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Abstract 

Background Wearable sensors have revolutionized cardiac health monitoring, with Seismocardiography (SCG) 
at the forefront due to its non-invasive nature. However, the substantial motion artefacts have hindered the transla-
tion of SCG-based medical applications, primarily induced by walking. In contrast, our innovative technique, Adaptive 
Bidirectional Filtering (ABF), surpasses these challenges by refining SCG signals more effectively than any motion-
induced noise. ABF leverages a noise-cancellation algorithm, operating on the benefits of the Redundant Multi-Scale 
Wavelet Decomposition (RMWD) and the bidirectional filtering framework, to achieve optimal signal quality.

Methodology The ABF technique is a two-stage process that diminishes the artefacts emanating from motion. The 
first step by RMWD is the identification of the heart-associated signals and the isolating samples with those related 
frequencies. Subsequently, the adaptive bidirectional filter operates in two dimensions: it uses Time-Frequency 
masking that eliminates temporal noise while engaging in non-negative matrix Decomposition to ensure spatial 
correlation and dorsoventral vibration reduction jointly. The main component that is altered from the other filters 
is the recursive structure that changes to the motion-adapted filter, which uses vertical axis accelerometer data to dif-
ferentiate better between accurate SCG signals and motion artefacts.

Outcome Our empirical tests demonstrate exceptional signal improvement with the application of our ABF 
approach. The accuracy in heart rate estimation reached an impressive r-squared value of 0.95 at − 20 dB SNR, sig-
nificantly outperforming the baseline value, which ranged from 0.1 to 0.85. The effectiveness of the motion-artifact-
reduction methodology is also notable at an SNR of − 22 dB. Consequently, ECG inputs are not required. This method 
can be seamlessly integrated into noisy environments, enhancing ECG filtering, automatic beat detection, and rhythm 
interpretation processes, even in highly variable conditions. The ABF method effectively filters out up to 97% 
of motion-related noise components within the SCG signal from implantable devices. This advancement is poised 
to become an integral part of routine patient monitoring.
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Inroduction
Among the rapidly developing technologies that facili-
tate the enhancement of healthcare and the treatment 
of different diseases, wearable sensors have emerged 
as central to the improvement of the pertinent field. 
Among the domains, one can notice the constant 
improvement of cardiac health monitoring: conven-
tional techniques such as electrocardiography (ECG) 
[1] are being extended and sometimes replaced by 
novel techniques in the form of SCG. SCG, a non-inva-
sive diagnostic tool that records the mechanical motion 
of the heart, holds much potential because, in contrast 
to other diagnostic tools in cardiology, it focuses on 
the effector organ of the heart, thus delivering great 
potential for biochemical treatment [2]. However, this 
potential has been limited in clinical applications due 
to significant issues, such as motion artefacts, particu-
larly prevalent during activities like walking. These 
artefacts shroud the authentic cardiac signals, and thus, 
it becomes challenging to extract efficient and actual 
information from SCG recordings.

Thus, as stated before, it is evident that when the rami-
fications of accurate cardiac monitoring are taken into 
consideration, the concern of motion artefacts in SCG 
calls for research immediately. The question then arises: 
SCG signals need to be filtered in a manner that gets rid 
of motion noise while not losing cardiac information at 
the same time; how can this be done [3]? .Such research 
gap has established the need for new methods that would 
help distinguish between cardiac signals and movements. 
It meets an important need not only for improving the 
diagnostic capacity of SCG but also for broadening its 
use in clinical and non-clinical contexts, including pro-
longed ambulatory surveillance and physical training.

The importance of this research cannot be overempha-
sized. Cardiac monitoring is one of the most important 
tasks that are taken into practice because heart diseases 
remain the topping cause of mortality [4]. Conventional 
ECG is, however, widely utilized, with the major draw-
back of having to attach the body to the machine, which 
may be inconvenient for long-term monitoring. SCG, 
on the other hand, has the possibility of monitoring 
patients non-invasively, comfortably and continuously, 
which makes it a revolutionary step. However, it is largely 
marred by the problem of motion artefacts, which hith-
erto confined its usefulness. However, they are the main 
source of interference; by creating new approaches to 
eliminate the effect of these artefacts, SCG can be used 
as an alternative or as an augmentation to ECG [5]. This 
advancement would also be beneficial to patient out-
comes, as diagnosis would be made early and accurately, 
and for the patient’s quality of life, the monitoring pro-
cess would be much easier.

Better quality of SCG signal processing can contribute 
to increased diagnostic accuracy of heart abnormalities, 
a decrease in false-positive results in clinical practice, as 
well as improvement in early detection and diagnosis. 
Higher signal clarity could help in the real-time moni-
toring of the heart and assist in improved patient care 
by coming up with relevant measures to be taken. In 
real-world settings, this can enhance the effectiveness of 
cardiac health monitoring systems by implementing ele-
ments that enhance the standard of care, cut the number 
of visits to local hospitals, as well as improve long-term 
patient outcomes at large.

In the context of the proposed research, we present a 
technique called Adaptive Bidirectional Filtering (ABF) 
to cope with the issue of motion artefacts in SCG sig-
nals [6]. ABF uses an exceptional noise cancellation algo-
rithm that combines RMWD and a bidirectional filtering 
approach. This two-part process consists of the RMWD 
for detecting the heart-related signals and isolating them 
using an adaptive bidirectional filter implemented with 
time-frequency masking [7] and non-negative matrix fac-
torization [8]. This two-step approach effectively helps to 
eliminate the temporal noise and simultaneously helps 
improve the spatial correlation, which also helps improve 
the clarity of SCG signals to a large extent.

Therefore, the rationale for this study arises from the 
increasing need to develop effective interventions in 
non-invasive cardiac monitoring. Consequently, there is 
growing pressure for wearable devices to become even 
more effective and smoothly integrated into people’s 
lives as health-tracking technologies keep on improving. 
Even today’s SCG methods are not adequate because of 
the presence of motion artefacts, despite the potential 
that SCG has demonstrated. In this context, our study 
focuses on dealing with this crucial problem, which will 
enrich the current understanding of the state of the art 
in cardiac monitoring and help expand the possibilities of 
developing more stable and effective health monitoring 
systems in the future. Of course, the application domain 
of this research is limited to SCG, but the principles and 
approach adopted in this thesis are expected to be rele-
vant to other areas of biomedical signal processing where 
motion artefacts are problematic.

Therefore, it can be posited that the relevance of our 
research lies in the following areas: First, it offers a com-
prehensive workout that entails how to extract and opti-
mize SCG signals irrespective of images created by full 
body motion artefacts in order to increase the efficiency 
of monitoring of cardiac activities. Second, the proposed 
system using ABF establishes a new benchmark for 
noise-cancellation filters in biomedical signal processing 
for SCG and other applications. Third, our study shows 
that it is possible to achieve non-invasive, continuous, 
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real-life cardiac monitoring, which is advancement in 
incorporating wearable gadgets into daily life. Finally, by 
filling the existing gap in the literature, our research pro-
vides a basis for future advancements in the given field 
and adds motivation for enhanced investigations of vari-
ous innovative signal-processing methods. The following 
description exhibit the core processes (objectives) of the 
study.

• The primary aim of this study is to establish a reli-
able approach that would increase the possibility of 
filtering out motion artefacts from SCG signals. It is 
a decisive stage when enhancing the accuracy and 
quality of cardiac monitoring, especially if it is per-
formed, for instance, outside of the clinical settings. 
The significant objectives involve the usage of the 
RMWD for a better evaluation and separation of the 
signals related to the heart and the use of dependable 
Time-Frequency masking and Non-Negative Matrix 
Factorization (NMF) with SCG signal processing for 
better spatial and time factors.

• The second primary goal is to design and implement 
the ABF that will include the data from the vertical 
axis accelerometer in order to offer further improve-
ment in the distinction between SCG signal and 
motion artefacts. Moreover, assessing the ability of 
the proposed ABF technique through the enhance-
ments in SNR and the accuracy level of the estimated 
heart rate is prominent.

Thus, the proposed technique of ABF for the SCG sig-
nal analysis can help address various future challenges 
of patient care and contribute to advancements in bio-
medical investigations. Thus, the approach is aimed at 
stressing the possibility of the ABF method’s applica-
tion to continuous, non-invasive, and long-term cardiac 
monitoring in real-life settings, which may suggest its 
integration into routine patient monitoring and numer-
ous biomedical applications. It not only brings the hope 
of better health services for patients but, in the same 
breath, provides an opportunity for increased biomedi-
cine research.

Related work
Javaid et  al. [9] concentrated on utilizing the empirical 
mode decomposition (EMD) to mitigate the motion arte-
facts from the SCG signals acquired by a wearable appli-
ance during walking. The research showed that the 
EMD-based de-noising approach has superiority in rais-
ing the Signal-to-noise ratio (SNR) of SCG signals and, 
consequently, the measurement precision of PEP during 
walking. Patients also demonstrated significant improve-
ments in the distance between their resting and walking 

heartbeats after receiving EMD in the different walking 
paces. However, several limitations include the fact that 
the subjects were selected based on health and youth, as 
well as differences in signals’ performance, which may be 
a result of different walking surfaces. Furthermore, future 
work should consider these limitations and come up with 
better SNR metrics that can be used to assess signal qual-
ity during exercise.Shafiq et  al. [10] proposed a reliable 
technique that addresses the task of systolic time intervals 
(STI) annotation for SCG signals by utilizing a sliding 
template method. The basic approach is the construction 
of a primary template employing the ensemble averaging 
that follows the generation of the sliding template for bet-
ter peak determination. The number of identified peaks 
for each trial was 4.7895 in the supine position and 11 in 
the seated position, respectively, again proving good per-
formance on noise. The findings of the study show that 
the proposed method has a better performance compared 
to the envelope-based methods, with the limits of agree-
ment widths reduced to as low as 16.53 s in supine and 14 
ms in standing positions. The study has demonstrated 
that this method enables the diagnosis of heart distur-
bances, particularly during pregnancy. In seated trials, it 
takes only 49.9 ms, while in moving trials; it takes 38.2 
and 62.5 ms, respectively. However, some limitations 
include a lower ability to deal with high amplitude 
momentary artefacts and a lack of proving it in a wide 
range of postures and activities for a reliable application in 
real life. Luu and Dinh [11] discuss high-motion artefact 
reduction techniques employing a dual-accelerometer 
system. It includes analogue and digital signal processing 
wherein the signals obtained from two accelerometers are 
horizontally, vertically, and diagonally arranged together 
and eliminate the motion artefacts during mild movement 
and walking. Some of the milestones include increasing 
the average systolic SNR by about twofold and the average 
diastolic SNR by about threefold during the gentle 
motion, in comparison to the single-accelerometer-based 
approaches. When it comes to walking motion, the results 
express even larger improvements, where systolic SNR is 
increased by about seven times and diastolic SNR by 
about 11 times. Nevertheless, the drawbacks of the study 
include the fact that the experiment involved multiple 
accelerometers, and it implies increased cost and diffi-
culty; the results might not apply to a variety of real-world 
settings since further validation is recommended. Leitão 
et al. [12] have recently presented a high-resolution acqui-
sition system for ECG and SCG signals using a new 
micro-electro-mechanical system (MEMS) accelerometer. 
In addition, the system also provide real time data display 
and data analysis function with the function of correlating 
ECG and SCG for all round Cardiac performance 
appraisal. A pilot trial comparing 22 patients to the 
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system on physician’s findings established a significant 
degree of heart rate congruity between SCG obtained 
heart rate values and ECG results with SCG derived inter-
vals highly correlated to left ventricular ejection time as 
obtained using echocardiogram. The study also has to 
seek independent validation in different groups of patients 
due to the small sample size adopted in the research. 
D’Mello et al. [13] proposed a reliable approach to com-
bining SCG and gyrocardiography (GCG) signals in real-
time for cardiac monitoring. The basic approach 
comprises an online mathematical formula performed in 
a low-cost system developed in-house, integrated with 
preamplifiers that acquire SCG and GCG captured at the 
sternum, and the ECG is carried out simultaneously. In 
the system, twenty-five subjects performed by SCG–GCG 
obtained high heart rate, which is called ECG, and instan-
taneous beat identification was excellent. The computed 
algorithm resulted in an average computational time of 
0.88 for each measurement cycle on the sampling fre-
quency of 250 Hz, thus meaning the maximum refresh 
rate. The addition of the SCG and GCG measurements 
tapered the inaccuracies because of differences in noise 
rejection in the orthogonal signals. Some of these are as 
follows: The study was conducted only on static subjects, 
the results need to be tested in various conditions, and 
motion artefact amplitude may be problematic for the 
proposed technique. Zia et  al. [14] put forward a new 
effective framework called Dynamic-Time Feature Match-
ing (DTFM) to enhance the capability of the indexing and 
classification of SCG signals. The signal quality index is 
computed by the DTFM method as the degree of refer-
ence to a large set of templates by the SCG signal distance 
inverse. The characteristics of this method are that it is 
successful at stratifying SCG signals based on the amount 
of motion-artifact corruption and the utilization of the 
signal quality index as a feature for ensembled Quadratic 
Discriminant Analysis (QDA) for classifying. The pro-
posed study was able to expedite a high percentage for 
detecting and identifying the misplacement of SCG sen-
sors with an F1-score of 0.83 on held-out subjects. It is 
also important to underline that vital acquisitions related 
to the method allow the stratification of signal quality and 
proper classification of misplacement. However, limita-
tions include the need to validate in different cases and 
conditions and the uncertainty of the SCG signals due to 
variability of the sources, such as the subject’s condition 
and position of the sensors.Mora et al. [15] introduced an 
approach for the unsupervised processing of SCG signals. 
The core work employs a two-step procedure consisting 
of a calibration step and a modular convolutional varia-
tional autoencoder (MC-VAE) network. From the analysis 
of the methodology, it is revealed that it performs with 
excellent performance indicators, with an average 

precision of 98.6% for beat detection, sensitivity of 98.5% 
and an RMSE of 4.10 µs in the maximum difference 
between observed and expected intervals. Out of these 
three, the VAE network is especially impressive, attaining 
more than 90% adjusted rand score, mutual information 
score, completeness, and homogeneity for clustering het-
erogeneous SCG signals, and the network’s ability to give 
a high likelihood of correctly identifying divergence in sig-
nal morphology. Nonetheless, the drawbacks of the speci-
fied methodology include the lower efficiency when used 
in noisy surroundings and the need for further research to 
confirm the potency of the methodology in a range of 
real-world circumstances in relation to different tenden-
cies and patterns of users. In a related study, Uskovas et al. 
[16] use CNNs in the detection and correction of SCG-
sensor misplacement. The methodology centres on train-
ing a CNN model to classify the placement of SCG 
sensors into five categories: right, left, upper lower, hear-
ing, and vision. This model is tested on signals acquired 
from multiple subjects, which made up the test dataset for 
SCG signals, obtaining a classification success rate of 96.4 
per cent for the misplacement of the sensors. Also, the F1 
score was reported to be at 0.93 for the binary classifica-
tion task of identifying whether the sensor is placed cor-
rectly (which is placed in the centre and misaligned, which 
is placed off-centre). Some achievements include signifi-
cant minimization of misplacement errors and improved 
SCG signal interpretability. Nonetheless, there are several 
limitations of the study; the first one is the use of relatively 
small sample size, and the second is the lack of diverse 
data to enhance the generalization of the model and real-
time data implementation complications because of its 
complexity.The work of Centracchio et al. [17] proposes a 
method for the automatic detection of heartbeat in SCG 
signals without the need to have simultaneous ECG sig-
nals. The methodology applies a template-matching 
approach of comparing the heartbeats, and the measure 
used is the normalized cross-correlation (NCC). The 
research was performed on SCG signals obtained from 77 
patients with valvular heart disease; the sensitivity was 
96%, and the positive predictivity was 97%. Also, correla-
tion, regression, and Bland-Altman analyses of the inter-
beat intervals were statistically not different with a 
non-significant bias (R2: >0.999 with inter-beat slope as 
0.997, intercept as 2.8 ms in a range of ± 7). This reveals 
the high efficiency of the proposed method and its high 
degree of accuracy and reliability, sometimes even sur-
passing more complex AI algorithms. However, there is a 
limitation in the identification where the selection of the 
heartbeat template is done manually and therefore, the 
method is operator dependent; the performance of the 
method is only tested on subjects in a stationary position 
in a supine position; hence, more testing needs to be done 
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in other conditions and positions. Skoric et  al. [18] pro-
posed a new approach based onMaximum Overlap Dis-
crete Transform (MODWT) in combination with 
time-frequency masking and non-negative matrix factori-
zation for the motion artifacts rejection from SCG signals. 
The core work was about preprocessing SCG signals 
which were contaminated with real-walking vibrational 
noise, but it was able to provide a better estimation of 
heart rate by increasing the correlation coefficient, which 
was raised from 0.1 to 0.8 at an SNR of -15 dB. This study 
further revealed that the proposed algorithm could effec-
tively eliminate motion artefacts up to an SNR of 19 dB 
without the help of ECG signals. Peculiarities consist of 
the lower efficiency of the method for very high noise lev-
els and future research in various real-world conditions. 
Zheng et al. [19] proposed a method for the precise iden-
tification of aortic valve opening (AO) peaks in SCG sig-
nals for monitoring cardiac function. The main approach 
of the proposed method, called “Successive Variational 
Mode Decomposition (SVMD)”, does not presuppose the 
number of modes, which is a common shortcoming of the 
existing techniques. The raw SCG signals are initially pro-
cessed by filtering out the out of bands, and then, the sig-
nals are transformed into quasi-orthogonal modes before 
being reconstructed based on the waveform factor for an 
enhancement of the pulsatile AO signal. The results show 
a high average prediction rate (99.06%), sensitivity 
(99.02%), and detection accuracy (98.10%) that is much 
higher than those of several other state-of-the-art meth-
ods. Furthermore, the method cuts down on the maxi-
mum mean relative bias (0.03%) and the absolute error 
(2.11%), which proves its applicability in estimating the 
heart rate by using an accelerometer alone. Nevertheless, 
some drawbacks are the possible dependence of the 
method on certain datasets and the lack of sufficient test-
ing across a wide range of conditions to prove the meth-
od’s reliability.

Adaptive bidirectional filtering
The ABF technique of SCG signal processing involves 
the use of RMWD to yield the wavelet and scaling coeffi-
cients of the SCG signal at different scales. Subsequently, 
frequencies belonging to heart signals, that is, frequen-
cies ranging from 0.5 Hz to 40 Hz are detected, and 
then the SCG signal components of these frequencies 
are extracted. This isolated signal further goes through 
time-frequency masking, which helps in removing the 
temporal noise and offers a time-frequency masked 
signal. Subsequently, the NMF is used to decompose 
the masked signal further into a basis matrix and coef-
ficient matrix while maintaining the spatial correlation. 
ABF’s principal concept is based on a bidirectional fil-
tering, which has a recursive structure using the data of 

the vertical axis accelerometer to distinguish between 
genuine SCG signals or motion artefacts. This particular 
filter works in both directions and helps to remove the 
interference from the motion to the degree of the signal. 
The experiment is conducted using the ABF technique to 
assess its performance and effect on the noise reduction 
of the undesired frequency band, which is illustrated 
using the SNR before and after filtering. To evaluate the 
methods’ accuracy, the assessment relies on the stand-
ard metrics that demonstrate a relationship between the 
estimated and real values of the heart rate. Lastly, the 
performance of motion-artifact reduction is presented 
in terms of percentage, which shows the high percentage 
of SCG signal clarity enhancement obtained by the ABF 
method.

Dataset
Initially, the proposed approach is evaluated using pre-
processed SCG Signal processing dataset, which is 
obtained from IEEE Dataport [20] contains the represen-
tations of the patient’s conditions in real-time at different 
condition in the medical environment. The cross-sec-
tional sample consists of 1,000 participants following the 
period from 10 November 2023 to 10 January 2024 in 
order to create a strong time frame. The records consist 
of a time stamp and the following key parameters: fre-
quency of heart signal in Hz, SCG signal values in m/s², 
noise in m/s², and vertical axis accelerometer data in m/
s². It also contains the heart rate indicated in BPM and 
the SNR values and the values are depicted in dB. Several 
works require SCG signal, and this dataset can be of great 
importance, including the investigation of the dynamic 
behavior of SCG signal, performance evaluation of the 
methods used for heart rate estimation, and evaluation of 
the methods to reduce the noise in the SCG signal in the 
biomedical signal processing area.

The kind of data and its attributes are very important 
in augmenting the study by capturing variable kinds of 
real-time SCG signals from the different patients, such as 
different heart rates, noise and motions. Additional ver-
tical axis accelerometer data supplements the dataset’s 
provision of a human ability to evaluate the characteris-
tics of noise reduction and signal quality enhancement 
techniques. Such a choice makes it possible to evaluate 
the applicability of the proposed approach under differ-
ent conditions that strengthen the method’s reliability 
and validity. Variability in signal-to-noise ratios, heart 
rates, and accelerometer data allows for the assessment 
of the ABF method in various environments and condi-
tions relevant to real-time cardiac monitoring. Table  1 
constitutes the following attributes in the dataset with 
appropriate units, as well as a range of data attributes for 
the purposes of characteristics.
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Visual signal conversion
In order to assess the effectiveness of the proposed model 
in practice, it is pertinent to translate the obtained vis-
ual SCG signal into the numeric form. Therefore, the 
required visuals are deduced with the help of an appro-
priate image processing library such as OpenCV. If the 
image is colored, it is transformed into a black-and-white 
one to concentrate on the signal amplitude’s intensity 
value. This grayscale conversion employs the weighted 
sum on the red, green, and blue planes. A threshold is 
then optional to binarize the image for a clear distinction 
between the signal and the background, but this depends 

on the quality of the image and the noise. Subsequently, 
the pixel intensity values are obtained along the SCG sig-
nal line. This entails ensuring one has the coordinates of 
the various Pixels within the image that correspond to 
the signal. Lastly, these pixel intensities are converted to 
numerical values through a calibration factor to bring 
back the pixel values to their original physical dimension, 
in this case, in terms of meters per second squared (m/
s²). These calibrated numerical data are used to analyze 
further and validate the signal processing model of SCG. 
Fig.  1 depicts the entire pre-processing procedure from 
the visual SCG signal to extract essential attribute for 
real-time testing evaluations.

Computational processes of RMWD
The first of the steps involved in ABF is the identification 
of the signals associated with the heart and separating the 
samples with related frequencies. These processes are han-
dled through RMWD. The RMWD is then taken on SCG 
signal Š(t) in order to get the scaling coefficients  
and wavelet coefficients, . The scaling functions 
φ (J ,k)(t) and wavelet functions Ψ (j,k)(t) break up the 
given signal at various scales with different resolutions.

(1)

Table 1 Dataset attributes

Attribute Specification/Ranges

Timestamp 2023-11-10 00:00:00

SCG Signal (m/s2) -2.5, 0.0, 1.2

Heart Rate (BPM) 60–100

Noise (m/s2) -1.0, 0.3, 0.8

Frequency (Hz) 0.5–40

SNR Before (dB) -20 to -10

Accelerometer Data (m/s2) -0.9, 0.1, 1.5

Fig. 1 Representation the signal processing stages (image reading, the process includes gray-scale conversion, binarization, pixel intensity value 
extraction, and ends with scaling and calibration for further analysis) for Visual SCG signals
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Equations (2) and (3) are two important segments of the 
RMWD in Eq. (1), where a signal processing method for 
multi-resolution analysis for time series information. More 
precisely, the scaling coefficients  are derived by pass-
ing the signal Š(t)  through the low-pass filter LJ (k) and 
then sub-sampling it at the rate 2J. This process isolates the 
high-level frequency components of the given signal at the 
lowest resolution level. The wavelet coefficients j(t) are 
given by the convolution of the signal Š(t)with the high-
pass filter followed by decimation at the rate of 2j. From 
this process we obtain the high frequency components, 
Hj(k) of the signal, at different scales. Thus, RMWD 
involves applying the high-pass and low-pass filters with 
the aim of decomposing the original signal into its detailed 
and approximated presentation over the different scales of 
the frequency bands. This form of analysis is a useful 
method for feature extraction and the recognition of pat-
terns and characteristics in the signal at the respective 
durations, which makes it a valuable tool in signal process-
ing applications like the SCG for cardiac health monitor-
ing. The specific wavelet functions used in RMWD for 
SCG signal decomposition are typically the Daubechies 
wavelets, known for their ability to capture both high-fre-
quency noise and low-frequency signal features.

Detection and segmentation of Cardiac‑relevant 
signals
Signals in the range of 0.5 Hz to 40 Hz, fh = f |f ∈ �0.5,40�  , 
related to heart signals, are distinguished. Data belonging 
to the selected SCG signal components relative to these 
frequencies are extracted asŠh(t).

Time frequency masking(TFM) and MNF
The temporal noise is then removed by applying a time-fre-
quency mask  to the SCG signal Š(t) to obtain the 
time-frequency masked signal, Štf (t) which is expressed as 
in Eq. (₼ 5).

Figure  2 illustrates a sample demonstration of TFM 
process for precise understanding. Later,  signal 
is decomposed to obtain the coefficient matrix (Cm) and 

(2)

(3)

(4)Šh(t) =
∑

(f ∈ fh)
Šf (t)

(5)

the basis matrix (Bm) such that non-negativity is ensured 
and spatial correlation is preserved using NMF, which 
can be depicted as,

The SCG signal is then factorized using NMF into two 
matrices: the Cm and Bm matrix. Fig. 3 shows the detailed 
representation of the artefact reduction method based 
on NMF incorporated into the ABF framework for SCG 
signal processing. The process starts with the input of 
SCG signals that include both motion artefacts and heart 
signals (Ihm), with acceleration data (Ia) that reflects the 
subject’s movement that caused these artefacts. At the 
same time, a random matrix (H0) is created, and together 
with the accelerometer data, it is decomposed once more 
using NMF to obtain the new basis and coefficient matri-
ces. Then, the basis matrix from the SCG signal and the 
first part of the coefficient matrix from the combination 
data are utilized to construct the enhanced SCG signal. 
Lastly, the reconstructed signal and the accelerometer 
data are passed through an inverse continuous wavelet 
transform to get the final filtered SCG signal with less 
noise and artefacts for proper cardiac monitoring.

Adaptive bidirectional filtering
The ABF technique integrates both the filtered SCG sig-
nals that are obtained previously and the signals from 
the accelerometer to give the improved SCG signals. The 
core processes are interpreted as follows: measured ini-
tial signal, signal processing method in adaptive filtering, 
and the filtered signal obtained.

Equation (7) exhibits the vital computations of ABF 
approach for SCG signal process. This shows the SCG signal 
after applying the proposed method on time is called the 
Adaptive Bidirectional Filtering. As will be shown in more 
detail later on, the aim of this filter is to improve the SCG sig-
nal quality by suppressing movement related noises and ran-
dom noise. The time-frequency masking Štf (t) is employed 
in the elimination of temporal noise as a preparation for the 
use of adaptive filtering on the SCG signal.The parameter of 
adaptation (Å) is a constant that determines the impact of 
the past filtered signal and data of the accelerometer in the 
adaptive filter. It basically determines the degree of influence 
given to preceding values which is used in the recursive fil-
tering. The filter coefficients

(

F Š
C

)

 control the degree of influ-
ence that past sample value of the SCG signal has to the 
present sample value of the signal. These are decided during 
the design of the filter with the intention of enhancing the 

(6)Štf (t) ≈ (Bm,Cm)

(7)
ŠABF (t) = Štf (t)− Å

∑ K

k=1

[

F Š
C ŠABF (t − k)+ Fa

CV (t − k)
]
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exclusion of motion artefacts. The obtained filter values of 
the past signals

(

ŠABF (t − k)
)

 are placed recursively which 
enhances the filter to segregate the actual heart signals and 
artefacts. The filter coefficients 

(

Fa
CV

)

determine the amount 
of past accelerometer value that are used to calculate the cur-
rent filtered SCG signal that is used in the identification and 
elimination of the motion artefacts.

To filter the signals and distinguish between the car-
diac signals and noise originating from the movement of 
the subject, the data from the vertical axis accelerometer 

(V (t − k)) at different times is used. Thus, this adaptive 
approach guarantees that the SCG signal is updated at 
every point in time with regard to the signal history as 
well as the motion context. Thus, it is very effective for 
real-time signal processing where the major hindrance 
is normally the motion artefacts. Table 2  represents the 
core procedure of ABF in an algorithmic way.

• The filter coefficients are also selected during imple-
mentation and can be commenced with small prede-

Fig. 2 Illustration of TFM that includes (a) Accelerometer Time Domain, (b) SCG Time Domain, (c) Accelerometer Time-Frequency, (d) SCG 
Time-Frequency, (e) Time-Frequency Mask, (f) Resulting SCG Signal

Fig. 3 Artefact reduction Process via NMF
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termined coefficients (with reference to the previous 
values of existing research) to prevent over-correction.

• Optimization is done using popular techniques that 
aim to maximize the signal-to-noise ratio or mini-
mize errors. Another practical feature of real-time 
systems is their ability to update the coefficients with 
the help of the ABF techniques in accordance with 
the new data, which arrive in real-time applications, 
providing constant improvement of the SCG signal 
processing.

• Besides, there is an adaptation parameter provided 
to fine-tune the noise-removal effectiveness and the 
speed of reaction to the input signal’s changes in 
comparison with other parameters (larger filter coef-
ficients, smaller filter coefficients, slower adaptation 
(larger λ) and faster adaptation (smaller λ)) which can 
cause excessive correction or delayed filtration.

This adaptive approach guarantees that the SCG sig-
nal is updated at every point in time with regard to the 
signal history as well as the motion context. Thus, it is 
very effective for real-time signal processing where the 
major hindrance is normally the motion artefacts.

Experimental specifications
To implement the proposed ABF concept in the context 
of cardiac health monitoring and evaluate it empirically, 
the following software is required: an operating system 
(Ubuntu 20.04). Python 3.8 is used for base program-
ming. The following are the requirements for the librar-
ies and frameworks: for development tools, Anaconda 
2020.07 is used for Python environment management. 
The hardware requirement is a modern computer with an 
advanced processor (Intel Core i7), 8 GB of RAM and an 
SSD with 256 GB of free storage space for optimal data 
management. Also, a GPU (NVIDIA GTX 1060) is used 
to improve the computational speed, especially in spatial 
correlation and other reductions, for the improvement 
of the ABF technique for real-time signal processing and 
noise reduction.

Table  3 represents the all the significant empirical 
parameters of ABF. The value of hyperparameters in the 
ABF approach is optimized with a solid rationale given 
to the empirical data analysis and signal processing 

principles. The adaptation parameter (Å= 0.8) guaran-
tees the necessary determinative impact of the prior SCG 
signals, eliminating noise and other unwanted phenom-
ena while not overemphasizing the given signal. The fil-
ter order (K = 5) is chosen as it should be long enough to 
give enough past data for filtering and not be too long, 
which takes a lot of computational resources. The filter 
coefficients F Š

Cand Fa
CV  are adjusted so that the relative 

contribution of the previous SCG signals and accelerom-
eter data is properly scaled, minimizing the artefacts. The 
high-pass and low-pass filter coefficients are selected in 
such a way that positive signal characteristics are retained 
while negative characteristics such as noises and motion 
artefacts are minimized. The filter from the RMWD filter 
bank like Hj(k) = [−0.1294, 0.2241, 0.8365, −0.4829] 
and LJ (k) = [0.4829, 0.8365, 0.2241, −0.1294] was cho-
sen because the high-pass and low-pass coefficients were 
unique in analyzing detailed and approximated signals at 
multiple scales. These optimal values are obtained from 
RMWD filters, which are normally used to analyze sig-
nals into various frequency bands. Ranging from 5 Hz 
to 40 Hz, the frequencies of the signal encompass the 
inherent heart signal frequencies, and a sampling rate of 
256 Hz will provide high-resolution data that can be pro-
cessed quantitatively in great detail.

The performance of the proposed ABF technique 
is compared with state-of-art techniques like EMD, 

Table 2  ABF Algorithm for SCG Signal Processing

Input: Štf (t)ŠABF (t − k), V(t − k), K , FŠC , F
a
c V , Å

Output: Enhanced ŠABF (t)

Begin1.Initialize ŠABF (t) // Initial Setup and Input Collection//setting the Filter Coefficients (for SCG Signal and Accelerometer Data)2. Computation 
of time-frequency masked SCG signal ŠABF (t) ← Štf (t)  3. Apply Adaptive Filtering //determining the Adaptation Parameterfor each time step t doRecur-
sive Contribution:3.1 The influence of past filtered SCG signals is incorporated ŠABF (t) = Štf (t)− Å

∑

K

k=1

[

F
Š

C
ŠABF (t − k)

]

 Motion Artifact Reduction:3.2 Inclusion 
of contribution of vertical axis accelerometer data ŠABF (t) = Štf (t)+

∑

K
k=1

[

F
a
C
V(t − k)

]

  4. Resultant Filtered SignalEnhanced ŠABF (t) End

Table 3 Vital empirical Parametric specification of ABF

Hyperparameter Optimal Value

Å 0.8

K 5

F ŠC
[0.2, 0.15, 0.1, 
0.05, 0.05]

Fa
CV  [0.3, 0.25, 0.2, 

0.15, 0.1]

Hj(k) [-0.1294, 0.2241, 
0.8365, -0.4829]

Lj(k) [0.4829, 0.8365, 
0.2241, -0.1294]

Frequency Range (Hz) 0.5–40 Hz

Sampling Rate (Hz) 256 Hz
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DTFM, NCC and MC-VAE along with the traditional 
ABF method in order to monitor cardiac health. For the 
purpose of enhancing the credibility of the RMWD used 
in the presented approach, the RMWD performance is 
compared with other decomposition methods such as 
EMD, MODWT, and SVMD. Thus, the presented frame-
work for the evaluation of the ABF and RMWD tech-
niques allows for a comprehensive assessment of the 
techniques and proves that they provide superior perfor-
mance in improving the SCG signal quality and reliability 
for non-invasive cardiac monitoring applications.

Performance evaluation and discussion
Table  4 reveals the Noise Reduction Efficiency (NRE in 
%) for different techniques of motion-artifact reduction 
where the ABF method turned out to be highly effective. 
As for EMD, the resultant NRE is about 85%, which also 
proves that this method has a rather satisfactory capac-
ity for noise elimination in SCG signals. DTFM does this 
better, though, with an NRE of 88%, demonstrating the 
noise that DTFM is better capable of handling. How-
ever, as the percentage shows, NCC has slightly lower 
efficiency, 80%, which indicates its inability to process 
motion artefacts. The MC-VAE performs pretty well in 
making decisions with an NRE of 92% because of the 
enhanced machine learning features for the segregation 
of signal and noise. Of all the investigated methods, the 
ABF technique performs best with an NRE of 97%, which 
implies that it is highly efficient in isolating SCG signals 
from motion-related noise. This high efficiency is attrib-
uted to ABF’s integration of the RMWD and adaptive 
filtering since both components are responsible for the 
proper identification and eradication of noise elements. 
The empirical data further corroborates the fact that 
using ABF is superior to other methods, which gives cre-
dence to the proposition that it is optimal for promoting 
the improvement of the quality and reliability of cardiac 
health monitoring facilitated via a real-time dataset.

The superiority of the ABF method in terms of noise 
reduction efficiency can be explained by numerous fac-
tors and changes in the design and operating princi-
ples. RMWD breaks down the SCG signal into different 

levels and enables one to filter out signals related to the 
heart from the noise in different frequency ranges. This 
multi-scale approach helps to considerably eliminate not 
only high-frequency noise but also motion artefacts of 
low frequency. In contrast to the other forms of wavelet 
transforms, the RMWD retains redundancy in the sig-
nal, which assists in preserving the signal’s characteristics 
while enhancing the removal of noise. The ABF method 
analyses the signal in a forward and backward manner, 
which helps to improve resolving power. This bidirec-
tional approach aids in reducing phase distortions and 
makes sure that the filtering is bilateral, thus improving 
the efficiency of noise elimination. In bidirectional filter-
ing, the structure of the filtering operation is recursive 
in order to fulfil the adaptive nature due to the change 
in the characteristics of motion artefacts. The filter also 
successfully modifies based on the vertical axis acceler-
ometer data to properly distinguish between the actual 
SCG signals and motion-generated noise. Preprocess-
ing of the SCG signal involves time-frequency masking; 
this is aimed at removing the temporal noise in the SCG 
signal. This kind of masking is useful in eliminating the 
noise that happens at certain times while not destroying 
the shape of the signal.

Figure  4 illustrates the r-squared values for various 
motion-artifact reduction techniques, including EMD, 
DTFM, NCC, MC-VAE, and ABF, across different SNR 
levels from 0 to -25 dB. At 0 dB SNR, the ABF method 
achieves the highest r-squared value of 0.95, indicat-
ing its superior initial accuracy in heart rate estimation 
compared to other methods. As the SNR decreases to 
-5 dB, ABF maintains a strong performance with an 
r-squared value of 0.9, outperforming DTFM, NCC, 
and MC-VAE, which show values of 0.621, 0.8, and 0.8, 
respectively. At -10 dB SNR, ABF continues to dem-
onstrate robust noise reduction capabilities with an 
r-squared value of 0.75, which is prominently higher 
than the other approaches. This trend persists at lower 
SNR levels, with ABF maintaining higher r-squared val-
ues at -15 dB, -20 dB, and − 25 dB, where it achieves 
0.67, 0.6, and 0.57, respectively. These results clearly 
indicate that ABF’s integration of RMWD and adaptive 
filtering techniques effectively isolates and mitigates 
motion artefacts, ensuring accurate SCG signal process-
ing even in highly noisy environments. In contrast, the 
other methods show a more pronounced decline in per-
formance as noise levels increase, underscoring ABF’s 
superior noise reduction efficiency and resilience in 
challenging conditions.

NMF ensures that the spatial characteristics of the sig-
nal SCG remain invariant while minimizing noise. Since 
it breaks the signal into non-negative matrices, the sepa-
ration of signal components with respect to their spatial 

Table 4 NER outcome of various methodologies

Method Noise 
Reduction 
Efficiency (%)

EMD 85

DTFM 88

NCC 80

MC-VAE 92

ABF 97
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dependencies is easier with the help of NMF. The use of 
NMF, along with accelerometer information, simplifies 
the removal of major types of dorsoventral motion that, 
in most cases, can be considered as sources of artefacts in 
SCG signals. The ABF method’s parameters, such as the 
filter coefficients and adaptation parameters are selected 
to attain maximum noise reduction. Such fine-tuning 
helps to ensure that the specifics of the SCG signals are 
optimally processed in the framework of the method.

Table  5  represents the computational times of the 
motion-artifact reduction methods such as EMD, DTFM, 
NCC, MC-VAE, and ABF are as follows, which are pro-
portional to the algorithmic complexity of the methods 
and their processing capability. EMD, with a computa-
tional time of 5.2 s, employs an iterative sifting process 
that, while effective, is moderately time-consuming. 
DTFM, taking 7.8 s, involves extensive calculations in 
the time-frequency domain, which contributes to its 
higher computational demand. NCC, the fastest among 
the methods with a time of 4.1 s, relies on simpler 

cross-correlation computations, making it more efficient 
but less robust against complex noise.MC-VAE, with the 
longest computational time of 12.5 s, utilizes advanced 
deep learning models and extensive training processes, 
providing high accuracy at the cost of increased compu-
tational resources. ABF, at 8.3 s, balances complexity and 
efficiency by integrating RMWD and adaptive bidirec-
tional filtering. This approach improves noise reduction 
without substantially increasing the computational com-
plexity, which indicates that ABF provides better artefact 
suppression without inordinate processing time; there-
fore, it can be implemented as a viable solution for real-
time SCG signal processing in cardiac health monitoring.

RMWD and adaptive bidirectional filtering minimize 
the trade-offs of noise reduction efficiency and compu-
tational time in the ABF method. Compared with other 
methods, such as NCC, ABF has far better noise reduc-
tion capabilities, but it still consumes less time than 
deep learning models like MC-VAE. ABF has a com-
putational time of 8.3 s, indicating a practical level of 
real-time SCG signal processing by providing a moder-
ate artefact suppression with relatively low complexity 
(exhibits enough artefact suppression and moderate 
complexity to establish the real-time possibility of the 
SCG signal processing in real-life). However, to achieve 
an even greater noise reduction, the filter complex may 
have to be raised, which might pose a problem in terms 
of computational time and thus restrict the real-time 
capacity of the application.

Figure 5 visually compares the performance of four sig-
nal decomposition methods: EMD, MODWT, SVMD, and 

Fig. 4 Comparison of R-squared values of different motion-artefact reduction techniques of different SNR bands

Table 5 Computation timing of various methods in the process 
of motion- artefact reduction process

Method Computational 
Time (s)

EMD 5.2

DTFM 7.8

NCC 4.1

MC-VAE 12.5

ABF 8.3
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RMWD—across four critical metrics: reducing the noise 
level, preserving the signal, computational complexity, and 
the signal’s ability to be accurate in different environments. 
Each axis represents one of these metrics, with values 
ranging from 0.0 (centre) to 1.0 (outer edge). Analyzing 
the results presented from the resultant, it can be realized 
that RMWD (in red) is higher than the other methods in 
all the categories and consistently preserves higher values 
in all of them with a special emphasis on Noise Reduction 
and Signal Preservation. This means that RMWD is well 
dedicated to the best decomposition efficiency by protect-
ing the SCG signals and simultaneously minimizing noises 
while enriching computational capacity and stability.

MODWT (blue) and SVMD (green) have moderate 
results in all the evaluations, and EMD (orange) has rela-
tively lower efficiency, particularly in noise reduction and 
signal preservation. It is obvious from this outcome that 
RMWD, in its actuality, was effective and far superior to 
the other methods in dealing with the SCG signal decom-
position for health monitoring of the heart.

Figure  6 exhibits the SNR values (1000 samples) pro-
vided by the dataset (before) that are compared for 
the evaluation of ABF filtering performance, which is 
expressed in dB. The SNR before filtering reflects the ini-
tial quality of the SCG signal, often degraded by motion 
artefacts. The SNR, after filtering, indicates the effective-
ness of the methodologies in enhancing signal quality by 
reducing noise.

The current ABF method also has constraints in terms 
of patient profiles and motion environments as the filter 
coefficients are fixed. The method may not perform suf-
ficiently stably and effectively at varying or unpredictable 
motion conditions, for instance, in the case of increas-
ing velocities. Moreover, minor latency and computa-
tional load may occur due to the fixed filter coefficients, 
especially when adapting to dynamic or unpredictable 
motion environments. Possible solutions to these chal-
lenges in future research can include the use of ML fil-
ter coefficients to adapt dynamically to patient data and 
motion contexts. Moreover, incorporating DL models for 
feature extraction and signal classification in SCG signals 
could enhance the capability of anomaly detection in the 
proposed system and enhance the stability of the cardiac 
monitoring system.

Conclusion and future work
From the findings, the suggested ABF technique that 
incorporates RMWD demonstrates significantly high 
effectiveness in improving the quality of the SCG signal 
due to a diminished amount of motion artefacts. Com-
parisons with real estate data reveal that ABF offers a 
greater amount of superior noise reduction than meth-
ods like EMD, DTFM, NCC and the MC-VAE, superior 
r-squared score across numerous signal-to-noise ratios, 
and consistently positive outcomes even in suboptimal 
conditions. Owing to the usage of bidirectional filtering, 

Fig. 5 Performance analysis of various methods during decomposition process
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time-frequency masking, and non-negative matrix 
decomposition, which are all used in ABF, accurate iso-
lation and rejection of noise over the signal of interest 
have the advantage over other methods in computational 
complexity. It decreases and reschedules the motion arte-
fact and is based on the vertical axis accelerometer data 
using the recursive structure, which is inherent in the 
method used. This advanced approach results in signifi-
cant improvements in SNR, as illustrated by the substan-
tial elevation of SNR values before and after filtering. On 
average, the application of the ABF technique is seen to 
be a very efficient and reliable method to non-invasively 
diagnose heart diseases using wearable sensors owing 
to its better decomposition effect as well as its ability to 
eliminate motor noise proficiently. For this reason, this 
technique is regarded as a major advancement in the field 
of cardiac diagnosis, offering the prospect of increased 
accuracy and reliability of SCG signals with reduced 
motion artefacts in real-life clinical applications.

The potential future study on the ABF technique is the 
incorporation of machine learning algorithms for opti-
mizing the filter coefficients as per the patient profile 
and different motion environments, which will enhance 
the cardiac surveillance of the patient. Furthermore, the 
development of models such as deep learning models for 
automatic extraction of features and classification of the 
SCG signals improves the anomalies’ detection.
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