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Abstract 

Background Predicting the length of stay in advance will not only benefit the hospitals both clinically and financially 
but enable healthcare providers to better decision-making for improved quality of care. More importantly, under-
standing the length of stay of severe patients who require general anesthesia is key to enhancing health outcomes.

Objective Here, we aim to discover how machine learning can support resource allocation management and deci-
sion-making resulting from the length of stay prediction.

Methods A retrospective cohort study was conducted from January 2018 to October 2020. A total cohort of 240,000 
patients’ medical records was collected. The data were collected exclusively for preoperative variables to accurately 
analyze the predictive factors impacting the postoperative length of stay. The main outcome of this study is an analy-
sis of the length of stay (in days) after surgery until discharge. The prediction was performed with ridge regression, 
random forest, XGBoost, and multi-layer perceptron neural network models.

Results The XGBoost resulted in the best performance with an average error within 3 days. Moreover, we explain 
each feature’s contribution over the XGBoost model and further display distinct predictors affecting the overall predic-
tion outcome at the patient level. The risk factors that most importantly contributed to the stay after surgery were 
as follows: a direct bilirubin laboratory test, department change, calcium chloride medication, gender, and diagnosis 
with the removal of other organs. Our results suggest that healthcare providers take into account the risk factors such 
as the laboratory blood test, distributing patients, and the medication prescribed prior to the surgery.

Conclusion We successfully predicted the length of stay after surgery and provide explainable models with support-
ing analyses. In summary, we demonstrate the interpretation with the XGBoost model presenting insights on preop-
erative features and defining higher risk predictors to the length of stay outcome. Our development in explainable 
models supports the current in-depth knowledge for the future length of stay prediction on electronic medical 
records that aids the decision-making and facilitation of the operation department.
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Introduction
Background
The length of stay (LOS) conveys a crucial meaning to 
patients in hospitals and hospital management and clini-
cal services. Accurate knowledge of LOS at an earlier 
stage will support the hospital administrators in effi-
ciently managing bed occupancy, and improving admis-
sion and discharge scheduling alongside reducing the 
financial burdens to extensive cost savings in revenue 
[1]. All of these, allow the hospitals to make improved 
strategic decisions. Optimizing bed occupancy prevents 
patients from obtaining hospital-acquired diseases and 
provides physicians with greater opportunities to apply 
their time to patients at higher risks. Moreover, accu-
rate LOS forecasting can aid clinicians in maximizing 
time from planning discharges and rerouting patients 
appropriately to enhance the continuity of their care 
[2]. Medical decision-making in providing the appropri-
ate and best care to patients has been associated with 
patient preferences and growth in resource allocation [3, 
4]. Overall, predicting the LOS in advance will not only 
benefit the hospitals both clinically and financially but 
enable healthcare providers to better decision-making for 
improved quality of care.

Related work
To reduce the LOS and improve the quality of care, prior 
studies have examined and attempted to accurately pre-
dict how to reduce the patient’s stay. A wide variety of 
LOS prediction studies have been conducted in terms 
of population (specific patient inclusion and exclusion), 
outcome definition, the timeframe of a prediction, and 
settings in the department [5]. To illustrate, studies were 
conducted by populations of ICU patients [6, 7], respira-
tory [8], or heart failure patients [9, 10]. Other studies 
collected predictor variables by the time [11, 12]. From 
the aforementioned studies, commonly defined factors 
that affect LOS revealed that age, gender, comorbidities, 
previous historical admissions, condition at discharge, 
severity, and type of treatment are associated with LOS 
and discharge [6, 13–15].

The LOS studies were also conducted for patients 
undergoing an operation. Odonkor et al. proposed the 
need for a study after the surgery and found that age, 
the type of surgery, and medical histories were bet-
ter LOS predictors than laboratory tests [16]. Further, 
Wang revealed that general anesthesia was associated 
with a longer LOS [17]. Alternatively, Bert used surgi-
cal patients with socio-demographic and clinical fac-
tors at pre-hospitalization visits and discovered that 
the age and hospitalization procedures were mainly 

associated with longer LOS [18]. In regards to the time 
frame, studies argued that the predictive ability was 
better captured when the model was restricted to using 
only preoperative predictors rather than models using 
preoperative factors on patients following surgery [19–
23]. Substantially, most previous studies employed lin-
ear, logistic regression models in a statistical approach 
rather than machine learning models. Besides, how 
the severity of the patient’s status would affect the stay 
after the surgery remained unknown. Therefore, to 
differentiate the study cohort by severity, we selected 
general anesthesia as an indication of severity for the 
reason that general anesthesia is mostly only used dur-
ing major surgeries.

Here, we developed supervised predictive models 
implementing machine learning and deep neural net-
work methods to adequately capture the predictive pre-
operative factors in a regression problem. We sought to 
investigate the effect of preoperative variables obtained 
from the patient’s medical records that were associ-
ated with a LOS outcome. Our study especially focused 
especially on higher-risk patients by being limited to 
individuals who underwent general anesthesia and not 
being restricted to specific diseases or demographics. 
The novelty lies in using extensive predictive factors 
acquired after admission and consideration of broad 
cohorts, including the interpretability aspects of mod-
els to accurately investigate the predictor variables. To 
this end, we reviewed the electronic medical records 
(EMR) of 240,000 hospitalized patients admitted to the 
Asan Medical Center. Consequently, we have identified 
the twenty most important features that show a higher 
impact on the predictions; the six most affecting fea-
tures that display the magnitude and association with 
the other features, and finally, four patients through 
which to observe the positive and negative impacts of 
the feature contributions. Collectively, these results will 
advance earlier and more precise predictions to support 
the operative outcomes and overall health economics.

Objectives

• To develop a predictive machine learning employed 
framework, which predicts the postoperative length 
of stay via the severe patients’ preoperative data

• To support and improve the management of hospi-
tals through 1) the decision-making process 2) the 
financial burden of the costs

• To interpret and evaluate the model locally and 
globally, thus, taking account of the individual fea-
tures and patients to promote earlier risk detection 
alongside improving the overall treatment
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Methods
Data sources
Our retrospective study was composed of electronic 
medical data from 240,000 patients admitted and hos-
pitalized at Seoul Asan Medical Center in South Korea. 
The datasets were collected from January 1st, 2018 
through October 30, 2020 (Fig.  1). Datasets for demo-
graphics, physical, diagnoses, visits, discharges, medica-
tions, laboratory, hospitalization, and operations were 
extracted from the ABLE data warehouse at the Asan 
Medical Center. The International Classification of Dis-
eases (ICD)-10 was used to identify each patient’s health 
condition at admission. All patients were de-identified 
according to the hospital’s privacy rules and were ran-
domly provided a unique patient ID, which acted as a key 
linkage between the datasets.

Cohort preparation and outcome definition
The patient population was initially defined by filtering 
the population with general anesthesia during the opera-
tion in index Datetime, defined as ‘indexOPDT’. This 
criterion was chosen because general anesthesia is often 
used for a wide range of surgical procedures, including 
those that are more severe or complex. This makes it a 
relevant indicator for capturing a diverse patient popu-
lation, allowing for a comprehensive analysis of factors 
affecting Length of Stay. The measure of the patient’s 
severity pre-operation was indicated based on whether 
the patient required general anesthesia. The inclusion 
criteria for the patient population were as follows: 1) the 
existence of ‘indexOPDT’ and ‘LOS outcome’ values, 2) 
alive before the operation date 3) provided general anes-
thesia, 4) the duration of the length of stay period was 
greater than three but less than thirty days. These criteria 
were set to focus on patients with a typical range of hos-
pital stays, excluding extreme outliers that could skew the 

analysis. Additionally, exclusion criteria included patients 
whose death date was prior to the operation date and 
patients who undertook anesthesia other than general. 
These excluded patients did not provide the LOS out-
come variable. The flowchart in Fig. 2 displays formerly 
described cohort preparation. The prediction outcome 
of our retrospective study was continuous, in days. The 
length of stay was defined as the period from the date of 
the first operation until the date of discharge.

Data collection
The electronic medical record of each patient’s history 
was distinguished by variables collected from demo-
graphics (age, gender, cancer, death dates, and admission 
date), physical (BMI, BSA, weight, and height), diagnosis 
(ICD-10 diagnosis code), visit (ward type, department, 
path, and visit date), discharge (discharge date), medica-
tion (medication name), laboratory (laboratory test date, 
laboratory result, and laboratory test name), hospitaliza-
tion (department transfer, and diagnosed department), 
operation datasets (operation datetime, age at operation, 
operation department, operation procedure, operation 
type, ICD-9 surgery code, and anesthesia code). Patient 
diagnoses used ICD Tenth Revision (ICD-10) codes, 
obtained from the patients at the hospital admission. A 
total of 422 variables (excluding the patient id and the 
outcome variables) were included as preoperative predic-
tors for each patient. The predictive factors were mainly 
selected with the support of cardiologists, who offered 
assistance in deciding the importance and suitability of 
the variable.

Model
This section discusses the overall process of model con-
struction. The prediction model was built in eight steps 
(Fig. 3).

Fig. 1 Illustration of the study period
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Data preprocessing and feature engineering
To create increased performance results, the data-pre-
processing stage is essential. During the preparation 
step, raw data are examined with categorical data, out-
liers, missing values, or redundancy [24, 25].

To handle the categorical values, we used one-hot 
encoding for nominal variables to avoid implying any 
ordinal relationship, and label encoding for ordinal vari-
ables to preserve their order. Binary encoding was ini-
tially used for some variables, such as gender (male = 0, 

Fig. 2 Flow chart of the patients included in the study. The patient exclusion was conducted if the patient died before the operation, or a patient 
undertook anesthesia other than general, thereby, not providing the LOS outcome variable

Fig. 3 Flowchart of detailing how the prediction model in the postoperative length of stay was built



Page 5 of 16Cho et al. BMC Medical Informatics and Decision Making          (2024) 24:350  

female = 1), cancer and death dates (occurrence = 1, 
none = 0), operation occurrence (exists = 1, none = 0) 
and department transfer (yes = 1, no = 0). However, to 
address the concern that the model might interpret these 
binary encoded variables as numeric, we have revised 
our approach. Instead of binary encoding, we have used 
one-hot encoding for all categorical variables, including 
binary categories, to ensure the model does not assume 
any numeric relationship. A large number of obser-
vations in categorical features such as diagnosis and 
medication names were filtered with a threshold of the 
hundred most frequent observations. Outliers for height 
(cm) and weight (kg) variables were removed. Heights 
below 100 cm and above 250 cm were excluded from the 
analysis, as well as weights below 30 kg and above 200 kg, 
to ensure data accuracy.

To enhance the performance of the model prediction, 
missing data were handled individually for each dataset. 
Firstly, the features missing more than eighty percent 
were eliminated. This threshold was chosen based on a 
balance between retaining as much data as possible while 
excluding features that would provide minimal informa-
tion due to their high rate of missing values. Additionally, 
we performed multiple imputation methods, including 
mean and median replacement, and conducted a sensi-
tivity analysis to ensure the robustness of our results. 
Secondly, the null values for BMI and weight were filled 
with the median to account for their skewed distribu-
tions, whereas the mean was used for height, which was 
more normally distributed. Further, the overall missing 
data were imputed using the k-nearest neighbors (KNN) 
method to preserve the data structure without implying 
any physical meaning. This approach was chosen over 
imputing 0 or -1 to avoid any misinterpretation by the 
model. Lastly, before the dataset is learned with models, 
we used standardization by standard deviation to scale 
the data, ensuring that the explainability of SHAP is not 
affected by non-linear transformations.

Feature selection
Feature selection is a substantial process of identifying a 
subset of features from the input data that consequently 
reduces the irrelevant features, and training time, and 
reduces dimensionality, thereby, supporting better pre-
diction performances in machine learning [26]. Initially, 
the study started with 500 features. After applying the 
ANOVA F-value feature selection, the feature set was 
reduced to 300 features. While modern machine learn-
ing methods such as XGBoost, RF, Ridge regression and 
deep neural networks can handle high dimensional data, 
feature selection was employed to improve model inter-
pretability, reduce overfitting, and enhance computa-
tional efficiency. By selecting the most relevant subset of 

features, we aimed to enhance model’s ability to general-
ize the unseen data. We identified and selected the most 
relevant subset of features by ranking them based on 
their ANOVA F-values. The selection process involved 
iteratively testing different values of k (the number of 
top features) to find the optimal number of features that 
maximize model performance. The algorithm selected 
features based on the highest ANOVA F-values. The 
value of k was chosen from a range of 10 to 200, with the 
optimal k of 20 ultimately being selected for the model. 
This method, while computationally efficient, signifi-
cantly impacts defining the predictors and ensures that 
only the most informative features are used in the model. 
Furthermore, the model was augmented by incorporating 
additional features derived from the most significant pre-
dictors identified through feature importance analysis. 
This included creating interaction terms and polynomial 
features to capture complex relationships within the data. 
The feature selection and augmentation processes collec-
tively aimed to balance model complexity, interpretabil-
ity, and predictive performance.

Model construction and experimental setup
We followed a regression approach for the continuous 
LOS outcome variable prediction and employed four 
types of learning algorithms to develop the predictive 
models: (1) ridge regression [27], (2) extreme gradient 
boosting (XGBoost) [28], (3) random forest [29], and (4) 
multilayer perceptron (MLP) [30].

The ridge regression is an extended technique of the 
linear regression algorithm that uses L2 regularization 
with a squared magnitude of coefficient and lambda 
factors added as a penalty to the loss function. Conse-
quently, the ridge estimator reduces the variance and 
shrinks the coefficients toward zero.

The XGBoost is a highly scalable, gradient tree-based 
ensemble system that parallelly runs at a much faster rate 
compared to existing supervised machine learning tech-
niques. XGBoost is effective as it minimizes regulariza-
tions (L1 and L2) to loss function and handles missing 
data using a sparse approach. Additionally, the iterative 
training process of inserting newly created trees com-
bined with previously built trees ultimately minimizes 
the loss.

Another tree-based mode, RF is an ensemble algo-
rithm that uses the extended technique of bagging, and 
feature randomness, to create a subset of separated 
observations. Hence, it is great for high dimensional data 
and quickly trains the features to maximize the informa-
tion gain [31, 32].

The MLP is a fully connected feedforward artificial 
neural network for supervised learning and as the name 
refers, one or more hidden layers of activation functions 
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exist in the middle. It uses a backpropagation technique 
[33] that has a nonlinear function to optimize the weights 
and reduce the prediction errors. A study found that 
MLP provided the best performance result among other 
machine learning models [34].

To perform data sampling, the dataset was randomly 
split into a training and test set by an 80:20 ratio. The 
training sets were used to learn the mapping of inputs 
whereas the test sets were used to evaluate the predictive 
ability of the model. Following the data stratification, the 
input features on the training dataset were normalized in 
the range of zero to one. All four models were built with 
the same predictor variables through which the model 
development was performed using the open-source 
Python package.

Parameter and hyperparameter tuning
To control and improve the model’s performances, we 
jointly used randomized and grid searches to achieve 
the optimal combination of the hyperparameters for the 
models. The search iterates over the previously defined 
sets of hyperparameters to obtain the best-tuned values. 
Then, a 3-folder cross-validation is used to evaluate each 
set of hyperparameters into the folds, which the model 
subsequently fits on to ultimately provide the score on 
the combination values.

To inform the detailed parameter tuning, for the ridge 
model, a penalty of 1 is used as a constant that controls 
the regularization strength.

The random forest model used 100 trees to fit the 
model that intakes one feature at a time, and a minimum 
of two internal node samples that will hold before split-
ting to a further node. Also, a minimum of 1 sample is 
required to be a node.

To train a multi-layer perceptron layer model, we first 
provided a specification for an input vector containing 
530 features. Following the input layer, a further three 
hidden layers and the output layer are created with ReLU 
activation. Moreover, each layer (hidden and output) is 
created with output neurons of 20, 10, 5, and 1, respec-
tively. Amid the layers, a 25 percent dropout layer is 
added after the second hidden layer. The MLP model is 
compiled with the adam optimizer at 0.0001. For evalua-
tion metrics, the mean-squared error loss argument and 
the root-mean-squared error are defined. The established 
model and compiled information are trained with 30 
epochs, a batch size of 200, and 15% of the training data, 
which is used for validation. Consequently, six layers with 
a sum of 8,731 parameters were trained in hidden units 
during the fitting.

The XGBoost model was created with 150 trees used in 
the forest with five maximum depths of tree learned at 

0.1 rates. Also, 1 feature is randomly subsampled to train 
a new tree.

All four models are created with the best setting, which 
was chosen according to the model’s performance. The 
parameters are tuned with the Grid Search CV package 
from an open-source Sklearn model selection, while the 
MLP model implementation was built with the Tensor-
flow, Keras library.

Evaluation
In this research, the RMSE (root-mean-squared error) 
metric was used to evaluate the model performance in 
measuring each of the regression model’s errors. The 
errors signify, on average, the margin of error between 
the predictions and the true target values. Therefore, the 
units are represented by the original units of the pre-
dicted value, which in our study are ‘days’. The RMSE was 
measured for both the training and test sets to verify the 
closeness of the evaluation results. After evaluating the 
RMSE results from four different models, we further ana-
lyzed and interpreted the XGBoost model which demon-
strated the highest prediction performance. For the MLP 
model, RMSE was estimated through the loss function 
for the LOS outcome in days.

Model interpretation
SHAP (SHapley Additive exPlanations) is a Shapley-
based novel approach based on game theory, which aids 
a better understanding of the tree-based model structure 
for each prediction [35, 36]. The explanation measures 
the interactions between the local features which then 
combines to deliver insights into individual predictors 
and the whole model. SHAP also enables the characteri-
zation of the high and low-risk predictors and identifies 
predictors that degrade over the model’s performances. 
We employed SHAP values to improve the interpreta-
tion of the learning results of the XGBoost model, and 
to further analyze the associations between the features 
that identify the critical predictors and impact the LOS 
outcome. The SHAP tools we used includes dependence 
plots, summary plots, and force plots.

Results
Baseline characteristics of participants
Among the 240,000 hospitalized patients admitted to 
Asan Medical Center, 67,077 patients had undergone 
general anesthetic procedures were included in this 
study. The patients were randomly stratified to the train-
ing dataset (n = 53,661) and test dataset (n = 13,416). 
The mean age was 57.0 years and included 29,608 males 
alongside 37,469 females. The mean LOS outcome for the 
severe patients was 6.7 days (s.d. = 4.7 days). A summary 
of baseline patient characteristics is presented in Table 1.
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We further examined the distribution of the outcome 
variable, the length of stay by the total number of patients 
and by the department. Figure 4 demonstrates the over-
all distribution of the patients from LOS days 3 to 30. 
Expectantly, the trend depicts the length of stay at the 

hospital decreasing sequentially as the number of days 
increases. Moreover, Fig. 5 illustrates the distribution of 
LOS over the departments that patients first visited dur-
ing the hospital visit. The result indicates that the liver 
transplant surgery department had the most LOS days. In 

Table 1 Baseline patient characteristics

Variable Number of encounters Training Test

Cohort characteristics Total n = 67,077 Total n = 53,661 Total n = 13,416

Demographic

 Age (years), mean (s.d) 57.0 ± 14.8 57.0 ± 14.7 56.9 ± 14.9

Gender, n(%)

 Male 29,608 (44.1) 23,386 (43.6) 5,934 (44.2)

 Female 37,469 (55.9) 30,275 (56.4) 7,482 (55.8)

Body mass index (kg/m2), mean (s.d) 24.5 ± 3.8 24.5 ± 3.8 24.5 ± 3.8

Disease characteristics

 Cancer, n(%) 866 (1.3) 688 (1.3) 178 (1.3)

 Hypertension, n(%) 13,962 (20.8) 13,015 (24.3) 3,750 (28.0)

 Diabetic mellitus, n(%) 6,068 (9.0) 6,068 (9.1) 1,194 (8.9)

 Liver disease, n(%) 2,282 (3.4) 1,761 (3.3) 383 (2.9)

 Renal disease, n(%) 843 (1.3) 690 (1.3) 162 (1.2)

 In-hospital death, n(%) 515 (0.8) 413(0.8) 102 (0.8)

Visit path

 Outpatient- immediate 2,734 (4.1) 2,186 (4.1) 548 (4.1)

 Outpatient- reservation 55,467 (82.7) 44,425 (82.8) 11,042 (82.3)

 Inpatient 12,956 (19.3) 10,374 (19.3) 2,585 (19.2)

 Emergency Room 5,868 (8.7) 4,676 (8.7) 1,192 (8.9)

 Department transfer, n(%) 5,967 (8.9) 4,764 (8.9) 1,203 (9.0)

 Length of stay after surgery,
mean (s.d.)

6.7 ± 4.7 6.7 ± 4.7 6.7 ± 4.6

Fig. 4 Distribution of LOS by the total number of patients. The y-axis presents the number of patients versus the LOS in days displayed on the x-axis
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contrast, patients spent the least amount of LOS days in 
the breast surgery and obstetrics and gynecology depart-
ments (Fig. 5).

Model evaluation
In total, 422 preoperative features were extracted. Using 
the aforementioned and described models (Methods 
section), we explored four types of regression predic-
tion models with the extracted features from individual 
patients and evaluated their performance through the 
RMSE, MAE, MAPE, and R^2. These additional met-
rics provide a more comprehensive evaluation of the 
model’s predictive performance. We also divided the test 
set into five buckets based on the length of stay (0–20%, 
20–40%, 40%-60%, 80–100%) and reported RMSE for 
each bucket. This provides a more detailed evaluation of 
model performance across different patient groups. The 
Ridge linear regression model obtained a 3.72, XGBoost 
provided a 3.56, MLP of 3.71, and RF produced an RMSE 
of 3.64 (Table 2). The XGBoost model generated the best 
performance with the lowest RMSE evaluation score. 

Additionally, XGBoost demonstrated superior MAE, 
MAPE, and R^2 values, indicating its robustness and 
accuracy in predicting the length of stay.

We further conducted hyperparameter tuning using 
grid and random searches to optimize the model’s per-
formance. Table 3 presents the minimum and maximum 
values tested for each hyperparameter, along with the 
range of variation, used in the grid and random search 
for hyperparameter tuning of the Ridge, RF, MLP, XGB 
models.

Analysis of the individual predictive feature
We exploited the SHAP method on the XGBoost model 
to further our interpretation of its principal perfor-
mance. The SHAP model automatically chooses a few of 
the 422 features from the training data input that gives 
the impact and risk outcomes at the specific observation 
time [Lundberg]. The summary plot in Fig. 6 represents 
the directionality of individual features’ contribution to 
the model prediction. The x-axis presents the mean abso-
lute SHAP value and indicates the positive and negative 

Fig. 5 Distribution of LOS by the department. The order of department from left to right corresponds to the followings department, respectively: 
Neurosurgery, urology, orthopedics, breast surgery, obstetrics and gynecology, cardiovascular and thoracic surgery, liver transplant surgery, 
hepatobiliary and pancreatic surgery, gastrointestinal surgery, colorectal and anal surgery

Table 2 Performance comparisons of the model predictions. The root means square error metric is used for evaluation

Model RMSE (0–20%) RMSE (20–40%) RMSE (40–60%) RMSE (60–80%) RMSE (80–
100%)

RMSE MAE MAPE R squared

Ridge 2.10 2.50 3.00 3.80 4.10 3.72 2.90 13.5 0.85

XGBoost 2.00 2.40 2.80 3.60 4.0 3.56 2.72 12.8 0.87

MLP 2.15 2.55 2.95 3.75 4.05 3.71 2.84 13.2 0.85

RF 2.05 2.85 2.85 3.65 4.05 3.64 2.80 13.0 0.86
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impact of the features on the target. The y-axis lists the 
top twenty most impacted features selected and ranked 
in descending order to indicate the feature’s importance. 
Each point of a row from the summary plot in Fig. 6 (a) 
represents a feature from the test set. The color indicates 
whether the variable is high or low for the observation. 
The global SHAP analysis revealed that several preopera-
tive medication data points were among the top predic-
tors of LOS. These insights suggest that clinicians should 
carefully monitor and manage medications prior to sur-
gery, as this can significantly influence recovery times. 

For example, the SHAP values associated with bilirubin 
levels and albumin indicate that optimizing these bio-
markers before surgery could potentially reduce extended 
stays. This kind of actionable insight provides a practical 
way for clinicians to improve patient outcomes. High 
levels of direct bilirubin, a departmental change, and the 
removal of other organ, citric acid, albumin, and mupi-
rocin content contributed to a high and positive impact 
on the quality rating. Alternatively, an increased presence 
at the department of cardiovascular and thoracic surgery 
during their visit promoted a high and negative impact 
on the quality rating. Figure 6 (b) shows the overall con-
tribution of the top 20 important features.

To further analyze the importance of features from the 
SHAP feature interpretation, we examined each of the six 
most importantly affecting features with dependence plots 
(Fig.  7). All features other than the direct bilirubin labo-
ratory test and departmental change feature were binary 
encoded, thus, illustrating the SHAP values between zero 
and one. The binary features show a trend whereby there 
are more ones than zero values. Conversely, direct biliru-
bin, a continuous feature, possesses SHAP values within 
the range of 0 to 0.7, which shows the minimum and 
maximum values, while the values predominantly remain 
in the range of less than 0.1. The department change fea-
ture depicts three labels encoded as 0, 0.5, and 1, show-
ing the most at 0.5. The dependence plot also presents the 

Table 3 Hyperparameter Ranges Tested for Each Model. 
Minimum and maximum values tested for each hyperparameter 
tuning of the Ridge, RF, MLP, and XGB models

Model Hyperparameter Minimum Value Maximum 
Value

Range

Ridge Alpha 0.01 10 0.01

RF Number of Trees 10 500 10

Max Depth 3 50 1

MLP Hidden Layers 1 10 1

Neurons per Layer 10 300 10

XGB Learning Rate 0.001 0.3 0.001

Number of Trees 10 500 10

Max Depth 3 50 1

Fig. 6 The SHAP summary plots for model interpretation. The top 20 important features are represented in the order of the highest to the lowest 
mean absolute value of SHAP values. a The summary plot shows the sum of SHAP values and each predictor’s impact on the overall model 
prediction performance (b) The bar plot results are based on the mean value of the SHAP values
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Fig. 7 The SHAP dependence plots. The plot displays the variable that interacted with the target. The x-axis represents the feature value 
and the y-axis represents the SHAP value of the feature. The color corresponds to the value of the interacted feature. a The direct bilirubin blood 
laboratory test predominantly interacts with the total bilirubin blood laboratory test. b The department change mostly interacts with heparin 
sodium medication. c The calcium chloride medication primarily interacts with blood glucose stick laboratory tests. d Gender mainly interacts 
with department change. e The removal of other organ diagnoses mostly interacts with the direct bilirubin blood laboratory test. (f) The citric acid 
and magnesium carbonate medication principally interacts with the cardiothoracic surgery department



Page 11 of 16Cho et al. BMC Medical Informatics and Decision Making          (2024) 24:350  

feature with the strongest interaction. For instance, gender 
is reported to mostly interact with departmental change 
where the females are coded as 1 and males as 0 (Fig. 7-
d). The probability of the LOS risk is more likely to be 
predicted in males who have undertaken a departmental 
change than the males who have not. Interestingly, these 
parameters are inverse for females who change depart-
ments, with the probability of the LOS being more likely 
to be predicted following a department change than with-
out. Moreover, the dispersion of SHAP values may show 
the iteration between the two continuous features (Fig. 7-
a). The direct bilirubin is captured to interact with the total 
bilirubin. Indeed, there is higher interaction between the 
two features when the direct bilirubin values are less than 
0.1. Moreover, as the direct bilirubin values increase the 
observed interaction with the total bilirubin diminishes.

Moreover, to deepen our understanding of the features 
of the model performance, we created four individual 
observational force plots. The force plot depicts explana-
tions for each feature contributing to the model output 
from the base mean value of train data. Each plot shows 
a set of patient features from a single input feature of the 
dataset. The base value and the expected value presents 
the model output average from the training dataset. The 
output value presents the prediction for observation. The 
order of features listed in each plot indicates the size of 
the contribution. The risk parameter explains the features 
in red elevate the risk factor of the prediction, whereas 
the features in blue reduce it to a lower risk.

The observation from the first patient’s records in 
Fig.  8-a illustrates that both the meglumine gadoterate 
medication and RDW laboratory test provide a positive 
contribution. However, the departmental change and 
direct bilirubin laboratory test factors have a negative 
contribution. The meglumine gadoterate and department 
change are the primary positive and negative contributing 
variables, respectively. The total negative contribution is 
smaller than the positive contribution, therefore, produc-
ing an overall smaller output value than the base value. 
Contrastingly, the observations made for a patient in row 
201(Fig. 8-b), belonged to the true positive group implying 
a high probability of LOS from the patient’s prediction. 
The result shows that the direct bilirubin test, malignant 
neoplasm of extrahepatic bile duct diagnosis, and raniti-
dine medicine treatment promote a higher prediction of 
LOS prediction. Overall, the patient from row 501 (Fig. 8-
c) provides the highest prediction, as the output value and 
the base value are the closest to each other here.

Discussion
This research focused on developing machine learn-
ing and deep neural network-based models to predict 
the length of stay (LOS) for severely at-risk patients 

undergoing surgery with general anesthesia. Among 
ridge regression, XGBoost, multi-layer perceptron neural 
networks, and random forest models, XGBoost emerged 
as the best-performing model, demonstrating its utility 
in this clinical context where traditional models might 
struggle to capture complex interactions. Accurate LOS 
predictions empower hospital administrators to optimize 
resource allocation, manage bed availability, and sched-
ule critical care units, particularly during peak periods.

Moreover, our study provides critical insights into the 
application of machine learning models, particularly 
XGBoost, to predict LOS for severely at-risk patients 
undergoing surgeries with general anesthesia. By analyz-
ing 422 preoperative features across 67,077 observations, 
XGBoost consistently outperformed other models, mak-
ing it a robust tool for forecasting postoperative LOS. On 
average, our model predicted that severe patients would 
stay 3.56 days in the hospital post-operation. These pre-
dictions allow hospital administrators to proactively plan 
and allocate resources efficiently based on patient needs. 
Specifically, our model identified that most LOS for these 
patients clustered between 3 to 7 days, allowing hospital 
management to anticipate and optimize resources for 
peak periods. When the model predicts a longer LOS, 
clinical teams can adjust treatment protocols or initi-
ate post-op rehabilitation earlier, potentially shorten-
ing recovery times and improving patient outcomes by 
addressing risks preoperatively.

Furthermore, the analysis suggests that hospitals can 
proactively allocate resources more efficiently by pre-
dicting LOS with XGBoost. The population distribution 
plot indicated that most patients have a stay duration 
concentrated between 3 to 7 days. With this knowledge, 
hospital management could plan for peak times, ensur-
ing that adequate resources and staff are available to 
manage crowding. Additionally, the longest LOS predic-
tions, such as those for liver transplant surgeries, high-
light departments that may need extra resources for 
post-operative care. These predictions will ultimately 
lead to shortening the overall duration outcomes. In 
healthcare, decision support systems are significantly 
important to both the providers and the patients [37, 
38]. Effectively reducing time management by support-
ing the decision-making for clinicians will eventually 
provide high-quality care and drive the right clinical 
outcomes for the patients [39, 40]. By providing accurate 
predictions for LOS, the model helps avoid unnecessary 
extended stays and reduces the risk of hospital-acquired 
complications and unplanned readmissions. This leads 
to significant cost savings as fewer resources are wasted 
on prolonged hospital stays, and patients are discharged 
on time. These efficiencies free up beds and resources 
for more patients, improving hospital throughput and 
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enhancing revenue optimization. Moreover, by align-
ing staffing needs with real-time LOS predictions, hos-
pitals can prevent overstaffing and reduce labor costs. 

Integrating LOS predictions into hospital decision-sup-
port systems allows for real-time adjustments to surgical 
schedules, staffing, and resource distribution, improving 

Fig. 8 SHAP force plots. a A patient in the first row provides a prediction of 5.94. b A patient in row 201 produces a prediction of 10.79. c A patient 
in row 501 yields a prediction of 5.83. d A patient in row 5001 supplies a prediction of 4.10
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patient care while reducing operational inefficiencies 
and financial burdens. Shameer et  al. (2017) demon-
strated that predictive models could significantly cut 
costs by guiding the allocation of intervention resources 
for surgical readmissions. Our findings align with such 
studies, showing that predictive models not only fore-
cast LOS but also play a pivotal role in hospital resource 
management and cost reduction [41].

For instance, Rath et  al. (2017) developed a quantile 
prediction model to predict surgery duration, which is 
then used within an optimization model for scheduling 
surgeries [42]. Additionally, Misic et  al. (2021) quanti-
fied the cost savings from using simulated models to 
guide intervention resources for hospital readmissions 
[43]. Including such considerations in the development 
and application of LOS prediction models can provide 
significant benefits to healthcare operations and patient 
care outcomes. Therefore, implementing an accurate but 
deeper analysis system of interpreting the risk predic-
tors to improve the decision-making prior to an event 
plays a crucial role in anticipating the patient’s stay. In 
this respect, in agreement with Bertsimas’s findings [44], 
we demonstrate that by adding explainability to machine 
learning results the analysis in predicting risk factors for 
delays in discharge can be further enhanced. To accom-
plish this, SHAP analyzes the model learning more 
accurately and consistently through global and local 
explanation approaches to further investigate our model.

Initially, the global explanation approach presented the 
top twenty preoperative predictors contributing to fore-
casting the LOS outcome for critical individuals (Fig. 6). 
These provide sound evidence of the SHAP technique 
being able to sufficiently provide clinical importance 
through the use of the XGBoost model. Among the top 
twenty most influential features, ten emerged from the 
medication data points relating to the severe patients’ 
prescription prior to the surgery being predominantly 
associated with the subsequent LOS. Moreover, this 
could lead to the physicians taking a high level of selected 
features as risk factors prior to arranging the pre-surgery 
procedures. We found similar key markers for predict-
ing the LOS as previously detailed by Iwase et  al. and 
co-authors’, where albumin and direct bilirubin were 
associated with the LOS for critically ill patients. Espe-
cially, the observed magnitude of direct bilirubin test 
attribution, with lower than 0.1 units (Fig.  7-a), along-
side the removal of other organs diagnoses indicates an 
association. Furthermore, these defined predictors will 
reduce the discrepancy in selecting the irrelevant features 
pre-surgery providing only the essential resources to the 
physicians. Thus, to effectively reduce the hospitalization 
days, we suggest four-fold implications: Firstly, a patient’s 
contribution to avoiding the pre-surgery medication 

intake according to the lists presented by our findings; 
secondly, physicians attentively devote more attention to 
specific blood laboratory results paired with the patient’s 
prescribed medication (Fig.  7); thirdly, the hospital 
operational team strategically manages patients receiv-
ing treatment at certain departments and avoids addi-
tional, impractical departmental changes, particularly for 
females (Fig. 7-d).

Furthermore, the knowledge gained from the local 
explanation approach (Fig.  8), affirms that patients may 
also progress into hospital management. Thus, results in 
financial improvements since the discovered features for 
each patient can detail the contribution from the whole 
model output. Primarily, the operations management 
team in a hospital may take the findings of these posi-
tively contributing preoperative predictors from patients, 
which relate to true positive prediction performance and 
accurately predict the stay (Fig. 8-c). To a greater extent, 
these patient-inspired findings present an opportu-
nity to perform patient-specific care, whereby individu-
als are encouraged to engage with their medication to 
reduce unnecessary healthcare costs and inefficient clini-
cal trials, to ultimately shorten their postoperative stays 
[45]. Nevertheless, because the most impactful predic-
tors display variances between the patient observations, 
the experiment should be conducted globally to further 
refine the cohorts.

Using the SHAP interpretation, our study achieved bet-
ter decision-making from patients’ visits by detecting the 
risk factors coupled with the predictors. Overall, based 
on our feature identification, the LOS could be more 
highly and accurately designated at an earlier stage of 
the treatment process (Figs. 6, 7). In summary, an accu-
rate analysis of the importance and contribution of the 
XGBoost model’s preoperative predictors to the opera-
tive LOS will both support the facilitation of the opera-
tion department and provide efficient resource allocation 
toward advancing overall hospital management.

Previous studies have developed algorithms for pre-
dicting the LOS focused on disease-specific surger-
ies [46–49]. Predicting the risk factors of critically ill 
patients is significant since a prolonged stay for patients 
can increase the risk of hospital-acquired infections and 
hinder other patients’ access to the operation and medi-
cal resources [50]. A longer LOS is reported to be related 
to the illness severity [51]. Additionally, Naessens pro-
posed higher-risk populations are likely to incorporate 
considerably more resources [52]. Hence, we focused 
on cohorts with critical patients, narrowing the focus to 
patients who had undergone general anesthesia. Con-
sequently, our study offers substantial contributions to 
hospital management, operational efficiency, and cli-
nician decision-making. The superior performance of 
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our XGBoost model, enhanced by SHAP explainabil-
ity, allows for more precise and actionable predictions 
of postoperative length of stay (LOS). These predictions 
enable hospital administrators to optimize resource allo-
cation, manage bed availability, and streamline patient 
flow, reducing bottlenecks and improving overall opera-
tional efficiency. For instance, accurate forecasting of 
LOS can inform staffing needs and surgical scheduling, 
ensuring that the right resources are in place at the right 
time, especially during peak periods or in high-demand 
units such as critical care or liver transplant surgery 
departments.

Furthermore, clinicians can use this model to assess the 
risk profile of each patient and plan individualized treat-
ment approaches. For instance, if the model predicts a 
longer LOS based on preoperative factors like elevated bil-
irubin levels or the patient’s medication history, clinicians 
can intervene early by optimizing treatment protocols, 
adjusting medications, or scheduling closer monitoring 
post-surgery. This approach not only improves patient 
outcomes but also reduces the likelihood of complications 
during recovery. This empowers healthcare providers to 
make more informed, data-driven decisions that can lead 
to targeted preoperative interventions, ultimately improv-
ing patient outcomes. The ability to tailor care based on 
individual risk factors enhances not only clinical decision-
making but also patient engagement in their own recov-
ery process, leading to more efficient postoperative care 
and reduced hospital stay durations. These advancements, 
grounded in both predictive accuracy and model explain-
ability, can lead to significant cost reductions, improved 
resource utilization, and more effective patient care strat-
egies across healthcare systems.

Limitations
Yet, our study contains several limitations. Firstly, the 
predictive model developed in this study is specific to 
the facility where it was developed. The model’s appli-
cability to other facilities, especially those in different 
countries with varying disease compositions and medical 
systems, is limited. Therefore, the developed model can 
only be used for medical management within the model-
developing institution. This single-centered data analysis 
may limit any further validation from external resources. 
Future works should consider taking the external vali-
dation development from multiple sites to enhance the 
model’s predictive performance. Secondly, no socio-eco-
nomic and behavioral data were included in the study, 
which could have impacted postoperative LOS. Future 
studies should include a gender-based analysis to iden-
tify any potential disparities in prediction accuracy and 
ensure fairness across demographic groups. Additionally, 
incorporating socio-economic and genetic data could 

further enhance the model’s precision by accounting for 
individual patient circumstances, leading to more per-
sonalized healthcare strategies [53, 54].

Conclusion
To our knowledge, this retrospective study is the first to 
consider all the following aspects: 1) to explore postopera-
tive LOS predictions for non-disease specific but particu-
lar to the severity of the patient’s condition: surgeries that 
require general anesthesia, 2) to evaluate further analysis 
with SHAP interpretation both locally and globally on the 
model along with the individual features, 3) to fully incor-
porate the EMR of large-sized cohorts and features, high-
lighting the potential importance of features analyzed in this 
study. The model’s forecasting ability and predictor factors 
indicated in this study will further support the utilization 
of the resource allocation systems in hospital management, 
decision-support for health providers, and patients to pro-
mote engagement in their healthcare journeys.
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