; 
INR, international normalized ratio; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; 
APTT, activated partial thromboplastin time; NISS, new injury severity score
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SIRS was slightly more common among 169 men (54.3%, 
OR = 1.31, 95% CI: 0.87–1.98; P = 0.2025). The average age 
of the injured patients was 44.4 ± 15.4 years; in the non-
SIRS group, the average age of the patients was younger 
(47.2 ± 15.3 vs. 41.9 ± 15.1; P = 0.0003).

In total, 3835 injuries have been reported. The most 
frequently damaged anatomical areas according to the 
AIS were the lower extremities (n = 891; µ = 2.01 ± 1.96 
injuries per patient), chest (n = 846; µ = 1.92 ± 1.58), head 
(n = 786; µ = 1.79 ± 1.84), upper extremities (n = 412; 
µ = 0.94 ± 1.22), and spine (n = 338; µ = 0.77 ± 1.22). The 
severity of the injuries ranged from minor (n = 1149) to 
fatal (n = 3), and the average NISS value was 28.0 ± 10.5 
(min = 17; max = 75). In the non-SIRS group, the aver-
age severity of damage was lower (26 ± 9 vs. 29.8 ± 11.4, 
P = 0.0003). The most common causes of injury were traf-
fic accidents (total: 239 (54.4%) cases; driver: 59 (13.4%); 
passenger: 70 (15.9%); pedestrian: 92 (21.0%); others: 18 
(4.1%)), falls (total: 151 (34.4%) cases; height ≤ 2  m: 14 
(3.2%); height > 2 m: 137 (31.2%)).

When comparing non-SIRS and SIRS samples with 
respect to noncriteria clinical parameters, the SIRS 
group had lower hemodynamic indicators (pulse, arte-
rial pressure; P < 0.0001) upon admission to the hospital, 
which was associated with more frequent class II bleed-
ing (118 (60.5%) vs. 77 (39.5%) patients; OR 1.81, 95% CI: 
1.23–2.65; P = 0.0023) and the need for long-term anti-
shock therapy with vasoactive drugs (141 (68.4%) vs. 65 
(31.6%) patients; OR 5.51, 95% CI: 2.37–5.23; P < 0.0001). 
In the same patients, the average need for erythrocyte 
transfusion in the first 48  h after admission was almost 
twice as high, and for plasma, it was three times greater 
(P < 0.0001), as was the risk of developing OTC (80 
(67.8%) vs. 38 (32.2%) cases; OR 2.4, 95% CI: 1.55–3.77; 

P < 0.0001). More severe bleeding in the SIRS group 
was associated with hypoproteinemia (61.4 ± 8.7 vs. 
64.2 ± 8.6  g/L; P = 0.001), hypofibrinogenemia (2.5 ± 1.1. 
vs. 2.8 ± 1.1  g/L; P = 0.0022) and increased INR (1.2 ± 0.3 
vs. 1.1 ± 0.2; P = 0.0324).

At the first biochemical blood test, there were statisti-
cally significant differences in the levels of total bilirubin 
and creatinine; however, they were within normal values. 
Glucose levels were greater in the SIRS group, which may 
be related to the severity of injuries and pain syndrome 
against this background or to the use of adrenergic 
drugs in anti-shock therapy (9 ± 3.7 vs. 8 ± 2.9 mmol/L; 
P < 0.0001).

Patients with SIRS were at greater risk of developing 
pneumonia (125 (59.5%) vs. 85 (40.5%) patients; OR 1.74, 
95% CI: 1.19–2.54]; P = 0.0042). In patients with SIRS, 
the need for prior ICU admission was almost two times 
greater they had a longer ICU LOS (5 ± 6.3 vs. 2.7 ± 4.3 
days; P < 0.0001). There were no statistically significant 
differences in the timing of definitive surgery; on average, 
all patients underwent delayed surgery on 4.6 ± 5.2 days 
of hospital stay. In 59 (13.4%) patients, only conserva-
tive treatment was performed, 15 of whom died without 
surgical care due to the severity of their condition. Tem-
porary external fixation followed by delayed definitive 
surgery was performed in 183 patients (41.7%). Primary 
definitive surgery was performed in 177 patients (40.3%) 
at a mean of nine days after hospitalization. Surgical tac-
tics for the abdominal organs were applied in the remain-
ing 64 (14.6%) patients, followed by conservative trauma 
management. The total duration of hospitalization did 
not significantly differ (µ = 16.6 ± 9.7 days; IQR = 11–21); 
however, patients with SIRS had a greater number of 

Table 2  Patient characteristics of the non-SIRS and SIRS groups (dichotomous values)
Indicator Non-SIRS = 230 SIRS = 230 Total = 439 Odds ratio [95% CI] P value

Gender Female 67 (52.3%) 61 (47.7%) 128 (29.2%) 1.31 [0.87 to 1.98] 0.2025
Male 142 (45.7%) 169 (54.3%) 311 (70.8%)

Fever No 193 (61.5%) 121 (38.5%) 314 (71.5%) 10.87 [6.30 to 19.89] < 0.0001
Yes 16 (12.8%) 109 (87.2%) 125 (28.5%)

Needs ICU No 92 (71.9%) 36 (28.1%) 128 (29.2%) 4.24 [2.73 to 6.70] < 0.0001
Yes 117 (37.6%) 194 (62.4%) 311 (70.8%)

Prolonged shock No 144 (61.8%) 89 (38.2%) 233 (53.1%) 3.51 [2.37 to 5.23] < 0.0001
Yes 65 (31.6%) 141 (68.4%) 206 (46.9%)

Hemorrhage > 25% of BV No 132 (54.1%) 112 (45.9%) 244 (55.6%) 1.81 [1.23 to 2.65] 0.0023
Yes 77 (39.5%) 118 (60.5%) 195 (44.4%)

ATC No 171 (53.3%) 150 (46.7%) 321 (73.1%) 2.40 [1.55 to 3.77] 0.0001
Yes 38 (32.2%) 80 (67.8%) 118 (26.9%)

Pneumonia No 124 (54.1%) 105 (45.9%) 229 (52.2%) 1.74 [1.19 to 2.54] 0.0042
Yes 85 (40.5%) 125 (59.5%) 210 (47.8%)

Outcome Deceased 22 (35.5%) 40 (64.5%) 62 (14.1%) 0.56 [0.32 to 0.97] 0.0391
Alive 187 (49.6%) 190 (50.4%) 377 (85.9%)

ICU, intensive care unit; BV, blood volume; ATC, acute traumatic coagulopathy
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adverse outcomes (40 (64.5%) vs. 22 (35.5%) deaths; OR 
10.87, 95% CI: 6.3–19.89; P = 0.0391).

A total of 439 patients with severe polytrauma were 
divided into three datasets. First, the external validation 
dataset (n = 109 (24.8%) patients) was randomly gener-
ated. The remaining patients were used for model devel-
opment. This subset was divided into training (n = 231 
(52.6%) patients) and internal validation (n = 99 (22.6%) 
patients) datasets. The general characteristics of the 
model development and validation datasets are presented 
in Supplementary Tables 1 and 2, respectively. There was 
no statistically significant difference between the indi-
cators except for the NISS score, for which the average 
injury severity in the development dataset was slightly 
greater (28.6 ± 10.7 vs. 26.3 ± 9.8 points; P = 0.0149).

Model development and internal validation
To predict the risk of SIRS development within 24  h of 
admission to the emergency department, six models 
were developed: the DTC, RFC, SVC, LR, DTC, and BBC 
models. In the internal validation stage, all models were 
effective in predicting the early development of SIRS 
(AUROC for all models ≥ 0.87) (Fig.  2). In particular, in 
the scoring system, the BBC showed the best result, with 
40 points (AUROC 0.87; 95% CI: 0.80–0.94). The model 
had the overall FPR of 0.09 with a relatively high TPR of 
0.77, and the total accuracy was the highest among all the 
developed models (0.84). RFC was the second most effec-
tive model, with a total score of 34, which had the highest 

AUROC (0.89; 95% CI: 0.83–0.96), while the FPR (0.13) 
and TPR (0.77) were quite close to those of the BBC. The 
accuracy of RFC was the second-best indicator (0.82) 
among the models. The other four models had problems 
with the overall FPR and/or TPR while maintaining their 
accuracy at 0.79. A detailed representation of the effec-
tiveness of the developed models during the internal 
validation stage is presented in Supplementary Table 3. 
To further analyze the ability of the models to predict 
the risk of developing SIRS, density curves (Fig. 3) were 
generated, which represent the distribution of predicted 
values and their relation to the decision threshold. All 
models showed a relatively small overlap and a large dif-
ferentiation area, indicating better discrimination. To 
evaluate whether the probabilistic outputs can be inter-
preted as the probability of an event, all the developed 
models were calibrated using the sigmoid cross-valida-
tion method. In the calibration graphs (Supplementary 
Fig.  1), the best predictive ability was characterized by 
the location of the model curve closest to the ideal cali-
bration line over the entire range of empirical and pre-
dicted capabilities. Deviations from the ideal line indicate 
either excessive or insufficient confidence in model fore-
casts. Three models (RFC, SVC, and LR) showed the best 
predictive ability; however, there were deviations in some 
ranges for each of these models. When calibrating all the 
developed models using logistic regression, the predic-
tion results of all the models tended to the ideal values 
and did not differ from each other.

Fig. 2  Receiver operating characteristic curves of all models. SIRS, systemic inflammatory response syndrome; ROC, receiver operating characteristic; 
AUC, area under the curve; CI, confidence interval; OT, optimal threshold. A: ROC curve of all models based on the internal validation; B: ROC curve of all 
models based on the external validation
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Fig. 3  Density curves for all models. Density curves represent the distribution of predicted values and their relation to the optimal decision threshold. 
Orange indicates patients without SIRS, and blue indicates patients with SIRS. The smaller the overlap between the colors, the better the model’s ability 
to discriminate
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External model validation
External validation was performed by using noncali-
brated models to evaluate the best basic predictive abil-
ity. The efficiency of all models decreased as expected 
(AUROC for all models ≥ 0.78). In the scoring system 
for the validation dataset, the best result was noted in 
the RFC model, with 47 points (AUROC 0.83; 95% CI: 
0.75–0.91), showing a relative improvement in results 
compared to internal validation. Two models had 40 
points: GBC (AUROC 0.84; 95% CI: 0.76–0.91) and DTC 
(AUROC 0.80; 95% CI: 0.71–0.88). In turn, BBC showed 
a significant deterioration in results, taking third place 
with 30 points (AUROC 0.79; 95% CI: 0.70–0.87) due to 
a deterioration in the overall FPR (0.22) and TPR (0.61). 
The remaining three models had problems with a dete-
rioration in the initial values for the overall FPR and/or 
TPR while maintaining their accuracy at 0.65 (Supple-
mentary Table 4).

To determine the best model based on the results of 
internal and external validation, the score tables were 
summed in a ratio of 0.33 and 0.67, respectively. Accord-
ing to the final model rating table (Table 3), RFC was rec-
ognized as the most stable model in terms of efficiency, 
scoring 42.7 points. The precision of recognition for 
non-SIRS patients was 0.76, whereas for SIRS patients, 
it was 0.78. The ability to determine the non-SIRS class 
was characterized by a recall of 0.80 and 0.74 for the SIRS 
group. The percentage of correct answers for the model 
was represented by an accuracy value of 0.77, which was 
higher than that of the other models in the external vali-
dation stage. The RFC model had one of the best overall 
TPR indicators (0.74) and one of the lowest FPR indica-
tors (0.20).

Using the SHAP method, data on the importance of 
features were extracted from the RFC. Because the RFC 
model consisted of 56 decision trees, we used the top 15 

features to further study their impact on SIRS. The fea-
tures included the NISS; weighted AIS severity for head, 
abdomen, and lower extremity injuries; leukocyte count 
and excess; fever; hemoglobin; MCV; MCH; MCHC; and 
serum total protein, glucose, urea, and fibrinogen (Fig. 4).

Discussion
Main findings
This study is part of another project to develop compre-
hensive software for patients with severe polytrauma. 
Owing to the large amount of information and data, the 
current work presents the results of studying one of the 
endpoints – SIRS.

In this study, we developed and validated machine 
learning-based models capable of predicting the possible 
development of SIRS in the next 24 h, even at the admis-
sion department stage, using a minimal set of diagnostic 
tests. Of the six models tested, the RFC model was deter-
mined to be optimal because it maintained a high level 
of discrimination during internal and external validation. 
Using a minimal set of examinations conducted in the 
admission department, our model allowed us to predict 
the risk of developing SIRS with high accuracy.

While analyzing why the random forest classifier 
had greater success than the other models, the follow-
ing opinions were made. The working principle of lin-
ear regression and support vector machines is based on 
building a delimiting hyperplane in an n-dimensional 
data array, where n is the number of features used. Both 
methods use each feature once, which implies the pres-
ence of a certain “rigid” mathematical relationship 
between the features, leading to specific results. With 
respect to polytrauma, the presence of such dependen-
cies is possible; however, when solving the problem of 
predicting the development of SIRS, we did not find suf-
ficient evidence for such relationships (SVC was in sixth 

Table 3  Ranking of the prediction performance of all models based on both internal and external validation for SIRS using a scoring 
system

Decision Tree 
Classifier

Random Forest 
Classifier

Support Vector 
Classification

Logistic Regression Gradient Boosting 
Classifier

Black 
Box Clas-
sification

0 Precision 3.00 4.00 1.00 4.66 2.00 3.66
0 Recall 3.67 2.67 5.34 1.00 5.00 2.33
0 F1-Score 4.34 4.34 2.67 1.00 4.00 2.99
1 Precision 3.67 2.67 5.67 1.00 5.33 2.66
1 Recall 3.00 4.67 1.00 5.67 2.00 4.00
1 F1-Score 3.00 4.67 1.00 4.33 2.00 3.99
Accuracy 3.34 4.34 1.00 2.00 2.67 3.33
FPR 3.67 2.67 5.34 1.00 5.00 2.33
TPR 3.00 4.67 1.00 5.67 2.00 4.00
AUROC 2.34 3.67 2.00 1.33 3.68 1.67
AUPRC 3.01 4.34 1.33 2.00 4.01 2.34
Total points 36.04 42.71 27.35 29.66 37.69 33.3
FPR, false-positive rate; TPR, true-positive rate; AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve
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place in the scoring system, with 27.35 points, and LR 
was in fifth place, with 29.66 points).

The results of a neural network depend mostly on its 
architecture. In our case, we used a deep feed-forward 
(DFF) architecture with automatic tuning of parameters, 
including the number of hidden layers and nodes. The 
final model contained two hidden layers with 18 and 9 
nodes. Considering the logic of the neural networks, each 
feature has a certain weight that affects the final result. 
The value of the node from the first layer affects each 
node in the hidden layer, which is essentially a combina-
tion of all previous features. Thus, the initial features can 
be reused indirectly. However, high-quality training of 
the model is required to achieve optimal results. On the 
basis of the results of our study (fourth place in the scor-
ing system with 33.30 points), the number of cases for 
training was probably insufficient.

The method of constructing a logical tree can be con-
sidered an intermediate method between neural net-
works and linear algorithms. A decision tree constructs a 
regression tree on the basis of binary recursive partition-
ing, iteratively splitting the data into partitions until each 
node reaches a user-specified minimum node size. The 
splitting process is applied to each new branch and con-
tinues until the entire structure is reached. The positive 
aspect is that the decision tree can use highly correlated 
features repeatedly, creating alternative paths leading to 
an answer. In our opinion, the result of the decision tree 
in the study (third place in the scoring system with 36.04 
points) is due to the complexity of the problem, which 
does not imply the presence of just one simple tree.

On the basis of this conclusion, the use of multiple 
weak learners and decision trees may be an alternative 
solution. Boosting is an ensemble learning method that 

Fig. 4  Feature importance analysis using the SHapley Additive exPlanation (SHAP). SHAP feature importance analysis of the internal validation cohort. 
The X-axis of the graph represents the impact of the feature on the prediction result. The Y-axis represents the model predictors. The higher the feature 
on the graph, the stronger is the correlation between the feature and the prediction result. Blue indicates a low feature value, whereas pink indicates a 
high feature value. The top 15 features are as follows: WBC, leukocyte count; TEMP, fever; oWBC, excess leukocyte count; AIS_AB, weighted AIS severity 
for abdominal injuries; MCHC, mean corpuscular hemoglobin concentration; PRT, serum total protein; URA, serum urea; AIS_HD, weighted AIS severity 
for head injuries; NISS, new injury severity score; AIS_LE, weighted AIS severity for lower extremity injuries; MCH, mean corpuscular hemoglobin; FBG, 
fibrinogen; GLU, serum glucose; and MCV, mean corpuscular volume
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combines a set of weak learners into a strong learner to 
minimize training errors. The gradient boosting method 
is potentially the most accurate in prediction because 
each weak learner recycles the signs, creating alternative 
views on the final result. However, similar to neural net-
works, boosters work more efficiently with big data. In 
our study, the model had the second-best score at 37.69 
points.

Unlike boosting, the random forest does not use vari-
ous prediction techniques but combines multiple deci-
sion trees into a “forest”, each constructed using bootstrap 
samples of the training data and random feature selec-
tion. In this ensemble, each tree relies on the values of a 
random vector sampled independently and drawn from 
the same distribution for all the trees in the forest. Pre-
diction is then achieved by aggregating individual tree 
predictions through methods such as majority voting 
or averaging, resulting in a robust and versatile model 
for various machine learning tasks. Multiple reuses of 
primary features with alternative result branches in our 
study yielded the best result (the first place with 42.71 
points). Thus, in our opinion, the absence of restrictions 
on the reuse of variables in small datasets directly affects 
the prediction results.

Systemic inflammatory response syndrome
SIRS is one of the most common pathological processes 
in patients with polytrauma. According to NeSmith et 
al., 79% of patients with an ISS > 16 points had signs of 
SIRS at the time of admission to the emergency depart-
ment and needed to be hospitalized in the ICU for inten-
sive care [27]. In turn, Butcher et al. reported that in a 
level-1 urban trauma center, SIRS was observed in 81% of 
patients with severe polytrauma (ISS > 15 points) at least 
once in the first 72 h after hospitalization [28].

SIRS was diagnosed based on two of the four criteria 
[24]. However, Schefzik et al. correctly noted that with 
polytrauma, patients can receive a certain type of treat-
ment that directly affects the criteria for the presence of 
SIRS. Thus, the use of vasopressant agents in shock ther-
apy affects heart rate, and with artificial ventilation, it is 
not possible to estimate the true respiratory rate [29]. In 
this regard, a dynamic assessment of the patient’s con-
dition is needed, adjusted for therapy and concomitant 
diseases of the heart and respiratory system. When ana-
lyzing the data, we considered the specifics of therapy and 
anamnesis as much as possible when making a diagnosis 
of SIRS. To minimize errors, the continuous retention 
of two or more SIRS criteria for 4 h was used as a direct 
basis for diagnosis. Thus, in our study, the incidence of 
SIRS was lower than that reported by the authors (52.4%). 
This difference may be due to a prolonged assessment of 
the SIRS criteria, a shorter time window of observation 

(24  h after hospitalization), or the correction of criteria 
taking into account the somatic status.

As the incidence of SIRS is also closely correlated 
with the severity of the injury, the length of stay of such 
patients in the ICU naturally increases. For example, 
according to NeSmith et al., polytrauma patients spend 
an average of 19.2 days in the ICU for four positive SIRS 
criteria, 8.2 days for three criteria and 6.3 days for two 
criteria. Patients in the non-SIRS group stayed for up to 
4.7 days on average. In our study, for objective reasons, 
we did not study the distribution of ICU stays rela-
tive to the number of available SIRS criteria. Neverthe-
less, patients in the SIRS group stayed in the ICU for 
twice as long (mean 5 vs. 2.7 days). Such short periods 
of stay are due to the small number of beds (up to 9–12 
beds per organization) and the large flow of patients. The 
organizational principles of the intensive care unit in the 
Republic of Kazakhstan imply the use of the ICU not only 
as an intensive care unit but also as a ward for early post-
operative management of patients. After the stabilization 
of vital signs and in the absence of a threat to life, patients 
in any treatment group are transferred to the Department 
of Orthosurgery for further observation and treatment.

Use of machine learning models
Currently, we are witnessing active development and 
implementation of ML techniques in clinical practice. 
The large abundance of different ML models for solving 
the same problem is due to the heterogeneous data and 
conditions in which the study was conducted. Therefore, 
the application of a model developed based on the data 
of one clinic may be ineffective under the conditions of 
another clinic.

The problem of predicting SIRS development has 
gained popularity in recent years [30–32]. Mica et al. 
developed a visual analytical tool for assessing a patient’s 
condition (Sankey diagram) [30]. The endpoints of the 
assessment were the risk of developing SIRS, sepsis, and 
early (< 72  h) mortality. The predictive model was built 
on 1925 patients with severe trauma (ISS > 16) and was 
based on shock indicators (pH, lactate, temperature, 
hemoglobin, and hematocrit). The developed model visu-
ally demonstrates the risks of complications and methods 
that bring the greatest weight to the results. Accord-
ing to the authors, such models make it possible to plan 
the tactics of surgical management as well as to target 
therapy regarding the risks of developing coagulopathy, 
hemorrhagic shock, and treatment outcomes. Unfortu-
nately, this tool has not been validated or evaluated for its 
effectiveness.

Another study on the effect of SIRS on outcomes was 
conducted by Fachet et al., where machine learning was 
used to determine the immunological patterns of the 
development of SIRS, pneumonia, and sepsis [31]. The 
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frequency of SIRS among injured patients (ISS > 16) 
at the admission department stage was 56.9%, and on 
the second day, it was 39.2%. The study revealed a weak 
correlation between immunological markers and SIRS, 
while there was a strong correlation between the fol-
lowing indicators of massive tissue damage: severity of 
injury according to ISS, SHG score, leukocyte level, pro-
thrombin time, INR, APTT, hematocrit, and hemoglo-
bin. Thus, patients with head and chest injuries are at 
greater risk of developing SIRS. When divided into clus-
ters, these patients showed a proinflammatory pattern 
due to increased levels of IL-6 and IL-10. Unfortunately, 
Fachet et al. did not develop a separate model for predict-
ing SIRS development. First, the SIRS criteria overlapped 
with those for sepsis and pneumonia. Second, the weak 
correlation between SIRS incidence and immunological 
markers prevented them from building a final model.

In our study, the relationships between SIRS, the vol-
ume of damaged tissue, and concomitant complications 
were also clearly visible. In addition to the direct SIRS 
criteria, the best RFC model for SHAP analysis also con-
siders a weighted assessment of the severity of injury 
according to the AIS for the head, abdomen, and lower 
extremities. Brain damage, as well as chest damage, 
directly affects three of the four SIRS criteria: thermo-
regulation [33], heart activity [34], and respiration [35, 
36]. In turn, owing to the large number of parenchymal 
organs in the abdominal cavity, bleeding in patients with 
abdominal trauma is more severe, which leads to sharp 
shifts in red blood indicators. Our RFC model also indi-
cated the association of MCV, MCH, and MCHC with 
the risk of developing SIRS in the first 24 h. The above-
mentioned studies, together with our results, confirm 
the need to review SIRS criteria in patients with severe 
polytrauma.

Limitations
Our study had several limitations. Because the work 
done is part of another project, we were severely limited 
in the amount of data. All selected clinical cases had to 
meet the requirements of all parallel studies simultane-
ously. The retrospective and prospective nature of the 
data collection process is a limitation. Unfortunately, 
there is no unified registry of patients with polytrauma 
in the Republic of Kazakhstan, which has led to a short-
age of high-quality data. Despite working in the largest 
EMRs system, we faced the problem of multiple defects 
in filling out the documentation. The EMRs were not suf-
ficiently structured, which caused difficulties in finding 
and extracting the necessary indicators. Therefore, we 
excluded many potentially useful features from the final 
dataset.

Another problem is the approach used to describe the 
patient’s injury. The specialists of the clinics adhered to 

the traditional methods of describing fractures, mainly 
using the IDC-10 and AO Muller fracture classifica-
tions. In the Republic of Kazakhstan, injury coding using 
the AIS is not mandatory. Therefore, the authors had to 
retrospectively encode all existing injuries, following the 
recommendations of the AIS (update 2008), based on 
data from the initial medical examination, records of con-
sulting doctors, and diagnostic and intraoperative find-
ings. This fact served as one of the grounds for expanding 
the criteria for the new Berlin definition of polytrauma.

The model was developed based on data from three 
trauma clinics, where common approaches to early ther-
apy could differ from each other. Despite the demon-
strated predictive effectiveness, the model additionally 
requires external validation using more data from differ-
ent samples and under different conditions. Additional 
studies of the aspects of the problem will contribute to 
improving the prediction results of the model, which 
will ultimately increase its clinical value. Currently, it is 
extremely important to test the clinical practicality of 
using a model for predicting the development of SIRS in 
the next 24  h in patients with severe polytrauma when 
planning and conducting treatment for subsequent 
assessments of changes in the timing of definitive care, 
ICU and hospital stays, and changes in mortality rates.

Conclusions
Machine learning allows for the determination of com-
plex relationships or patterns based on empirical data. 
Early recognition of the potential development of SIRS 
using ML techniques will allow doctors to consider treat-
ment tactics carefully. Unfortunately, different medical 
approaches to the management of patients with poly-
trauma, from the accident scene to the moment of dis-
charge from the hospital, directly affect all aspects of 
treatment. Therefore, it is impossible to create a single 
generally accepted ML model that works equally effec-
tively under different samples and conditions. To achieve 
similar results, it is necessary to include a large amount 
of data from clinics at various levels and possibly even 
from countries. The developed model will be integrated 
into a comprehensive clinical decision support system for 
patients with severe polytrauma.
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