
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit  h t    t p : / / c r e  a   t i 
v e  c  o  m  m  o n s . o r g / l i c e n s e s / b y - n c - n d / 4 . 0 /     .   

Li et al. BMC Medical Informatics and Decision Making          (2024) 24:328 
https://doi.org/10.1186/s12911-024-02741-7

BMC Medical Informatics 
and Decision Making

†Xiaojing Li and Yueqin Tian these authors contributed equally.

*Correspondence:
Haidong Wu
wywhd@163.com
Tong Wang
tongwang316@163.com

Full list of author information is available at the end of the article

Abstract
Background Severe acute pancreatitis (SAP) can be fatal if left unrecognized and untreated. The purpose was to 
develop a machine learning (ML) model for predicting the 30-day all-cause mortality risk in SAP patients and to 
explain the most important predictors.

Methods This research utilized six ML methods, including logistic regression (LR), k-nearest neighbors(KNN), 
support vector machines (SVM), naive Bayes (NB), random forests(RF), and extreme gradient boosting(XGBoost), to 
construct six predictive models for SAP. An extensive evaluation was conducted to determine the most effective 
model and then the Shapley Additive exPlanations (SHAP) method was applied to visualize key variables. Utilizing the 
optimized model, stratified predictions were made for patients with SAP. Further, the study employed multivariable 
Cox regression analysis and Kaplan-Meier survival curves, along with subgroup analysis, to explore the relationship 
between the machine learning-based score and 30-day mortality.

Results Through LASSO regression and recursive feature elimination (RFE), 25 optimal feature variables are selected. 
The XGBoost model performed best, with an area under the curve (AUC) of 0.881, a sensitivity of 0.5714, a specificity 
of 0.9651 and an F1 score of 0.64. The first six most important feature variables were the use of vasopressor, high 
Charlson comorbidity index, low blood oxygen saturation, history of malignant tumor, hyperglycemia and high APSIII 
score. Based on the optimal threshold of 0.62, patients were divided into high and low-risk groups, and the 30-day 
survival rate in the high-risk group decreased significantly. COX regression analysis further confirmed the positive 
correlation between high-risk scores and 30-day mortality. In the subgroup analysis, the model showed good risk 
stratification ability in patients with different gender, renal replacement therapy and with or without a history of 
malignant tumor, but it was not effective in predicting peripheral vascular disease.

Conclusions the XGBoost model effectively predicts the severity of SAP, serving as a valuable tool for clinicians to 
identify SAP early.
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Introduction
Acute pancreatitis (AP) is an inflammatory disease of the 
pancreas whose incidence and hospitalization rates have 
increased in recent years, affecting more than 3  million 
U.S. patients annually [1]. Variables that influence disease 
severity in AP people include comorbidities and demo-
graphic variables such as older age, type 2 diabetes [2], 
cardiovascular disease, kidney disease [3] and obesity 
[2, 4]. According to statistics, nearly 25% of AP patients 
develop SAP due to serious complications and have to be 
transferred to the intensive care unit (ICU) for treatment 
and the mortality rate of SAP patients is as high as 30% 
[5–7]. This imposes a huge health and economic burden 
on patients and society. Therefore, early risk assessment 
and timely treatment of patients with AP are very impor-
tant to improve their clinical outcomes.

Many researchers have tried to evaluate and predict the 
severity and clinical prognosis of AP with some labora-
tory tests, scoring models, predictive models, etc., but 
they have different limitations. For example, C-reactive 
protein (CRP) levels were significantly higher in SAP 
patients 48  h later, but less accurate at admission [8]. 
The Acute Physiological and Chronic Health Assessment 
(APACHE II) score was primarily designed to assess criti-
cally ill patients rather than AP patients [9]. The Acute 
Pancreatitis Severity Bedside Index (BISAP) was used 
primarily to identify the severity of AP and its mortal-
ity, while the Harmless Acute Pancreatitis Score (HAPS) 
was more sensitive and accurate in identifying mild AP 
[10, 11]. In addition, the CT score is often used to assess 
the severity of AP, but it mainly focuses on the qualita-
tive assessment of local injuries in and around the pan-
creas, ignoring important clinical symptoms, signs and 
biochemical indicators [12]. A study of the accuracy of 
existing clinical scoring models by Mounzer et al., sug-
gests that existing methods may not meet the need to 
accurately predict SAP risk [13]. Therefore, it is necessary 
to develop a new model with high accuracy to predict 
SAP risk.

Currently, machine learning (ML) algorithms are 
increasingly being used to solve medical problems, build-
ing models based on training data sets that can improve 
risk prediction [14, 15] and drug interactions [16, 17] for 
a variety of diseases, including AP. Compared with tra-
ditional logistic regression and linear regression, ML 
models produce more stable predictions due to their 
advantages of higher-order nonlinear interactions. Most 
previous studies have used ML models to predict the 
severity of AP and fewer focus on predicting clinical 
outcomes of ICU patients. SHAP can explain the con-
tribution of variables in an ML model to predict risk, 

making up for the unexplainable shortcomings of ML 
[18]. This study aims to develop a prognostic model for 
SAP patients by combining multiple ML algorithms and 
SHAP values to provide a powerful tool for clinical deci-
sion-making. To the best of our knowledge, this is the 
first study to apply explicable ML to predict clinical out-
comes for SAP patients in the ICU.

Methods
Study population
This study utilized the Medical Information Mart for 
Intensive Care (MIMIC)-IV database for analysis. The 
database is a public resource that compiles information 
on patients hospitalized in the ICU of Beth Israel Dea-
coness Medical Center during 2001–2012. Access to the 
database was granted by the Massachusetts Institute 
of Technology (MIT) and Beth Israel Deaconess Medi-
cal Center, and the collection of the original data was 
obtained with consent. Patient information included 
in the MIMIC-IV database is anonymous; accordingly, 
informed consent was not required.

This study included AP patients who met the Interna-
tional Classification of Diseases, Ninth Revision (ICD-9) 
code of 577.0, were over 18 years of age, and had an ICU 
stay of more than 24  h. If a single patient had multiple 
ICU admission records, only data related to the first ICU 
admission were analyzed.

The study data was extracted from the raw data using 
Structured Query Language (SQL) with DataGlip (v 
2021.2.1) and further processed in R (v 4.4.0, the R Foun-
dation for Statistical Computing) for retrieval of subject 
information from the database. Baseline characteristics 
within 24 h of hospital entry were captured.

Data collection
The data analyzed in this study encompassed demo-
graphic characteristics, including age, sex, and race, along 
with vital signs recorded within the first 24 h of admis-
sion. These vital signs comprised temperature, heart rate, 
respiratory rate, blood pressure, and oxygen saturation 
(SpO2), with the average, minimum, and maximum val-
ues of each parameter being documented from multiple 
measurements within this time frame. Laboratory results 
were also examined, specifically white blood cell (WBC) 
count, hemoglobin, platelet count, serum creatinine, 
albumin, bilirubin, calcium, potassium, and lactic acid 
levels, recording their average, minimum, and maximum 
values over 24  h. Additionally, various clinical scores 
were noted, including SOFA (Sequential Organ Failure 
Assessment), SIRS (Systemic Inflammatory Response 
Syndrome), SAPS III (Simplified Acute Physiology Score 
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III), OASIS (Oxford Acute Severity of Illness Score), and 
the Charlson co-morbidity index. Further data collec-
tion encompassed the presence of septicemia, myocardial 
infarction, congestive heart failure, peripheral vascular 
disease, cerebrovascular disease, dementia, chronic lung 
disease, rheumatic disease, peptic ulcer disease, diabe-
tes, liver disease, paraplegia, malignant tumors, meta-
static solid tumors, acute respiratory distress syndrome 
(ARDS), and acute kidney injury (AKI) stage. The pri-
mary endpoint was all-cause mortality within 30 days.

In this modeling analysis, categorical variables such as 
gender, past medical history, and treatment modalities 
were transformed into binary numeric formats. Gen-
der was coded as 1 for males and 0 for females. For past 
medical history, conditions including Myocardial infarc-
tion, Congestive Heart Failure, and Peripheral Vascu-
lar Disease were coded as 1 if present, and 0 otherwise. 
Treatment variables involving the use of pressor drugs, 
diuretics, sedatives, and Continuous Renal Replacement 
Therapy (CRRT) were similarly coded as 1 when utilized 
and 0 when not. This binary coding method facilitates the 
effective integration of categorical variables into statisti-
cal analyses.

Data processing
Missing values are frequently encountered in MIMIC-
IV databases. When the proportion of missing data for 
a variable exceeds 30%, that variable is excluded from 
further analysis. Conversely, if the proportion of missing 
data is less than 30%, the “mice” package (version 4.1.2) 
[19] implemented in R is employed to perform multiple 
imputations, thereby minimizing bias. Specifically, vari-
ables with a normal distribution are imputed using mean 
interpolation, while those with non-normal distributions 
are addressed through median interpolation.

Feature selection
First, we used RFE based on five-fold cross-validation 
to select features from the train set [20]. In the study, 
the “mlbench” (v 2.1-5) and “caret” (v 6.0–94) packages 
within the R programming environment were utilized to 
perform feature selection on training datasets via RFE 
with five-fold cross-validation. This iterative RFE method 
builds a model to identify and remove the most signifi-
cant features, then reassesses the remaining features until 
all have been evaluated, aiming to identify an optimal 
feature subset. The five-fold cross-validation ensures that 
each subset of the original dataset is used once as valida-
tion data, facilitating robust model training. Performance 
metrics such as accuracy are calculated in each iteration, 
following the removal of the least important features, to 
evaluate the efficacy of the reduced feature set. Through 
this methodical process, the most effective subset of 

characteristics is ascertained, enhancing the predictive 
accuracy of the modeling approach.

Besides, in this study, we also employed the LASSO 
method for variable selection with the ″glmnet″ pack-
age (v 4.1-8). LASSO regression is a shrinkage estima-
tion method used to address multicollinearity between 
covariates. When multiple correlated predictors are pres-
ent, LASSO selects one and ignores others or sets some 
regression coefficients to zero. It is worth pointing out 
that the λ value is determined when the cross-validation 
error is within one standard error (SE) of its minimum 
because LASSO regression uses cross-validation to select 
the λ value based on the 1-SE criterion. We obtained a 
subset of features selected by LASSO.

Finally, we take the intersection of the two selection 
results to obtain the final subset of features.

Model establishment and evaluation
499 patients were grouped into a train and test set in a 4:1 
ratio by stratified random sampling. The training set was 
preprocessed using a synthetic minority oversampling 
technique combined with an edited nearest neighbor 
(SMOTE + ENN) technique to balance the positive and 
negative classes [21]. This preprocessing was executed 
using the ″smotefamily″ package (v 1.4.0), which includes 
SMOTE in R. And then, based on the training dataset, we 
established six ML models, including LR, KNN using the 
″kknn″ package(v 1.3.1), SVM with the ″e1071″ package 
(v 1.7–14), NB also through ″e1071″ package (v 1.7–14), 
RF using the″ randomForest″ package (v 4.7–1.1) and 
XGBoost utilizing the ″xgboost″ package (v 1.7.7.1) for 
predicting 30-day all-cause mortality in SAP patients 
[22]. The hyperparameters of these ML models were 
optimized using the quintuple cross-validation method 
provided by the Grid Search algorithm implemented via 
the ″caret″ package (v 6.0–94) in R.

Subsequently, we evaluated and compared the perfor-
mance of each model in the test set. To avoid bias and 
overfitting and obtain more stable predictive perfor-
mance, we repeated these ML methods 100 times with 
different random seeds and computed the average perfor-
mance over these 100 repeats [23]. Finally, multiple indi-
cators including AUC, sensitivity, specificity and F1 score 
were comprehensively evaluated, and the ″pROC″ pack-
age (version 1.18.5) was utilized to compute the AUC.

Model explanation
In this study, we employed SHAP as a method of inter-
pretability to enhance the transparency of our predictive 
model. SHAP is recognized for its post-hoc analytical 
capacity to quantify the impact of individual features on 
the output of the model both individually and collec-
tively, thereby clarifying the model’s operational mecha-
nisms [18, 24]. Specifically, it calculates the Shapley value 
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for each attribute of a data point using specific algo-
rithms, indicating that feature contributions are additive. 
This approach facilitates comprehensive explanations of 
how each feature influences the predictive accuracy and 
likelihood in each data set.

Unlike traditional Feature Importance metrics com-
monly associated with many machine learning models, 
SHAP analysis offers greater statistical depth and inter-
pretability, as evidenced by several prior studies [25, 26]. 
Therefore, to elucidate the decision-making processes 
underlying our model, we implemented the SHAP meth-
odology. In this investigation, the ″xgboost″ package (v 
1.7.7.1) alongside SHAP analysis was utilized to ascer-
tain the critical predictors of 30-day all-cause mortality 
in patients with acute pancreatitis. This approach effec-
tively highlighted the most impactful variables within the 
model.

The calculation formula of SHAP is as follows:

 
ϕ i (f ) =

∑
S⊆N\ {i}

|S|! (|N | − |S| − 1)!

|N |! (f (S ∪ {i })− f (S))

where:

  • ϕ i (f ) is the SHAP value for feature i , quantifying 
its contribution to the prediction.

  • N  is the set of all features included in the model.
  • S  is any subset of the features that does not include 

feature i .
  • f (S) is the model output utilizing the features in 

subset S .
  • f (S ∪ {i }) is the model output when feature i  is 

added to the subset S .
  • |S|!  is the factorial of the number of elements in 

subset S , accounting for permutations of features 
within S .

  • (|N | − |S| − 1)!  is the factorial representing the 
number of features not in subset S  excluding the 
feature i .

  • The factor |S|!(|N |−|S|−1)!
|N |!  normalizes the influence of 

subsets of various sizes by accounting for the number 
of possible permutations of the features in and out of 
S , ensuring a balanced contribution from all subsets.

Model predictions
In the predictive segment of the study, patients in train 
set were stratified into low-risk and high-risk groups 
based on the optimized Jordan index to assess the pre-
dictive capability of the model. The evaluation was con-
ducted using the following strategies:

(1) Log-rank Test: The variance of Kaplan-Meier sur-
vival curves was analyzed using the log-rank test to 
determine if the differences in survival time distributions 

between the different risk groups were statistically sig-
nificant. This statistical testing was conducted using the 
″survival″ package (v 3.6-4) in R.

(2) Multivariate Cox Regression Analysis: This analysis 
assessed the correlation between the risk classification 
predicted by the machine learning model and 30-day all-
cause mortality. It also considered potential confounding 
factors to ascertain the independent impact of risk pre-
diction on forecasting the short-term risk of mortality. 
The analysis was performed using the ″survival″ package 
(v 3.6-4) and the ″forestplot″ package (version 3.1.3).

(3) Subgroup Analysis: The predictive effectiveness 
of the machine learning model was further evaluated 
in various subgroups, including sex, age, artificial renal 
replacement therapy, peripheral vascular disease, cere-
brovascular disease, and malignant tumor. This analy-
sis aimed to identify specific patient characteristics or 
clinical conditions that may influence the accuracy and 
reliability of the model’s predictions. The ″forestplot″ 
package (version 3.1.3) was utilized to visualize the 
results and interactions within the subgroups.

This analysis aimed to identify specific patient char-
acteristics or clinical conditions that may influence the 
accuracy and reliability of the model’s predictions.

Statistical analysis
Continuous data were depicted as mean ± standard 
deviation (SD) or median (interquartile range [IQR]) 
and compared with Student’s t test or Mann-Whitney 
U test. Categorical variables were expressed as numbers 
(percentages) and compared using the chi-square test. 
The normality of data distribution was evaluated with 
the Shapiro-Wilk test. Non-normally distributed data or 
data exhibiting heterogeneity of variance were compared 
using the Kruskal-Wallis or Mann-Whitney U test. The 
P-value < 0.05 was deemed as statistically meaningful and 
the statistical analysis was conducted with R (v 4.4.0).

Results
Patient characteristics
The flowchart was shown in Fig.  1. Initially, the dataset 
included data from 1,069 patients.we applied specific 
inclusion criteria: patients were admitted to the ICU for 
the first time, aged between 17 and 90 years, and stayed 
in the ICU for more than 24 h. This refinement process 
narrowed the number of suitable patients down to 499, 
including 300 men (60.1%) and 199 women (39.9%). At 
30 days follow-up, 74 patients (14.8%) died. 499 patients 
were separated into a train set (399) and a test set (100). 
The general characteristics of the patients were pre-
sented in Table  1. There is no significant difference 
between the training dataset and the test dataset except 
for the variables “Potassium” and “Aniongap”. Screened 
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characteristics differed between fatal and nonfatal sub-
jects in the training cohort (Table 2).

Feature selection
The initial dataset comprised 230 variables. Due to the 
presence of missing values, 87 of these variables were dis-
carded, leaving 143 variables available for further analy-
sis. By employing the LASSO method with an optimal 
lambda value of approximately 0.0127, the number of 
significant variables was reduced to 47. These attributes 
demonstrated minimal errors in predictive modeling. 
Additionally, recursive feature elimination (RFE) is used 
to identify another set of 53 important features based on 
accuracy:0.8547, Kappa:0.04696. A subsequent compari-
son and intersection of the attributes selected by both 
LASSO and RFE methods further refined this to the 25 
most pertinent attributes, which were used to enhance 
the performance of the machine learning models (Fig. 2).

The 25 features included age, temperature_mean, mbp_
max, sbp_max, SPO2_max, SPO2_min, SPO2_mean, 
Charlson Comorbidity Index, APSIII, bun_min, anion 
gap_min, wbc_min, mbp_min, bilirubin_total, alp_min, 
glucose_min, rdw_max, PTT_min, rheumatic disease, 
metastatic solid tumor, peripheral vascular disease, 
myocardial infarct, malignant cancer, continuous renal 
replacement therapy (CRRT) and vasopressor.

Model hyper-parameters
Utilizing a dataset composed of 25 variables, advanced 
modeling techniques such as LR, SVM, RF, Random For-
est (RF), and XGBoost were implemented. The train-
ing set was preconditioned using the SMOTE + ENN to 
ensure a balanced representation of positive and nega-
tive classifications. A grid search method was employed 
to identify the most effective hyperparameters for 
each model. Details regarding the adjustment of these 

Fig. 1 The flowchart of this study
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Total (N = 499) Test (N = 100) Train (N = 399) P
Demographic Characteristics
Age (years), Median[IQR] 58.0 [45.0, 71.0] 59.0 [45.0, 75.0] 57.0 [45.0, 70.0] 0.495
Male, N (%) 300 (60.1) 66 (66) 234 (58.6) 0.219
Race (White), N (%) 303 (60.7) 54 (54) 249 (62.4) 0.154
Vital Signs, Median[IQR]
Heart_Rate_Mean(bpm) 98.2 [85.1, 110.3] 98.8 [82.5, 110.6] 97.6 [85.2, 110.2] 0.602
Sbp_Mean(mmHg) 118.0 [107.6, 133.5] 117.1 [108.2, 130.4] 118.1 [107.5, 134.4] 0.748
Dbp_Mean(mmHg) 65.2 [57.6, 74.5] 63.8 [57.8, 72.6] 65.6 [57.5, 75.0] 0.510
Mbp_Mean(mmHg) 79.5 [71.7, 88.9] 77.8 [72.5, 86.4] 80.0 [71.3, 90.4] 0.631
Resp_Rate_Mean (bpm) 21.3 [18.4, 24.4] 21.4 [18.6, 24.8] 21.2 [18.4, 24.3] 0.392
Temperature_Mean(℃) 37.0 [36.6, 37.5] 37.0 [36.7, 37.5] 37.0 [36.6, 37.5] 0.405
Spo2_Mean(%) 96.6 [95.0, 98.0] 97.0 [95.2, 98.4] 96.5 [95.0, 98.0] 0.339
Glucose_Mean (mg/dL) 138.8 [110.9, 177.1] 138.8 [113.9, 168.2] 138.6 [110.3, 180.8] 0.674
Scores, Median[IQR]
SOFA 6.0 [3.0, 9.0] 7.0 [3.5, 9.0] 6.0 [3.0, 10.0] 0.757
SIRS 3.0 [3.0, 4.0] 3.0 [2.5, 4.0] 3.0 [3.0, 4.0] 0.392
SAPSIII 38.0 [27.0, 50.0] 39.0 [28.5, 46.0] 38.0 [27.0, 51.0] 0.919
OASIS 35.0 [29.0, 42.0] 34.5 [30.0, 41.5] 35.0 [29.0, 42.0] 0.838
APSIII 54.0 [40.0, 74.0] 53.5 [40.0, 65.0] 54.0 [39.5, 75.0] 0.527
Charlson Comorbidity Index 4.0 [1.0, 6.0] 4.0 [1.5, 6.0] 4.0 [1.0, 6.0] 0.649
Laboratory Blood Tests
Complete Blood Count, Median[IQR]
WBC(10*9/L) 13.1 [9.1, 19.0] 11.9 [8.9, 16.8] 13.3 [9.1, 19.5] 0.188
Hemoglobin(g/L) 11.2 [9.2, 13.2] 11.2 [9.6, 13.2] 11.2 [9.2, 13.2] 0.623
Platelet(10*9/L) 205.0 [140.5, 312.0] 200.5 [156.5, 321.5] 209.0 [139.5, 312.0] 0.755
Hematocrit (%) 34.3 [28.6, 39.4] 34.0 [29.4, 39.5] 34.3 [28.4, 39.4] 0.779
Biochemistry, Median[IQR]
Bicarbonate(mmol/L) 21.0 [17.0, 25.0] 22.0 [18.0, 25.0] 21.0 [17.0, 25.0] 0.084
Calcium (mmol/L) 8.1 [7.1, 9.0] 8.2 [7.2, 9.1] 8.1 [7.1, 8.9] 0.282
Chloride(mmol/L) 103.0 [98.0, 108.0] 104.0 [98.5, 108.0] 103.0 [98.0, 108.0] 0.612
Creatinine (mg/dL) 1.1 [0.8, 2.0] 1.1 [0.7, 1.7] 1.1 [0.8, 2.1] 0.362
Glucose(mmol/L) 125.0 [99.0, 186.5] 126.5 [101.0, 177.5] 125.0 [98.0, 187.0] 0.947
Sodium(mmol/L) 138.0 [135.0, 142.0] 139.0 [135.0, 142.5] 138.0 [135.0, 142.0] 0.491
Potassium(mmol/L) 4.1 [3.6, 4.8] 4.0 [3.5, 4.5] 4.2 [3.7, 4.8] 0.013
Total Bilirubin (mmol/L) 0.7 [0.4, 2.2] 0.7 [0.4, 1.9] 0.7 [0.4, 2.2] 0.760
ALP (U/L) 96.0 [61.0, 184.5] 77.5 [57.0, 170.0] 102.0 [62.5, 188.5] 0.150
AST (U/L) 87.0 [37.5, 354.5] 105.0 [37.0, 527.0] 80.0 [37.5, 341.0] 0.321
Coagulation, Median[IQR]
INR 1.3 [1.1, 1.5] 1.3 [1.1, 1.5] 1.3 [1.1, 1.5] 0.808
PT (s) 14.5 [13.0, 18.3] 14.5 [13.1, 18.0] 14.4 [13.0, 18.4] 0.735
Blood Gas, Median[IQR]
Anion gap (mmol/L) 16.0 [13.0, 21.0] 15.0 [13.0, 18.0] 17.0 [13.0, 22.0] 0.030
Lactate_Min(mmol/L) 1.3 [1.0, 1.8] 1.3 [0.9, 1.9] 1.3 [1.0, 1.8] 0.621
Lactate_Max(mmol/L) 1.9 [1.1, 4.0] 1.8 [1.0, 4.6] 1.9 [1.1, 3.9] 0.862
pH_Min 7.3 [7.1, 7.4] 7.3 [7.2, 7.4] 7.3 [7.1, 7.4] 0.939
pH_Max 7.4 [7.3, 7.4] 7.4 [7.3, 7.4] 7.4 [7.3, 7.4] 0.393
Po2_Min(mmHg) 74.0 [47.0, 120.0] 72.5 [45.5, 109.0] 76.0 [47.0, 124.5] 0.369
Po2_Max(mmHg) 141.0 [91.0, 280.0] 142.5 [91.5, 266.0] 139.0 [90.5, 281.5] 0.930
Pco2_Min(mmHg) 34.0 [27.0, 40.5] 34.0 [27.5, 40.0] 34.0 [27.0, 41.0] 0.860
Pco2_Max(mmHg) 42.0 [33.0, 51.0] 44.0 [34.0, 56.0] 42.0 [33.0, 50.0] 0.139
Baseexcess_Min(mmol/L) -4.0 [-10.0, 1.0] -3.0 [-9.0, 1.0] -4.0 [-10.0, 1.0] 0.292
Baseexcess_Max(mmol/L) -1.0 [-6.0, 1.0] 0.0 [-5.0, 1.5] -2.0 [-7.0, 1.0] 0.465
Totalco2_Min(mEq/L) 22.0 [17.0, 29.0] 24.0 [17.0, 28.0] 22.0 [17.0, 29.0] 0.692

Table 1 The basic demographic characteristics of all patients
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parameters are thoroughly outlined in Supplementary 
Table S1. Parameters not specifically adjusted adhered to 
their default settings.

Performance of ML models
The analysis involved training and evaluating six preva-
lent machine learning models: LR, KNN, NB, RF, SVM 
and XGBoost, as detailed in Fig. 3; Table 3.

The evaluation metrics included sensitivity, specific-
ity, recall, accuracy, F1 score and AUC. As per the results 
in Fig.  3; Table  3, the XGBoost model outperformed 
the other models with an AUROC of 0.881, an accuracy 
of 0.91, and an F1 score of 0.64. In terms of sensitivity, 
which is identical to the recall rate, Naive Bayesian and 
SVM demonstrated commendable performance, both 
registering a value of 0.6429, whereas KNN lagged with 
a rate of 0.4286. RF showcased the highest specificity 
at 0.9651, outperforming other models, which ranged 
between 0.8721 and 0.9302 in this metric. Concurrently, 
XGBoost attained the highest accuracy, whereas KNN 
scored the lowest at 0.81.

Overall, the data illustrates that the XGBoost model 
offers superior predictive capabilities. Conversely, KNN’s 
overall effectiveness was comparatively lower as indi-
cated in Fig. 3; Table 3.

In conclusion, given its robust performance across var-
ious metrics, the XGBoost model is selected for further 
analytical pursuits.

Visualization of feature importance
To intuitively interpret the chosen variables, the SHAP 
values were utilized to show what effect these elements 
had on the 30-day mortality in the model. In general, the 
more important the SHAP value of a feature is, the more 
influence it has on the model. We then ranked the impor-
tance of features in the best-performing XGBoost model.

In the modeling section, 25 variables were initially 
analyzed, out of which the XGBoost model ultimately 
selected 18 for inclusion in the model. Figure 4 displays 
these chosen variables, sorted by their importance. This 
ranking illustrates the extent to which each variable 
influences the model’s predictive performance, aiding in 

Total (N = 499) Test (N = 100) Train (N = 399) P
Totalco2_Max(mEq/L) 26.0 [21.0, 30.0] 27.0 [22.0, 30.0] 25.0 [21.0, 30.0] 0.123
Complications
sepsis3, N (%) 386 (77.4) 80 (80) 306 (76.7) 0.566
Myocardial Infarct, N (%) 47 (9.4) 7 (7) 40 (10) 0.463
Congestive Heart Failure, N (%) 100 (20) 24 (24) 76 (19) 0.334
Peripheral Vascular Disease, N (%) 29 (5.8) 6 (6) 23 (5.8) 1.000
Cerebrovascular Disease, N (%) 36 (7.2) 7 (7) 29 (7.3) 1.000
Dementia, N (%) 10 (2) 2 (2) 8 (2) 1.000
Chronic Pulmonary Disease, N (%) 113 (22.6) 22 (22) 91 (22.8) 0.969
Rheumatic Disease, N (%) 14 (2.8) 1 (1) 13 (3.3) 0.320
Peptic Ulcer Disease, N (%) 23 (4.6) 6 (6) 17 (4.3) 0.431
Diabetes, N (%) 160 (32.1) 29 (29) 131 (32.8) 0.539
Liver Disease, N (%) 147 (29.5) 33 (33) 114 (28.6) 0.456
Paraplegia, N (%) 8 (1.6) 2 (2) 6 (1.5) 0.664
Malignant Cancer, N (%) 41 (8.2) 13 (13) 28 (7) 0.081
Metastatic Solid Tumor, N (%) 15 (3) 3 (3) 12 (3) 1.000
ARDS, N (%) 5 (1) 1 (1) 4 (1) 1.000
AKI stage, N (%) 210 (42.1) 46 (46) 164 (41.1) 0.816
Stage 1 79 (15.8) 15 (15) 64 (16)
Stage 2 156 (31.3) 28 (28) 128 (32.1)
Stage 3 54 (10.8) 11 (11) 43 (10.8)
Treatment
Vasopressor, N (%) 234 (46.9) 49 (49) 185 (46.4) 0.719
Sedatives, N (%) 253 (50.7) 52 (52) 201 (50.4) 0.858
Diuretics, N (%) 255 (51.1) 54 (54) 201 (50.4) 0.592
CRRT, N (%) 75 (15) 16 (16) 59 (14.8) 0.883
Prognosis
30-day mortality, N (%) 74 (14.8) 14 (14) 60 (15) 0.917
Heart_Rate_Mean, Sbp_Mean, Dbp_Mean, Mbp_Mean, Resp_Rate_Mean, Temperature_Mean, Spo2_Mean, Glucose_Mean: Mean values in the first 24 h of ICU 
admission; Lactate_Min, pH_Min, Po2_Min, Pco2_Min, Baseexcess_Min, Totalco2_Min: Min values in the first 24 h of ICU admission; Lactate_Max, pH_Max, Po2_
Max, Pco2_Max, Baseexcess_Max, Totalco2_Max: Max values in the first 24 h of ICU admission

Table 1 (continued) 



Page 8 of 16Li et al. BMC Medical Informatics and Decision Making          (2024) 24:328 

a deeper understanding of the decision-making process 
within the model.

Figure  5 displays the 18 predictors evaluated by the 
mean SHAP value. The feature ranks (Y-axis) refer to 
the significance of each feature for the prediction model, 
and the SHAP values (X-axis) correspond to the impact 
of each feature on each sample model. The relationship 
between the size of the characteristic value and the pre-
dicted impact can be seen through the color, and the 
distribution of the characteristic value is displayed (blue 
indicates the high-risk value, while yellow indicates the 
low-risk value).

As depicted in Fig.  5, the risk factors for 30-day all-
cause mortality are as follows: higher APSIII scores, older 
age, and an increased Charlson comorbidity index. Past 
medical history factors include peripheral vascular dis-
ease, rheumatic diseases, and a history of malignancy. 
Within the first 24 h in the ICU, crucial indicators include 
lower average oxygen saturation, higher blood glucose 
levels, lower body temperature, and lower mean arterial 
pressure. Blood tests within this time frame show longer 
PTT durations, increased maximum red cell distribu-
tion width, and larger anion gaps which are significant 
markers. Additionally, the use of vasoactive medications 

and Continuous Renal Replacement Therapy (CRRT) are 
highlighted as treatment factors.

Classification and risk stratification of predictive scores
XGBoost model was applied for predicting and stratify-
ing the likelihood of 30-day all-cause mortality in SAP 
patients of the training set. All subjects in the training 
set were categorized into high-risk and low-risk groups, 
taking the maximum proximity entry index to be the best 
cutoff (0.62).

Survival Analysis
As shown in the Kaplan-Meier curves, the 30-day sur-
vival rate for patients identified as high-risk by the 
XGBoost model decreases over time, suggesting that 
these individuals are more likely to succumb. This obser-
vation is statistically significant (logarithmic rank test: 
p < 0.0001, Fig. 6).

COX regression analysis
The correlation between high ML risk and 30-day mor-
tality in SAP patients remained after adjustment for the 
first 9 most impactful variables. (adjusted HR:10.61; 95% 
CI:5.47–20.60; p < 0.001). Multivariable COX regression 
analysis is shown in Fig. 7.

Table 2 Differences in screening characteristics between dead and non-dead subjects in the training group
ALL (N = 399) Alive (N = 339) Dead (N = 60) P

Age( years), Median(IQR) 57.0 [45.0, 70.0] 56.0 [43.0, 67.0] 70.0 [57.0, 79.5] < 0.001
Mbp_Min( mmHg), Median(IQR) 60.0 [51.0, 71.0] 62.0 [52.2, 72.0] 53.5 [47.8, 62.5] < 0.001
Mbp_Max( mmHg), Median(IQR) 107.0 [93.5, 119.0] 108.0 [94.0, 119.8] 97.5 [88.0, 114.0] 0.002
Sbp_Max( mmHg), Median(IQR) 150.0 [136.0, 168.0] 152.0 [137.5, 169.5] 139.5 [128.0, 158.0] < 0.001
Spo2_Max( %),Median(IQR) 100.0 [99.0, 100.0] 100.0 [99.0, 100.0] 100.0 [99.0, 100.0] 0.511
Spo2_Min( %),Median(IQR) 92.0 [90.0, 94.0] 92.0 [90.0, 94.0] 90.5 [87.5, 93.0] < 0.001
Spo2_Mean( %),Median(IQR) 96.5 [95.0, 98.0] 96.6 [95.2, 98.1] 95.9 [94.1, 97.5] 0.013
Temperature_Mean( ℃),Median(IQR) 37.0 [36.6, 37.5] 37.0 [36.7, 37.5] 36.8 [36.5, 37.2] 0.003
APSIII, Median(IQR) 54.0 [39.5, 75.0] 51.0 [37.0, 69.5] 77.5 [62.0, 92.0] < 0.001
Charlson Comorbidity Index, Median(IQR) 4.0 [1.0, 6.0] 3.0 [1.0, 5.0] 6.0 [5.0, 8.0] < 0.001
WBC_Min( 10*9/L), Median(IQR) 10.8 [7.4, 15.9] 10.6 [7.2, 15.5] 12.8 [7.9, 18.5] 0.103
Glucose_Min( mg/dL), Median(IQR) 103.0 [84.0, 125.0] 101.0 [81.0, 123.0] 113.0 [88.0, 133.0] 0.066
PTT_Min( s), Median(IQR) 28.7 [25.7, 33.8] 28.4 [25.6, 32.8] 31.1 [26.5, 40.2] 0.003
Rdw_Max( %), Median(IQR) 15.0 [14.0, 16.5] 14.8 [13.9, 16.2] 15.9 [14.8, 18.4] < 0.001
Bun_Min( mg/dL), Median(IQR) 19.0 [12.0, 36.0] 18.0 [11.0, 31.5] 35.5 [18.0, 63.0] < 0.001
Aniongap_Min( mmol/L), Median(IQR) 13.0 [11.0, 16.0] 13.0 [11.0, 15.0] 16.0 [12.0, 18.0] < 0.001
Total Bilirubin ( mmol/L), Median(IQR) 0.7 [0.4, 2.2] 0.7 [0.4, 2.0] 0.9 [0.5, 4.3] 0.038
Alp_Min( U/L), Median(IQR) 85.0 [58.5, 143.5] 85.0 [60.0, 141.0] 84.0 [46.0, 153.0] 0.523
Metastatic Solid Tumor, N ( %) 12 ( 3) 5 ( 1.5) 7 ( 11.7) < 0.001
Peripheral Vascular Disease, N ( %) 23 ( 5.8) 14 ( 4.1) 9 ( 15) 0.003
Myocardial Infarct, N ( %) 40 ( 10) 26 ( 7.7) 14 ( 23.3) < 0.001
Malignant Cancer, N ( %) 28 ( 7) 16 ( 4.7) 12 ( 20) < 0.001
Rheumatic Disease, N ( %) 13 ( 3.3) 9 ( 2.7) 4 ( 6.7) 0.115
CRRT, N ( %) 59 ( 14.8) 35 ( 10.3) 24 ( 40) < 0.001
Vasopressor, N ( %) 185 ( 46.4) 138 ( 40.7) 47 (78.3) < 0.001
Mbp_Min, Spo2_Min, Glucose_Min, WBC_Min, PTT_Min, Bun_Min, Aniongap_Min, Alp_Min: Min values in the first 24 h of ICU admission; Mbp_Max, Rdw_Max, 
Sbp_Max, Spo2_Max: Max values in the first 24 h of ICU admission; Spo2_Mean, Temperature_Mean: Mean values in the first 24 h of ICU admission;
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Subgroup analysis
Then, subgroup analysis is performed to further verify 
the predictive value of the model (Table 4). The subgroup 
analysis revealed that the model effectively distinguished 
between high-risk and low-risk patients with severe acute 
pancreatitis, irrespective of gender, age, history of con-
tinuous renal replacement therapy, or cancer. However, 
it was unable to predict the 30-day mortality risk for 
patients with severe acute pancreatitis who also suffered 
from peripheral vascular disease. To further evaluate the 
robustness of the results, we tested cross-interactions 
between high- and low-risk groups and age, gender, 
CRRT, peripheral vascular disease, or malignant cancer. 
In the high- and low-risk groups, there were no interac-
tions found between age, gender, CRRT, peripheral vas-
cular disease, or malignant cancer.

Discussion
In this research, we developed and tested an interpretable 
ML-based risk stratification tool for predicting the risk of 
all-cause mortality in SAP patients during a 30-day fol-
low-up period. In this study, we applied 6 ML methods 
to construct the scoring system, among which XGBoost 
showed the best performance. The average AUC of this 
risk score is 0.881, sensitivity of 0.5714, specificity of 
0.9651 and F1 score of 0.64which is significantly better 
than other currently available risk scores. Although ML 
models are often unable to output intrinsic explanations, 
we solve the problem of ML model interpretation by 
applying a state-of-the-art technique called an interpre-
table ML tool called SHAP. SHAP can help us to iden-
tify the first six most important feature variables of SAP 
mortality use of vasopressor, high Charlson comorbidity 

Fig. 2 Feature selection. A: Changes in the Coefficients of 104 Predictive Variables with Variations in the Regularization Parameter λ; B: Feature selection in 
Lasso regression analysis: The horizontal axis represents the change of λ, the vertical axis shows the coefficient of each characteristic variable; C: Features 
selected by RFE with the 5-fold Cross-Validation: This graph demonstrates the prediction accuracy of different feature sets selected through Recursive 
Feature Elimination (RFE) using 5-fold cross-validation. The horizontal axis displays the number of features included in the model, while the vertical axis 
represents the accuracy achieved by each subset; D: Venn Diagram Showing the Intersection Between Lasso Regression and Recursive Feature Elimina-
tion (RFE) with Five-Fold Cross-Validation
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index, low blood oxygen saturation, history of malignant 
tumor, hyperglycemia and high APSIII score.

Compared with laboratory tests, predictive scores or 
models in previous studies, the risk stratification tool 
built with XGBoost as the main algorithm in this study 
can more accurately predict the 30-day mortality of acute 
severe pancreatitis. In previous studies, as shown in Sup-
plementary Table 2, the AUC values for predicting 28-day 
mortality of SAP patients, including WBC, PLR, NLR, 
RDW, CRP, Bedside index of acute pancreatitis severity 
(BISAP), CTSI and APACHE II, were 0.796, 0.697, 0.749, 
0.722, 0.595, 0.812, 0.84 and 0.78, both significantly lower 
than the performance of the scoring model established 
in this study [27–29]. In addition, these scoring systems 
have different limitations. For example, the APACHE 
II score is mainly used for critically ill patients rather 

than for AP patients and requires invasive tests such as 
blood gas tests [9]. Ranson scores measure 48 h of data 
to predict prognosis, leading to delays in patient risk 
management [30]; Although the CTSI score may pro-
vide essential information on the diagnosis of AP, the 
availability of instruments may limit the application of 
the score and neglect the evaluation of clinical signs and 
symptoms [12]. The Harmless acute pancreatitis score 
(HAPS) was designed to identify mild acute pancreatitis 
[11].

Recently, several researchers have built ML models to 
predict the severity of AP patients and to identify SAP 
patients early [31, 32]. BalazsKui et al. used decision 
trees, random forest, logistic regression, SVM, CatBoost 
and XGBoost to construct ML models to identify the 
severity of AP patients at an early stage. The XGBoost 

Table 3 Results of ML modeling of 30-day follow-up mortality in SAP patients
LR KNN NB RF SVM XGBoost

Sensitivity 0.5714 0.4286 0.6429 0.5714 0.6429 0.5714
Specificity 0.8721 0.8721 0.8721 0.9302 0.8837 0.9651
Recall 0.5714 0.4286 0.6429 0.5714 0.6429 0.5714
Accuracy 0.83 0.81 0.84 0.88 0.85 0.91
F1 score 0.4848 0.3871 0.5294 0.5714 0.5455 0.64
AUROC 0.8488 0.65 0.704 0.751 0.728 0.881
LR: Logistic Regression; KNN: K-Nearest Neighbors; NB: Naive Bayes; RF: Random Forests ; SVM: Support Vector Machines; XGBoost: Extreme Gradient Boosting 

Fig. 3 AUC Comparison for Different Models: A: Logistic Regression (LR); B: K-Nearest Neighbors (KNN); C:Naive Bayes (NB); D:Random Forests (RF); 
E:Support Vector Machines (SVM); F: Extreme Gradient Boosting (XGBoost)
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classifier had the strongest predictive power, with an 
average AUC of about 0.81. In addition, Anjuli K Luthra 
et al. compared the ability of GBM ML and multivari-
able logistic regression to predict mortality in patients 
with acute biliary pancreatitis. the GBM ML model had 
higher PPV (47.3% vs. 35.9%) and lower sensitivity (40.1% 
vs. 46.7%) compared with the GBM ML model multi-
variable logistic regression, respectively [33]. This study 
was aimed at SAP patients in the ICU. Six ML methods, 
including XGBoost and LR, were used to establish mod-
els for predicting patient mortality within 30 days. The 
model constructed by XGBoost had excellent predic-
tion performance, with an AUC value as high as 0.881, 
sensitivity of 0.5714, and specificity of 0.9651. The PPV 
is 0.7273. Therefore, this model is of great value for the 
death prognosis of patients with severe pancreatitis and 
is of great significance for the patient risk management of 
clinicians.

Although many studies have proven the predictive 
power of clinical elements on the negative outcome of 
pancreatitis, the present study further identifies sig-
nificant predictors of all-cause mortality in AP patients. 
Previous studies have shown that clinical characteristics, 
demographic characteristics, and treatment status are 
important bases for patient risk assessment. Consistent 

with previous literature and clinical experience, the first 
six key variables involved in this model, including the 
use of vasopressor, high Charlson comorbidity index, 
low blood oxygen saturation, history of malignant tumor, 
hyperglycemia and high APSIII score, are important in 
predicting the poor prognosis of SAP patients. For exam-
ple, AP Patients treated with vasopressors had a higher 
risk of death compared to non-users during the follow-
up period [34]. Patients with a high Charlson Comor-
bidity Index had higher mortality [35]. Lower SPO2 is 
correlated with higher fatality in AP patients [36]; The 
mortality rate of AP patients with diabetes was markedly 
higher than that of AP patients without diabetes (1.7%). 
AP may be the first symptom of pancreatic cancer, and 
patients with malignant tumors such as pancreatic cancer 
are more likely to have a poor prognosis [37]. The CRRT 
plays an important role in the treatment of SAP patients 
[38]. Lower mean blood pressure and higher BUN were 
independent risk variables for mortality in SAP patients 
[39]. Older SAP patients are three times more likely to 
die than younger patients [40]; Hypothermia can lead to 
worse outcomes in SAP patients [41]; In addition, lon-
ger partial thromboplastin time (PTT) [42], higher red 
cell distribution width (RDW) [43], alkaline phosphatase 
(ALP) [44], rheumatic disease [45], peripheral vascular 

Fig. 4 The importance ranking of the top 18 variables based on the mean (|SHAP value|). APSIII: Acute Physiology Score III; Mbp_max: Mean Blood 
Pressure maximum; PTT_min: Partial Thromboplastin Time minimum; AlP_min: Alkaline Phosphatase minimum; RDW_max: Red Cell Distribution Width 
maximum; CRRT: Continuous Renal Replacement Therapy
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disease [46], higher total bilirubin [47], metastatic solid 
tumor [48], myocardial infarct [49], SBP [39], and less 
WBC [50] were closely related to the high mortality of 
SAP patients. These results suggest that these variables 
are effective predictors of mortality in SAP and can pro-
spectively provide a basis for clinicians’ risk management 
of SAP patients.

The research model has the following advantages: First, 
compared with traditional logistic regression and lin-
ear regression, the ML model uses high-order nonlinear 
interaction, and its prediction performance is better and 
more stable [17, 51]. In this study, six kinds of ML mod-
els such as XGBoost were used to build prediction mod-
els and the best ones were selected for research. Second, 
the black-box nature of ML algorithms limits the inter-
pretability of predictive models, while the AI tool SHAP 
identifies key variables and quantifies the impact of indi-
vidual features on the ultimate prediction [24, 52]. There-
fore, this study uses SHAP values to explain the critical 
variables contained in the predictive model to help clini-
cal practitioners understand and apply the model and 
contribute to patient risk management. Finally, the key 
features involved in this model are objective data, which 
avoids the subjective bias of physicians. At the same time, 

some limitations existed in this research. First of all, the 
present study only included patients from one hospital, 
which may cause some bias. We will further expand the 
scope of the study to cover patients from various areas 
and hospitals to optimize the performance of this model. 
Second, we focused only on common ML approaches to 
modeling and did not evaluate the performance of these 
models against currently used risk models. Third, based 
on the advantages of deep learning for building medi-
cal models, we will try to build prognostic models of 
AP through deep learning and conduct in-depth studies 
combining more comprehensive data and patient infor-
mation to improve prediction.

Conclusion
In the explanatory machine learning model, the best 
prognostic model of severe acute pancreatitis was 
the XGBoost model, with an average AUC value of 
0.881 ± 0.033. The first six most important character-
istic variables were the use of vasopressor, high Charl-
son comorbidity index, low blood oxygen saturation, 
history of malignant tumor, hyperglycemia and high 
APSIII score. Based on a machine learning algorithm, 
the model excavates the key clinical indicators that affect 

Fig. 5 The importance ranking of the 18 risk variables with stability and explanatory properties performed by the optimal model. The higher the SHAP 
value of the feature, the higher the risk of death for the patient. The blue portion of the feature’s value represents higher values
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the prognosis of critically ill patients and shows excellent 
predictive ability and risk stratification potential through 
comprehensive evaluation, which provides data support 
for treatment strategies.

Fig. 7 Multivariable Cox regression for 30-day all-cause death

 

Fig. 6 Kaplan-Meier curves for low and high ML risk groups
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