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Abstract 

Background  The detection and classification of lung nodules are crucial in medical imaging, as they significantly 
impact patient outcomes related to lung cancer diagnosis and treatment. However, existing models often suffer 
from mode collapse and poor generalizability, as they fail to capture the complete diversity of the data distribution. 
This study addresses these challenges by proposing a novel generative adversarial network (GAN) architecture tai-
lored for semi-supervised lung nodule classification.

Methods  The proposed DDDG-GAN model consists of dual generators and discriminators. Each generator spe-
cializes in benign or malignant nodules, generating diverse, high-fidelity synthetic images for each class. This 
dual-generator setup prevents mode collapse. The dual-discriminator framework enhances the model’s generaliza-
tion capability, ensuring better performance on unseen data. Feature fusion techniques are incorporated to refine 
the model’s discriminatory power between benign and malignant nodules. The model is evaluated in two scenarios: 
(1) training and testing on the LIDC-IDRI dataset and (2) training on LIDC-IDRI, testing on the unseen LUNA16 dataset 
and the unseen LUNGx dataset.

Results  In Scenario 1, the DDDG-GAN achieved an accuracy of 92.56%, a precision of 90.12%, a recall of 95.87%, 
and an F1 score of 92.77%. In Scenario 2, the model demonstrated robust performance with an accuracy of 72.6%, 
a precision of 72.3%, a recall of 73.82%, and an F1 score of 73.39% when testing using Luna16 and an accuracy 
of 71.23%, a precision of 67.56%, a recall of 73.52%, and an F1 score of 70.42% when testing using LungX. The results 
indicate that the proposed model outperforms state-of-the-art semi-supervised learning approaches.

Conclusions  The DDDG-GAN model mitigates mode collapse and improves generalizability in lung nodule clas-
sification. It demonstrates superior performance on both the LIDC-IDRI and the unseen LUNA16 and LungX datasets, 
offering significant potential for improving diagnostic accuracy in clinical practice.
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Introduction
Generative Adversarial Networks (GANs) are a break-
through and landmark at the forefront of modern 
advancements in the neural network, wherein data mir-
roring specific distributions are synthesized precisely 
through the exercise [1]. From photorealistic image 
synthesis to excellent and subtle domains, such as med-
ical image analysis, where GAN is characterized by its 
core architecture and competitive synergy between a 
generator and a discriminator, GANs have been applied 
broadly. The medical industry terms GANs as a disrup-
tive technology that is out to the problem of annotation 
scarcity coupled with medical imagery’s complex, high-
dimensional nature.

The fusion of deep learning with semi-supervised 
learning paradigms harnesses the potent capabilities 
of deep neural networks to extract intricate features 
and learn representations directly from raw data [2, 
3]. Deep learning models are data-hungry, and despite 
being trained with unlabeled data, they still require 
substantial computational resources to train and the 
presence of large-scale labelled datasets. However, 
labels are challenging to obtain.

Recent advancements in semi-supervised learn-
ing for medical image classification have significantly 
improved medical image analysis, particularly in 
detecting and classifying lung nodules. Applying semi-
supervised learning methods in this field leverages the 
limited availability of labelled data alongside a larger 
pool of unlabeled data to enhance model performance.

Self-training is one of the semi-supervised models 
used to train on the labelled data first, then used to pre-
dict labels for the unlabeled data [4, 5]. The predictions 
deemed most confident are added to the training set, 
and the process is repeated. However, Incorrect labels 
can be reinforced, leading to degradation in model 
performance. Moreover, the accuracy of adequately 
labelled data depends on the initial model trained on 
labelled data.

Co-training [6, 7] involves training two separate mod-
els on different data views (i.e., different feature sets). 
Each model labels the unlabeled data used to re-train 
the other model. It is not easy to get two independent 
views to merge the decision of the final prorate labels. 
Hence, graph-based methods are used for semi-super-
vised learning [8–11], which uses graphs to represent the 
data, where nodes represent samples and edges repre-
sent similarities between samples. Labels are propagated 
from labelled to unlabeled nodes based on the graph 
structure. However, the performance in this method is 
highly dependent on the graph’s quality and structure; 
constructing and processing large graphs can be compu-
tationally expensive.

Also, pseudo-labelling semi-supervised learning 
involves assigning pseudo-labels to the unlabeled data 
using the current model and then re-training the model 
using these pseudo-labels [12–14]. However, the accu-
racy of this model can be sensitive to the threshold used 
for selecting pseudo-labeled data. Ensemble semi-super-
vised learning is also used to classify medical images [15, 
16]. It combines predictions from multiple models to 
generate more robust labels for the unlabeled data. How-
ever, training multiple models is resource-intensive.

One notable method, FocalMix [17], represents a pio-
neering approach to leveraging semi-supervised learn-
ing for 3D medical image detection. The study showed 
that semi-supervised learning methods could achieve 
substantial improvements. Loyman et  al. [18] employ a 
two-step approach that includes automatic annotation of 
partially labelled datasets and learning a semantic simi-
larity metric space based on the predicted annotations. 
These methods bolster models’ capability to differenti-
ate between nodules, which could enhance the precision 
and dependability of lung nodule classification systems. 
However, their performance may be hindered by a class 
imbalance or a scarcity of labelled data.

To address the class imbalance in semi-supervised 
learning, Chen et al. [19] aim to enhance the utilization 
of unlabeled data by adjusting the consistency loss to bet-
ter match the class distribution of augmented unlabeled 
data with the original unlabeled data. Another approach 
explored using a semi-supervised Generative Adver-
sarial Network (SSGAN) [20] for medical image classi-
fication, such as lung X-ray classification, with minimal 
labelled samples. The study extended this model with 
pseudo-labelling, proposing a novel GAN model (PLAB-
GAN) that utilizes unlabeled data for sample distribu-
tion estimation and direct classifier training. Li et al. [21] 
proposed a semi-supervised learning method through 
graph-embedded random forests. By embedding labelled 
and unlabeled data into a graph and assuming all data 
form a manifold, this method aims to mine label infor-
mation from unlabeled data to compute more accurate 
information gain. However, if the unlabeled data set is 
not sufficiently representative of the full spectrum of the 
problem space or contains biases, these methods might 
perform differently than expected.

A semi-supervised multi-task learning framework for 
lung cancer diagnosis was explored [22], integrating seg-
mentation and classification tasks. This method begins 
with training on a labelled dataset and iteratively refines 
the model by predicting and incorporating labels for the 
unlabeled data. This model simultaneously addresses the 
challenge of false positive reduction and nodule segmen-
tation, leveraging morphology information like size, vol-
ume, and shape. This methodology exhibits the potential 
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for enhanced representational capacity but encounters 
challenges in equitably distributing the learning empha-
sis across concurrent tasks.

Yan et  al. [23] address the scarce labelled datasets in 
medical imaging by combining a multi-discriminator 
GAN with an encoder. Nevertheless, employing multiple 
discriminators can confer advantages in discerning subtle 
distinctions; concurrently, generating distinct classes is 
imperative to facilitate this discrimination effectively.

Therefore, to mitigate these challenges, this paper pro-
poses a novel architecture called dual-discriminator and 
dual-generator GAN (DDDG-GAN), designed particu-
larly for the considered semi-supervised classification 
problem of lung nodules. This novel design incorpo-
rates dual Generators and Discriminators, each carefully 
trained to sample and assess its results over the labelled 
data containing benign and malignant lung nodules. Such 
a bifurcated strategy would nuance each class of nodules 
against the different attributes of the other, overcoming 
the limitation of previously presented models in differen-
tiating very small but diagnostically crucial features. The 
DDDG-GAN model is built around three critical com-
ponents: the DDDG-GAN architecture, a feature fusion 
mechanism, and a classification level. This explains the 
architecture of a design around training the dual genera-
tors and discriminators; hence, the overall arch doubles 
the number of generators, making it more effective in 
synthesizing class-specific, hyper-realistic images. Fea-
ture fusion details the process of the fusion of discrimina-
tive feature maps being generated from the DDDG-GAN 
into an attentive feature map that encapsulates impor-
tant features indicative of the potential malignancy of the 
nodule. Finally, the classification level explains the fused 
features through convolutional and fully connected layers 
to precisely classify the nodules into benign and malig-
nant categories.

The issues addressed in this article are: 1) By employ-
ing dual generators, DDDG-GAN mitigates the issue of 
mode collapse, where traditional GANs tend to generate 
a limited variety of outputs. This ensures the produc-
tion of a more diverse set of synthetic images, enhancing 
model robustness. 2) The architecture’s dual generators 
allow for generating high-fidelity, class-specific images. 
This is crucial in medical image analysis for accurately 
representing distinct categories, such as benign or malig-
nant nodules. 3) Including dual discriminators, each 
specializing in a particular class, improves the model’s 
ability to generalize from training data to unseen data, 
enhancing diagnostic accuracy. 4) The model enhances 
the capability to distinguish subtle differences between 
classes (e.g., benign vs. malignant), a critical requirement 
in medical diagnosis and many other applications where 
fine-grained classification is essential.

The main contributions of this article are:

•	 It proposes dual generators to accurately capture 
the inherent differences between benign and malig-
nant pulmonary nodules. The dual generators, each 
trained on different datasets, learn and replicate the 
distinguishing features and characteristics of each 
type of nodule. This architecture confirms the gen-
eration of diverse, high-fidelity, class-specific syn-
thetic lung nodule images, an essential requirement 
for enhancing model robustness and diagnostic accu-
racy.

•	 Proposed a new dual discriminator that inputs volu-
metric data and generates a two-dimensional fea-
ture map. The approach encapsulates the most criti-
cal discriminative features to distinguish between 
benign and malignant nodules. The proposed model 
improves the capability to differentiate fine-grained 
morphological contrasts between benign and malig-
nant nodules.

•	 It incorporates dual generators and discriminators 
through feature map fusion, wherein each is carefully 
trained to sample and appraise their outputs using 
labeled data of benign and malignant lung nodules. 
This will ensure that diagnostically significant attrib-
utes are effectively employed to enhance the classifi-
cation of lung nodules.

•	 The proposed model, in effect, is subjected to exten-
sive experiences on two datasets alternately, both in 
terms of effectiveness and robustness. As for gener-
alization capacity, the model is too competent in dif-
ferent datasets, which leads to reliable segmentation 
and classification of pulmonary nodules.

Related works
Semi-supervised learning (SSL) has been increasingly 
applied in medical image analysis to overcome the chal-
lenge of limited labelled data. Various methods, including 
self-training, co-training, graph-based approaches, and 
generative models, have been explored to enhance seg-
mentation and classification accuracy.

Cai et  al. [4] and Dzieniszewska et  al. [5] introduced 
the self-training on CT scans and dermoscopy images, 
respectively. The teacher model is used to generate 
pseudo-labels for unlabeled data. Improvement was 
shown by Cai et al. in DSC, IoU, Precision, and Recall for 
CT segmentation. Dzieniszewska et  al. presented very 
high skin lesion segmentation mIoU. Nevertheless, all 
of such models strongly depend on the initial good qual-
ity of the teacher model. Otherwise, it may lead to error 
induction and propagation in learning. However, these 
models may not be generalized well in other datasets.
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Xie et  al. [24] introduced a small-paced self-training 
method, which assumes that the distributions of labelled 
and unlabeled data can be aligned. This method improved 
Accuracy, Precision, Recall, and F1 Score for X-ray image 
classification. Despite its potential, the assumption of dis-
tribution alignment may only hold in some practical sce-
narios, limiting its effectiveness.

Yang et  al. [7] and Tang et  al. [6] applied co-training 
methods to MRI and CT scans, respectively. These 
approaches leverage multiple views of the data to improve 
learning. Yang et  al. demonstrated DSC and Hausdorff 
Distance (HD) enhancements for MRI segmentation. 
At the same time, Tang et al. improved Accuracy, Preci-
sion, Recall, and F1 Score for multi-label protein–protein 
interaction prediction. However, co-training methods 
face computational complexity, reliance on initial model 
quality, and scalability issues for larger datasets.

Graph-based methods, explored by Sun et al. [11] and 
Miller et al. [10], utilize relationships between data points 
to enhance learning. Sun et al. applied these techniques to 
RGB images, demonstrating improvements in Accuracy, 
Precision, Recall, F1 Score, Adjusted Rand Index (ARI), 
and Normalized Mutual Information (NMI). Miller et al. 
applied graph-based learning to Synthetic Aperture 
Radar (SAR) images, achieving similar improvements. 
However, these methods are computationally intensive 
and sensitive to constructing similarity graphs, which can 
limit their scalability. Zha et al. [9] extended graph-based 
methods to multi-label CT and MRI data, highlighting 
challenges with label imbalance and data diversity.

Su et al. [12] and Li et al. [13] explored pseudo-labeling 
methods for 3D gadolinium-enhanced MR imaging scans 
and pancreas CT images, respectively. These methods 
showed significant improvements in the Dice Similarity 
Coefficient (DSC). However, the quality of initial pseudo-
labels is crucial, and generating and refining these labels 
can be computationally expensive.

Ensemble methods, discussed by Li et al. [16] and Kal-
lipolitis et al. [25], combine multiple models to improve 
performance. Li et al. applied this approach to colon and 
laryngoscopy CT images, achieving high accuracy, preci-
sion, recall, and F1 scores. Kallipolitis et al. used ensem-
ble methods for histopathology images, demonstrating 
similar improvements. However, these methods can 
overfit the training data if not adequately regularized and 
require high-quality annotated datasets, which are costly 
and time-consuming.

Generative methods, such as GANs, generate new 
data samples to enhance learning. Hardy et  al. [26] and 
Toizumi et al. [27] applied these techniques to RGB and 
satellite images, respectively. These powerful methods 
face node synchronization and scalability challenges 
in distributed settings. Generative methods improved 

accuracy, precision, recall, F1 Score, and Specificity for 
RGB images and improvements in Structural Similarity 
Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) for 
satellite images.

Li et al. [28] integrated GANs with a pyramid attention 
mechanism and transfer learning to improve segmen-
tation accuracy for CT scans. This approach leverages 
pre-trained models to enhance performance even with 
limited labelled data, showing improvements in Dice 
Similarity Coefficient (DSC) and Intersection over Union 
(IoU). However, the success of this approach depends 
heavily on the quality and relevance of the pre-trained 
models used in transfer learning.

Several techniques have been suggested to handle chal-
lenges in medical image analysis. For example, SimTrip 
[29] includes a self-supervised learning framework lever-
aging triplet manifestation to extract expressive features 
using extended views of data, effectively handling com-
putational limitations and small batch sizes. However, it 
focuses primarily on feature representation without man-
aging data generation, a crucial requirement in medi-
cal imaging for augmenting datasets. Another method 
named LCGANT [30] incorporates a GAN-based gener-
ator and a transfer learning classifier (VGG-DF) to man-
age overfitting and perform high classification accuracy. 
While practical, its dependence on a separate classifier 
raises additional complexity.

In contrast, our DDDG-GAN unifies the generative 
and discriminative strategies within a single architec-
ture, simplifying training and improving generalization. 
Furthermore, weakly supervised learning methods, as 
reviewed in [31] emphasize practical solutions for man-
aging restricted labeled data via insufficient or noisy 
labels. Despite their utility, these methods can suffer 
from decreased generalization capability. Our proposed 
method surpasses these approaches by incorporating 
dual generators for class-specific data augmentation, 
dual discriminators for precise feature extraction, and a 
feature fusion mechanism to integrate critical attributes, 
achieving robust classification with minimal labeled data.

Table  1 summarizes semi-supervised learning meth-
ods in medical image analysis. These methods offer sig-
nificant promise in addressing the challenge of limited 
labelled data. Each method has strengths and weak-
nesses, with common challenges including computa-
tional complexity, dependency on initial model quality, 
and scalability. Future research should address these 
challenges to enhance the robustness and applicability of 
SSL methods, broadening their impact on various medi-
cal imaging tasks.

The integration of GANs and diffusion models into 
medical imaging research denotes a paradigm shift with 
the possibility of addressing longstanding challenges in 
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the domain. GANs have already shown remarkable power 
in generating synthetic medical images that near copyist 
accurate data distributions, delivering valuable resources 
for training machine learning models in techniques 
where labeled datasets are lacking. Based on these hits, 
diffusion models are appearing as a groundbreaking pro-
cess for generating high-quality synthetic medical images 
with improved commitment and diversity. For instance, 
studies like [32] and [33] underscore their ability to create 
realistic images even with limited data availability.

These improvements are incredibly transformative in 
medical imaging, where the investment and annotation 
of large, various datasets are resource-intensive and often 
impracticable. Diffusion models leverage their ingrained 
noise-denoising tools to create synthetic images that not 
only increase existing datasets but also enhance model 
training robustness. By generating high-quality, manifold, 
and representative datasets, these models pave the way 
for more accurate diagnostics, improved disease detec-
tion, and enhanced generalizability of machine learning 
systems in clinical applications. Integrating these tech-
niques into research frameworks holds significant prom-
ise for overcoming data scarcity, minimizing annotation 
burdens, and accelerating progress in developing reliable 
and scalable medical imaging solutions.

Proposed method: DDDG‑GAN
In this paper, we incorporate two generators and two 
discriminators trained to generate samples of two lung 
nodule classes (i.e., benign and malignant) from labelled 
actual data samples through a semi-supervised learn-
ing model. The proposed model consists of three parts 
explained in three subsections: the first is DDDG-GAN, 
in which the two generators and two discriminators are 
explained in detail and how they will be trained using 
their different classes. The second is feature fusion, in 
which the fusion process of the maps produced by the 
DDDG-GAN is explained, and how the obtained atten-
tive vector is fed to the classification level. The third is 
the classification level, in which we define the mapping of 
the fused features at the feature fusion level through the 
convolutional layer and fully connected layer to be classi-
fied into benign and malignant.

Figure  1 presents the proposed model, which fea-
tures two generators (G1 and G2) and two discrimina-
tors (D1 and D2), mainly devised to tackle mode defeat 
and enhance class-specific generalization. G1 and G2 
are independently trained to generate high-fidelity syn-
thetic images of benign and malignant lung nodules. This 
separation allows each generator to concentrate on the 
unique attributes of its assigned class, such as smooth 
edges for benign nodules or irregular, spiculated pat-
terns for malignant nodules. D1 and D2 act as evaluators, 

distinguishing between real and synthetic images while 
emphasizing critical features unique to their respective 
classes. The outputs of the discriminators are incorpo-
rated through a feature fusion mechanism, incorporating 
discriminatory information into an attentive feature map. 
This map improves the classification procedure by encap-
sulating subtle elements. The architecture is conceived 
to balance synthetic image quality, class separability, and 
robust classification performance, addressing critical 
challenges in medical image analysis.

The proposed method comprises three components: 
1) the dual generators to generate samples of two lung 
nodule classes, 2) discriminators to extract discrimina-
tive feature maps being generated, 3) Feature maps fusion 
aims to create a composite representation that magni-
fies the differential characteristics recognized by each 
discriminator and 4) classification level fuse features 
through convolutional and fully connected layers to clas-
sify the nodules into benign and malignant categories 
precisely.

Generator network architecture
Given nodules X ∈ R

H×W×D , the first generator net-
work ( G1) was trained using labelled benign nodules 
in the dataset to map from a latent space (a predefined 
noise distribution) to the distribution of nodule XB . At 
the same time, the second generator network ( G2) was 
trained using the sample of the labelled malignant nod-
ules to map from a latent space to the distribution of 
nodules X̂M . The latent space ( Z) is a multivariate Gauss-
ian distribution where each dimension is independent 
and identically distributed (i.i.d). For both generators, the 
process starts from a latent vector, progressively upscales 
it through deconvolutional layers and finally outputs a 3D 
tensor that represents X̂ ∈ R

H×W×D for both malignant 
and begin.

G1 and G2 share an identical network architecture, as 
shown in Fig. 2, to ensure that any differences in the gen-
erated images are solely due to the nature of the data they 
were trained rather than model complexity or capability 
variations. The input to the generator is a latent vector 
of dimension L, which is densely connected to a higher-
dimensional space. This initial transformation maps the 
latent space to a format conducive to 3D volume genera-
tion. This layer is followed by batch normalization and a 
LeakyReLU activation to introduce non-linearity and sta-
bilize the training process.

Conv3DTranspose layers are used to up-sample the vol-
ume to the desired dimensions. G1 is trained only on a 
dataset of benign pulmonary nodules. This dataset covers 
a wide range of benign nodule images. This is done so that 
G1 learns to generate varied representations covering both 
benign nodules’ standard and rare features. Conversely, G2 
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is trained on a dataset of malignant pulmonary nodules, 
capturing the heterogeneity and, therefore, the complex-
ity of malignant formations. Thus, G2 can generate images 
that accurately reflect all the features of malignancies in 
the pulmonary nodules. The idea behind using two genera-
tors is to develop synthetic 3D nodule images that are not 
distinguishable from accurate scans and, therefore, consti-
tute a valuable resource for enhanced diagnostic accuracy. 
This approach with two generators allows for comparing 
the features between benign and malignant nodules and 
informs about their differences in morphology and texture.

X̂B = G1(Z, θ
i
1)

where X̂B indicate the generated 3D benign nodules, G1 
indicates the generator network layers that map Z to X̂B ., 
and θ i1 refers to the parameters of each layer (i) learned 
through the training process in G1.

In the same context, the second generator maps the 
input latent space to X̂M , which indicates the generation 
of 3D malignant nodules.

The primary motivation behind training two sepa-
rate generator networks (G1 for benign nodules and 
G2 for malignant nodules) with the same architecture 
but on different datasets lies in the intrinsic differences 
between benign and malignant pulmonary nodules. 

X̂M = G2(Z, θ
i
2)

Fig. 1  Dual-Discriminator and Dual-Generator Generative Adversarial Network (DDDG-GAN) architecture. The model incorporates two generators 
(G1 and G2) and two discriminators (D1 and D2)

Fig. 2  Generator Network Architecture. The generator network is designed to map a latent vector sampled from a multivariate Gaussian 
distribution to a 3D representation of lung nodules
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These differences, though subtle in some instances, are 
crucial for accurate diagnosis, treatment planning, and 
prognosis. By training G1 and G2 on distinct datasets, 
each generator learns to encapsulate and reproduce the 
unique characteristics and features inherent to each type 
of nodule.

Discriminator architecture
The discriminators in GANs focus on distinguishing 
between natural and synthetic medical images, particu-
larly for extracting discriminative features of benign and 
malignant nodules, which are critical in refining the gen-
erative models’ capabilities. The discriminators, D1 and 
D2, are tasked with analyzing the outputs of G1 and 
G2, respectively, along with actual images of benign and 
malignant nodules. Their goal is to not only discrimi-
nate between real and generated images but also to high-
light the distinctive features characteristic of benign and 
malignant nodules in a format conducive to further anal-
ysis or decision-making processes.

A typical binary classification (real vs. fake) discrimina-
tor must be adapted to highlight discriminative features. 
This adaptation focuses on feature extraction layers that 
retain spatial information, ultimately leading to an output 
layer redesigned to produce a 2D feature map rather than 
a single scalar indicating real or fake.

To elucidate the discriminative capabilities between 
benign and malignant pulmonary nodules, we designed 
a discriminator network employing a sequential model 
architecture, leveraging three-dimensional convolutional 
layers to process input volumes of size H ×W × D . This 
architecture facilitates the extraction and analysis of spa-
tial features inherent to the nodules, which are crucial for 
their classification and understanding.

The discriminator begins with a three-dimensional 
convolutional layer, as shown in Fig.  3, configured with 
64 filters of kernel size 5 × 5x3 and a stride of 2 × 2x1, 
applied with ‘same’ padding to maintain the spatial 
dimensions of the input volume. This layer is designed to 
perform an initial feature extraction, capturing the nod-
ules’ local and global spatial features. Activation of the 
convolutional layer outputs is mediated by a LeakyReLU 
function with an alpha value of 0.2, introducing non-lin-
earity while allowing for a slight gradient when the unit 
is inactive to mitigate the vanishing gradient problem. A 
dropout layer follows, with a dropout rate of 0.25, to pre-
vent overfitting by randomly omitting a subset of features 
during training.

After the initial feature extraction, a second three-
dimensional convolutional layer, equipped with 128 
filters and a kernel size of 5 × 5x3, further refines the fea-
ture map. This layer employs strides of 2 × 2x2 and ‘same’ 
padding, augmented with zero padding to adjust the spa-
tial dimensions as needed, ensuring consistent feature 
representation across the volume. Batch normalization is 
applied post-convolution to stabilize learning by normal-
izing the layer’s inputs with a momentum of 0.8, facilitat-
ing faster convergence and improved generalization. This 
is followed by another application of the LeakyReLU acti-
vation function and a dropout layer, reinforcing the net-
work’s ability to learn complex, robust features resistant 
to overfitting.

Crucially, the network transitions from analyzing volu-
metric data to producing a two-dimensional feature map 
that encapsulates discriminative features critical for dis-
tinguishing between benign and malignant nodules. This 
is achieved by flattening the three-dimensional feature 
maps into a vector and passing them through a densely 
connected layer configured to reshape the output into 

Fig. 3  Discriminator Network Architecture. The discriminator network is designed to distinguish between real and synthetic images 
while extracting class-specific features critical for classification
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FD1 and FD2, both in the shape of a HxW (i.e., 2D feature 
map). This allows the discriminator to classify inputs as 
real or synthetic and highlight spatial features indicative 
of the nodule’s pathology, providing a visual representa-
tion of the discriminative characteristics learned through 
the network.

Feature maps fusion
The fusion of feature maps from FD1 and FD2 for the 
same input aims to create a composite representation 
that magnifies the differential characteristics recognized 
by each discriminator. This composite map improves 
nodule classification by highlighting the distinct features 
indicative of benignity or malignancy.

Before the fusion process, we normalize the feature 
maps obtained from FD1 and FD2 to ensure they are on a 
similar scale using Z-score standardization. The absolute 
difference between the normalized feature maps of FD1 
and FD2. This difference map will highlight regions where 
the discriminators disagree, indicating areas of interest 
that might differentiate between benign and malignant 
nodules more effectively. After the fusion, the model is 
trained to be classified based on the fused feature map. 
This convolutional layer is followed by a fully connected 
layer, culminating in a softmax output for binary clas-
sification. D1 is trained to focus on benign nodules and 
D2 on malignant nodules, and both output feature maps 
highlight characteristics of the input nodules. An inno-
vative approach is needed for the fusion and analysis of 
these feature maps.

We use a cross-entropy loss function for the fused fea-
ture map and the subsequent classification layer, which 
is standard for binary classification tasks. We incorpo-
rate contrastive loss with cross-entropy loss function to 
encourage the model to generate fused feature maps that 
are distinctly far apart for benign and malignant nodules, 
enhancing separability. The total loss Ltotal is formulated 
as a combination of cross-entropy loss LCE and contras-
tive loss LContrastive:

where y is the true label (benign or malignant), ŷ is 
the predicted label based on the fused feature map, 
FD1andFD2 are the feature maps from FD1 and FD2, 
respectively, and α and β are weights that balance the 
contributions of each loss component. This allows for 
effectively using both discriminators’ outputs, leveraging 
their specialized focus to improve nodule classification. 
Through this approach, the GAN model can gener-
ate more informative and distinctive representations of 
pulmonary nodules, facilitating better understanding 
and identification of their benign or malignant nature. 
Semi-supervised learning seeks to leverage a small 

Ltotal = αLCE(y, ŷ)+ βLContrastive(FD1, FD2)

amount of labelled data and a large pool of unlabeled 
data to improve learning efficacy. The dual loss function 
approach fits well into such contexts for enhancing fea-
ture discrimination.

Loss functions
The loss function plays a crucial role in guiding the 
training process of both the generator and discrimina-
tor models. When dealing with two separate GANs, G1 
and G2, with their respective discriminators D1 and D2, 
each trained on different data distributions (benign and 
malignant nodules, respectively) to achieve the desired 
objectives for both generation and discrimination tasks. 
Formulating a loss function that measures the discrep-
ancy between the outputs of D1 and D2 can provide 
insights into the distinguishability of benign and malig-
nant nodules as learned by the GANs.

For generators, the loss is formulated to measure how 
well it deceives the discriminator into believing that the 
generated images are real. If we consider G1 generating 
benign nodules and G2 generating malignant nodules, 
the generator loss for each GAN can be defined using the 
binary cross-entropy (BCE) as follows:

where LG is the generator loss, N is the number of sam-
ples, G represents the generator G1 or G2, D represents 
the discriminator (D1 for G1’s output and D2 for G2’s 
output), and zi is the input latent vector to the generator. 
The goal of G is to minimize this loss to generate images 
that D will classify as real.

The discriminator loss combines the error on real and 
generated (fake) images, aiming to classify both types 
correctly. The loss for a discriminator D can be defined 
as:

where LD is the discriminator loss and xi represents real 
images from the dataset (benign for D1 and malignant 
for D2). The discriminator seeks to minimize this loss 
to accurately distinguish between real and generated 
images.

Experimental results
In this study, we introduced two scenarios to evaluate the 
proposed method, considering two types of datasets for 
assessment. The LIDC-IDRI and LUNA16 datasets are 
used here. As following:

LG = −
1

N

N∑

i=1

log(D(G(zi)))

LD =
1

N

N∑

i=1

[log(D(xi))+ log(1− D(G(zi)))]
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•	 Scenario 1: The labeled nodules in the LIDC-IDRI 
dataset are evaluated using tenfold cross-validation 
for training and validation, with an additional inde-
pendent test set comprising 20% of the dataset.

•	 Scenario 2: The entire labelled nodules in the LIDC-
IDRI dataset for training and 500 nodules from the 
LUNA16 dataset for testing as an unseen dataset. 
Moreover, 73 nodules in total, with 37 benign and 
36 malignant nodules from the LUNGx dataset, are 
used as an unseen dataset to confirm the assessment 
of the model’s generalization ability.

Datasets
The LUNA16
The LUNA16 dataset contains 549,714 benign candi-
date nodules and 1,351 malignant candidate nodules​. It 
is highly imbalanced towards benign nodules. Thus, this 
article used 500 nodules to test the proposed model. We 
randomly selected 250 benign and 250 malignant nod-
ules. We trained our model using the LIDC dataset and 
then tested it using LUNA16.

The LIDC‑IDRI
The LIDC-IDRI dataset comprises 1,018 instances, each 
consisting of a CT scan and an XML file detailing the 
nodule outlines identified by four radiology specialists. 
The LIDC-IDRI dataset does not directly label nodules 
as benign or malignant; instead, it includes a malignancy 
rating on a scale from 1 to 5 based on the assessments 
of up to four experienced thoracic radiologists. The 
malignancy score is as follows: improbable to be malig-
nant, unlikely to be malignant, indeterminate/uncertain, 
likely to be malignant, and highly likely to be malignant. 
We consider nodules with average scores below a cer-
tain threshold (e.g., less than 3) benign and those above 
it (e.g., greater than 3) malignant. For this study, we 
selected 3246 nodules randomly divided as follows: 1054 
malignant nodules, 987 benign nodules, and 1205 uncer-
tain nodules.

Results
The evaluation of the proposed model across two 
distinct scenarios reveals insightful differences 

in performance metrics. As illustrated in Table  2 
and  Table  3, the model indicated impressive results in 
the first scenario, where tenfold cross-validation was 
conducted on the LIDC-IDRI dataset, and further inde-
pendent testing was performed using 20% of the data-
set as a held-out test set. The accuracy was 92.56%, 
with a precision of 90.12%, a recall of 95.87%, and an F1 
score of 92.77%. These metrics indicate that the model 
effectively distinguishes between benign and malig-
nant nodules within this dataset. High recall especially 
expresses a strong capability of the model to identify 
malignant nodules where accurate and reliable diagnos-
tics should be guaranteed.

The other, on the other hand, tested generaliza-
tion capability by training the model on the entire 
LIDC-IDRI data set and testing it on the unseen data-
set, LUNA16; in this case, the metrics for model 
testing dropped significantly: accuracy- 72.6%, pre-
cision- 72.3%, recall- 73.82%, and F1 score- 73.39%. 
This reduction in performance indicates that while the 
model performs well on familiar data, it struggles with 
unseen data, suggesting potential overfitting during 
training.

In Scenario 2, the model trained on the full LIDC-
IDRI dataset was tested on the independent LungX 
dataset, reaching an accuracy of 71.23%, a precision of 
67.56%, a recall of 73.52%, and an F1-score of 70.42%. 
These outcomes emphasize the model’s capability 
to generalize to unseen data, with balanced perfor-
mance across precision and recall. The LungX dataset’s 
diversity and real-world variability posed additional 
challenges. However, the model presented strong clas-
sification capabilities, emphasizing its potential for 
clinical applicability in recognizing and classifying lung 
nodules across varied patient populations and imaging 
conditions.

Figure  4 shows the proposed model’s confusion 
matrix in two cases. Case 1 It can be seen from the 
confusion matrix that the proposed model performs 
exceedingly well on the test set formed from the LIDC-
IDRI dataset. It has 201 true positives and 185 true 
negatives, indicating that the model performs very well 
in accurately identifying malignant and benign nodules. 
The 23 false positives and nine false negatives show that 

Table 2  The results obtained over two scenarios

Dataset Testing Accuracy (%) Precision (%) Recall (%) F1-Score (%)

LIDC-IDRI (10-Fold Cross-Validation) Scenario 1 (Validation Average) 92.56 90.12 95.87 92.77

LIDC-IDRI (20% Testing Set) Scenario 1 (Independent Testing) 93.3 91.36 95.71 93.48

LIDC-IDRI (100% Training) Scenario 2 (Test on LUNA16) 72.6 72.3 73.82 73.39

LIDC-IDRI (100% Training) Scenario 2 (Test on LUNGx) 71.23 67.56 73.52 70.42
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this model has a balanced and safe performance with 
the least risk of misclassification. This concludes that 
this model is well-trained on LIDC-IDRI datasets and 
efficiently distinguishes between benign and malignant 
nodules.

On the other hand, in the second case, when the LIDC-
IDRI dataset is considered for the model’s training pur-
pose, LUNA16 lies in the testing category. The confusion 
matrix generates somewhat agile but less performing 
results. It creates many false positive results, with 81, and 
false negative ones, with 68. This means this unseen data 
makes it harder for the user model to handle or process 
it. Although this model has rightly classified the major-
ity of malignant nodules as true positives—188 and the 
majority of benign nodules as true negatives—163, these 
high misclassification rates raise concerns in terms of 
generalization. More false positives might lead to more 
unnecessary treatments of benign cases, and a higher 
false negative proportion could lead to missing cases of 
malignancies, both of which are significant causes for 
clinical concern regarding diagnostics.

Inception score
The Inception Score (IS) [34] is a metric used to evaluate 
the quality of images generated by the proposed model. 
It provides a quantitative measure of how the generated 
images are reasonable based on two key aspects: their clar-
ity and diversity. The Inception Score uses a pre-trained 
Inception model trained using RGB lung nodules. The 
Good-generated images should contain easily recognizable 
lung nodules. For each image, the Inception model should 
output a high probability for one class and a low probabil-
ity for others. The set of all generated images should cover 

various nodule types. The Inception Score is calculated 
using these probabilities to compute the KL divergence 
between the conditional label distribution for each image 
and the marginal label distribution over the entire set of 
generated images. The formula for IS is:

G is the proposed model, pg is the model’s distribution 
over generated images, DKL is the KL divergence, and 
(p(y\x)andp(y) are the conditional and marginal label dis-
tributions, respectively.

We have generated 15 images using the proposed GAN, 
where the images are meant to represent either benign or 
malignant nodules. The high confidence levels (90% for 
benign and 95% for malignant) suggest that the images are 
clear and distinct, which is suitable for the first component 
of the IS (Table 3). Producing both benign and malignant 
nodules with the distribution of 60% malignant and 40% 
benign) means there is diversity in the generated images, 
aligning with the second component of the IS.

Interpretability visualization
SHAP (SHapley Additive exPlanations) [31] values and 
Grad-CAM (Gradient-weighted Class Activation Map-
ping) [30] visualizations offer profound insights into the 
decision-making process of the DDDG-GAN model for 

IS(G) = exp(Ex−pg [DKL(p(y\x) � p(y))])

Fig. 4  Confusion matrix for the proposed model in two scenarios

Table 3  Inception Score-based DDDG-GAN evaluation

Image No Predicted Class Confidence Notes

1–6 Benign 90% High confidence

7–15 Malignant 95% High confidence
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lung nodule classification. SHAP values provide a quan-
titative breakdown of how each feature influences the 
model’s predictions, highlighting which attributes push 
the classification towards being benign or malignant. This 
detailed feature contribution analysis enhances the inter-
pretability of the model, revealing key features that signifi-
cantly impact its decisions. On the other hand, Grad-CAM 
visualizations generate heatmaps overlaid on the original 
images, illustrating the regions of the input that the model 
focuses on when making its predictions. These visual cues 
help validate whether the model is attending to diagnosti-
cally relevant areas, ensuring that its decisions are based on 
appropriate visual information.

In the context of Grad-CAM visualizations, as shown 
in Fig.  5, these images demonstrate the model’s abil-
ity to focus on diagnostically significant features. Heat 
maps for benign nodules correctly classified as benign 
highlight smooth and well-defined areas associated with 
benign characteristics. This indicates that the model cap-
tures and utilizes benign-specific features, validating the 
dual generator’s role in creating high-fidelity benign nod-
ule images.

For malignant nodules correctly classified as such, 
Grad-CAM heatmaps highlight irregular, spiculated 
regions and heterogeneous textures characteristic of 
malignancies. This demonstrates that the model has 
learned to accurately represent and recognize the sub-
tle features of malignant nodules, an essential aspect of 
medical diagnosis. The dual-discriminator setup further 
enhances the model’s ability to distinguish fine-grained 
differences in features, as reflected through the accurate 
highlighting of malignant features in the heatmaps. In 
this design, individual discriminators specialize in a sin-
gle class.

In cases where the model classifies an unknown nodule 
as benign, the Grad-CAM visualizations (Fig. 5) provide 
insights into what drove the model’s decision. High-
lighted regions in such cases exemplify areas that the 
model identifies as benign features. If the classification is 
correct, it demonstrates the model’s generalization and 
robustness.

In the DDDG-GAN model, addressing mode collapse 
is crucial for generating diverse and accurate representa-
tions of benign and malignant lung nodules. The model 
incorporates dual generators to mitigate this issue. Each 
generator generates high-fidelity images that capture 
the distinct features of benign or malignant nodules, 
thereby ensuring a broad data distribution coverage. This 
approach helps in producing diverse synthesized images 
that reflect the various characteristics seen in real-world 
medical images. Additionally, dual discriminators, each 
focusing on a specific class, further enhance the model’s 
ability to generalize from the training data to unseen 

data, ensuring robust performance. The effectiveness 
of this architecture is supported by Grad-CAM visu-
alizations, which demonstrate that the model accurately 
identifies and focuses on diagnostically relevant features 
across different categories of lung nodules.

The SHAP result breaks down the contributions of 
individual features to the model’s prediction. Positive 
SHAP values indicate features pushing the classification 
towards malignancy, while negative values suggest benig-
nity (Fig.  5). The magnitude of these values shows each 
feature’s importance, providing a quantitative measure 
of their influence. SHAP analysis reveals that certain fea-
tures were underemphasized, leading to incorrect clas-
sifications and offering a deeper understanding of the 
model’s decision-making process. It highlights which fea-
tures need adjustment or reweighting, ensuring the deci-
sion is based on logical and medically relevant factors.

The combined use of Grad-CAM and SHAP provides 
a comprehensive understanding of the model’s decision-
making process. Grad-CAM visualizes the spatial focus, 
confirming that the model’s attention aligns with clini-
cally significant regions. SHAP quantifies the importance 
of each feature, enhancing interpretability by explaining 
the model’s decision regarding feature contributions. 
Together, they validate the robustness and interpretabil-
ity of the DDDG-GAN model in classifying lung nodules. 
Correct classifications are supported by Grad-CAM, 
which focuses on relevant regions and SHAP and dem-
onstrates reliance on critical features. Misclassifications 
reveal areas where the model needs improvement, guided 
by Grad-CAM insights and SHAP feature importance.

However, despite the strengths of the DDDG-GAN 
model, misclassifications do occur, as indicated by the 
combined SHAP and Grad-CAM analyses in Fig.  6. 
When a benign nodule is misclassified as malignant, the 
Grad-CAM heatmap may show that the model errone-
ously focused on irregular textures or shapes associated 
with malignancy, leading to a false positive. Conversely, 
when a malignant nodule is misclassified as benign, the 
heatmap might reveal insufficient attention to spiculated 
patterns or other malignant features, resulting in a false 
negative. These misclassifications underscore the impor-
tance of continuous model refinement by incorporating 
more diverse training samples and adjusting the feature 
selection process to minimize errors. The combined use 
of SHAP values and Grad-CAM visualizations is instru-
mental in identifying these areas for improvement, 
ensuring that the model’s performance is robust, accu-
rate, and reliable in medical diagnostics.

The combined strength of Grad-CAM and SHAP 
proves the model’s power. Grad-CAM shows the model’s 
focus on relevant regions, providing spatial context to the 
decision-making process, while SHAP offers a detailed 



Page 14 of 28Saihood et al. BMC Medical Informatics and Decision Making          (2024) 24:403 

Fig. 5  Grad-CAM and SHAP visualizations of true classified nodules
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numerical breakdown of feature importance. This dual 
approach ensures accurate classification, builds trust in 
the model’s predictions, and identifies specific areas for 
refinement. The DDDG-GAN model’s effectiveness is 
evident in its ability to correctly classify nodules, with 
visual validation from Grad-CAM and feature impor-
tance from SHAP. Misclassifications highlight the need 
for feature adjustment and additional training data to 
capture critical characteristics better. This comprehen-
sive analysis demonstrates the model’s strengths and 
areas for improvement, ensuring its robustness and accu-
racy in medical diagnostics.

The strong interpretability of Grad-CAM and SHAP 
proves the model’s power. Grad-CAM shows the model’s 
focus on relevant regions, providing spatial context to the 
decision-making process, while SHAP offers a detailed 
numerical breakdown of feature importance. This dual 
approach ensures accurate classification, builds trust in 
the model’s predictions, and identifies specific areas for 
refinement. The DDDG-GAN model’s effectiveness is 
evident in its ability to correctly classify nodules, with 
visual validation from Grad-CAM and feature impor-
tance from SHAP. Misclassifications highlight the need 

for feature adjustment and additional training data to 
capture critical characteristics better. This comprehen-
sive analysis demonstrates the model’s strengths and 
areas for improvement, ensuring its robustness and accu-
racy in medical diagnostics.

To validate the rate and faithfulness of the generated 
lung nodule images, we show an illustrated comparison 
between real and synthetic examples in Fig. 7. The gener-
ated images nearly resemble their real counterparts, cap-
turing vital morphological features such as texture, edge 
smoothness, and structural patterns. This underscores 
the capability of the proposed DDDG-GAN model to 
synthesize high-resolution, class-specific nodule images 
that are indistinguishable from real data. These outcomes 
highlight the model’s significance in generating diverse, 
realistic examples, which are required to enhance diag-
nostic accuracy and the robustness of downstream clas-
sification tasks.

CNNs, which comprise the backbone of the proposed 
DDDG-GAN, intrinsically capture spatial features with 
isotropic filters that tend to highlight central regions pre-
cisely when the input data is pre-processed to center the 
areas of diagnostic interest, such as lung nodules. This 

Fig. 6  Grad-CAM and SHAP visualizations of misclassified nodules
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Fig. 7  Explanation of the reconstruction operation. The left column displays the input images, which are encoded into a latent vector 
via the encoder. The decoder then reconstructs these images from the latent vector, indicating the model’s ability to keep and recreate key features 
of the original input
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uniformity results in heatmaps with circular patterns, 
mirroring the model’s invariant attention to the central 
features, where most nodules are located in the data-
set. Moreover, the circular focus aligns with the imag-
ing structure and annotations, as nodules are typically 
separated and centered during pre-processing to assure 
standardization.

Comparison with the state‑of‑the‑art
The table compares various semi-supervised learning 
methods for binary classification of interstitial lung dis-
ease patterns from the LIDC dataset.

Among self-training methods, the highest performance 
is observed with a recall of 87.1, precision of 86.5, and 
accuracy of 85.8, indicating adequate selective re-train-
ing. Co-training methods show varied effectiveness, with 
the best results demonstrating recall of 87, precision of 
88, and accuracy of 86, underscoring robust performance 
when leveraging different data views. This variation high-
lights how different data feature sets can impact the suc-
cess of co-training.

Graph-based training methods stand out for their 
strong performance, particularly with one method 
achieving recall of 90.2, precision of 90.5, and accuracy of 
89.5. This highlights the advantage of utilizing the intrin-
sic structure of the data to improve segmentation results. 
The ability of graph-based methods to model complex 
relationships within the data contributes significantly to 
their high performance.

Pseudo-labeling and ensemble learning methods show 
moderate to good results. Ensemble learning, with a 
recall of 86.2, precision of 87, and accuracy of 85.5, out-
performs pseudo-labelling due to the combination of 
multiple models, which enhances robustness and over-
all performance. Ensemble methods benefit from reduc-
ing individual model biases, leading to more accurate 
predictions.

Other methods, such as rethinking semi-supervised 
learning, exhibit the weakest performance with a recall 
of 78.3, precision of 78, and accuracy of 77. This suggests 
significant limitations in their approach and potential 
areas for improvement. The method’s lower performance 
indicates challenges in effectively utilizing labelled and 
unlabeled data.

Simple GANs exhibit high accuracy (89.7) but lower 
precision (78.1), indicating a trade-off between overall 
performance and prediction precision. The discrepancy 
suggests that while GANs are effective in certain aspects, 
they may struggle with precise boundary delineation.

Multi-task learning achieves high recall (89) and accu-
racy (90.2) but lower precision (84), highlighting its 
strength in capturing diverse aspects of the task. The 
method’s ability to learn multiple tasks simultaneously 

can improve recall and accuracy, though precision may 
be compromised.

The DDDG-GAN method had the best overall perfor-
mance, with a recall of 95.87%, a precision of 90.12%, and 
an accuracy of 92.56%. Therefore, the excellent results 
produced by DDDG-GAN demonstrate its effectiveness 
in leveraging the strengths of GANs while surmounting 
their limitations, hence allowing for significant advances 
in semi-supervised segmentation tasks related to binary 
classification on LIDC.

Baseline methods comparison
We validate the performance of different GAN-based 
methods for lung nodule detection in two different sce-
narios. In scenario 1, we train the proposed model on 
80% of the LIDC dataset and evaluate it on the remaining 
20%. In scenario 2, we use all LIDC datasets to train and 
test the model on the unseen LUNA16 dataset.

The results shown in Tables  4 and 5 represent the 
evaluation of the performance of various GAN-based 
methods. Scenario 1 demonstrates that the Pyramid 
Attention-Based GAN [28] achieved an accuracy of 82%, 
precision of 81%, recall of 87%, and an F-score of 84%. 
This method showed high recall, indicating its effective-
ness in identifying positive cases with relatively high 
accuracy and precision, making it a robust model for 
Scenario 1(see Fig. 8). In comparison, the Reinforcement 
Learning-Based GAN [29] exhibited balanced metrics 
with an accuracy of 77%, precision of 80%, recall of 77%, 
and an F-score of 78%, showing moderate performance 
across all metrics.

MD-GAN [26] showed good performance with an 
accuracy of 76%, precision of 74%, recall of 82%, and an 
F-score of 78%. The high recall and balanced F-score 
indicate its reliability in Scenario 1. However, the pro-
posed DDDG-GAN outperformed all other methods 
in Scenario 1, achieving the highest accuracy of 92.56%, 
precision of 90.12%, recall of 95.87%, and an F-score of 
92.77%. This indicates superior performance in accu-
rately identifying positive and negative cases, making it 
the best-performing model in this scenario.

In Scenario 2 (see Fig. 9), where models are tested on 
the LUNA16 dataset as an unseen dataset, the Pyramid 
Attention-Based GAN [28] saw a significant drop in per-
formance, with an accuracy of 65%, precision of 67%, 
recall of 65%, and an F-score of 66%. This decline suggests 
potential overfitting to the training data. Similarly, the 
Reinforcement Learning-Based GAN [36] also showed a 
decrease in performance, with an accuracy of 62%, preci-
sion of 63%, recall of 61%, and an F-score of 62%, indicat-
ing balanced but lower metrics across the board.

MD-GAN [26] maintained moderate performance in 
Scenario 2, with an accuracy of 60%, precision of 59%, 
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recall of 58%, and an F-score of 59%, suggesting some 
level of generalization to unseen data. On the other hand, 
the proposed DDDG-GAN showed relatively good per-
formance in Scenario 2, maintaining the highest accuracy 
of 72.6%, precision of 72.3%, recall of 73.82%, and F-score 
of 73.39% among the compared methods. This suggests a 
better generalization capability to unseen data.

The Receiver Operating Characteristic (ROC) curves 
for the proposed DDDG-GAN under two scenarios 
are shown in Fig.  10. Scenario 1 illustrates the evalu-
ation of the primary benchmark dataset, where the 
model performed an Area Under the Curve (AUC) of 
96%, outperforming Reinforcement Learning-Based 
GAN (AUC = 0.88), Pyramid Attention-Based GAN 
(AUC = 0.91), and MD-GAN (AUC = 0.87), implying 
perfect classification performance with a vertical initial 
rise and close-to-perfect true positive rates at lower false 
positive rates. This mirrors the model’s high sensitivity 

and particularity on the training-like dataset. Scenario 
2, which assesses the model’s generalizability on an 
unseen dataset simulating real-world situations, reached 
an AUC of 76%, followed by Pyramid Attention-Based 
GAN (AUC = 70%), Reinforcement Learning-Based GAN 
(AUC = 67%), and MD-GAN (AUC = 60%). Although 
lower than Scenario 1, the curve performs well, mirroring 
the challenges posed by data variability in clinical envi-
ronments. These results emphasize the robustness and 
adaptability of the proposed model across various testing 
conditions, with compatible sensitivity and generaliza-
tion in both controlled and real-world scenarios.

The confusion matrices in Fig. 11 reveal the strengths 
and weaknesses of the proposed model compared with 
the baseline models. The Pyramid Attention-Based GAN 
showed a high number of true positives (191) and true 
negatives (153), with relatively low false positives (45) 
and false negatives (29). This indicates its effectiveness in 

Table 4  Comparison with the state-of-the-art

Ref Method Accuracy (%) Precision (%) Recall (%)

Cai et al. [4],2023 Self-training 87.1 86.5 85.8

Dzien et al. [5], 2024 Self-training 84.8 84.2 83.5

Xie et al. [24], 2023 Self-training 79.5 79 78.3

Yang et al. [7], 2024 co-training 87 88 86

 Tang et al. [6], 2024 co-training 81.2 82 80.5

 Bai et al. [35], 2024 co-training 82 83 81

 Sun et al. [11], 2023 Graph-based training 80.87 81.5 80

 Miller et al. [10], 2024 Graph-based training 89 89.5 88

 Miller et al. [9], 2009 Graph-based training 90.2 90.5 89.5

 Li et al. [12], 2024 pseudo label 85 85 84

Li et al. [16], 2023 Ensemble Learning 86.2 87 85.5

You et al. [15], 2023 Rethinking Semi-Supervised 
learning

78.3 78 77

 Salimans et al. [34], 2016 Simple GAN 89.7 78.1 81.5

 Khosravan et al. [22], 2018 Multi-task learning 90.2 84 89

DDDG-GAN (proposed) 92.56 90.12 95.87

Table 5  Evaluation of the performance of various GAN-based methods

Method Scenarios accuracy precision recall f_score

[28],2024 pyramid attention-based GAN Scenario1 82% 81% 87% 84%

Scenario2 65% 67% 65% 66%

[36], 2024 Reinforcement Learning-based GAN Scenario1 77% 80% 77% 78%

Scenario2 62% 63% 61% 62%

MD-GAN [26], 2019 Scenario1 76% 74% 82% 78%

Scenario2 60% 59% 58% 59%

DDDG-GAN (proposed) Scenario1 92.56% 90.12% 95.87% 92.77%

Scenario2 (Luna16) 72.6% 72.3% 73.82% 73.39%

Scenario2 (LUNGx) 71.23% 67.56% 73.52% 70.42%
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Fig. 8  Performance comparison of different models in scenario 1

Fig. 9  Performance comparison of different models in scenario 2
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identifying malignant and benign cases, with high recall 
suggesting it misses very few malignant cases. The Rein-
forcement Learning-Based GAN had a substantial num-
ber of true positives (174) and true negatives (148), with 
moderate false positives (43) and false negatives (53), 
demonstrating a balanced performance. MD-GAN [30] 
had good recall with true positives (176) and true nega-
tives (143), though it faced moderate false positives (61) 
and false negatives (38). The proposed DDDG-GAN 
outperformed all, with true positives (201) and true neg-
atives (185), minimal false positives (23), and false nega-
tives (9), indicating robust performance.

In Scenario 2, the performance of each model declined 
when tested on the unseen LUNA16 dataset. The Pyra-
mid Attention-Based GAN confusion matrix shows 
increased false positives (82) and false negatives (91), 
reflecting its struggle with new data. Similarly, the Rein-
forcement Learning-Based GAN had higher false posi-
tives (90) and false negatives (99), indicating difficulties 
in generalization. MD-GAN also saw a performance drop 
with increased false positives (98) and false negatives 
(101), highlighting the challenge of adapting to unseen 
data. The proposed DDDG-GAN, while facing difficul-
ties, showed better generalization than other models with 
true positives (142), true negatives (159), false positives 
(98), and false negatives (101).

Computational complexity
The time complexity comparison over five epochs shown 
in Fig.  12 provides significant insights into the training 

efficiency of different models, including the Pyramid 
Attention-Based GAN, Reinforcement Learning-Based 
GAN, MD-GAN, and the proposed DDDG-GAN. The 
Pyramid Attention-Based GAN shows a starting time of 
399  s in the first epoch, peaking at 425  s in the second 
epoch and fluctuating between 380 and 401  s over the 
remaining epochs. This variability indicates occasional 
optimization but a lack of consistent training efficiency. 
The Reinforcement Learning-Based GAN starts with 
a high training time of 477  s, increasing to 485  s in the 
second epoch, then decreasing to 439  s by the fourth 
epoch, before rising again to 462  s in the fifth epoch. 
These fluctuations and higher training times suggest less 
efficiency and more significant computational resource 
requirements.

The MD-GAN model was scientifically the highest in 
the training time, starting from 500 s in the first epoch, 
decreasing marginally to 480 s by the fourth epoch, and 
ending at 485 s in the fifth epoch. This means that effi-
ciency is lower compared to other models. In contrast, 
the proposed DDDG-GAN starts with 468 s of training 
time, reduces considerably to 438 s in the second epoch, 
and stabilizes around 430 to 440 s in later epochs. This 
reduction and stabilization of training time show efficient 
learning and convergence by the model, making it more 
amenable for field applications with limited computa-
tional resources.

In terms of performance, DDDG-GAN outperforms 
every model in terms of efficiency and effectiveness. 
Lower training time across different epochs reflects 

Fig. 10  ROC Curves for DDDG-GAN: Evaluation under two scenarios
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Fig. 11  The confusion matrices for baseline methods comparison
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faster convergence that matters tremendously in sce-
narios where the environment is large-scale or resource 
constrained. The best accuracy, precision, recall, and 
F1 scores are reported for the DDDG-GAN in Scenario 
1, each depicting superior classification performances. 
Also, even if, in the initial period, the training time for 
the DDDG-GAN is long, good generalizability can be 
noted in Scenario 2. It exhibits superior accuracy and 
more recall when compared to other models during the 
testing of the unseen LUNA16 dataset, meaning that 
the data variability can easily be handled as seen in this 
scenario; hence, it forms a foundation for robust perfor-
mance regarding diverse clinical setups.

Figure  10 compares the test time complexity by dif-
ferent models. This figure provides crucial information 
related to the efficiency of the other models regarding the 
testing phase. The proposed model, DDDG-GAN, has 
the lowest time for the testing phase, which is 70 s. This 
shows that the proposed method is much more efficient 
in this phase. Moreover, the Pyramid Attention-Based 
GAN model has the second highest time, with a test-
ing time complexity of 80 s, which is slightly high when 
compared with the proposed model. The Reinforce-
ment Learning-Based GAN portrays a higher test time 
of 90 s, thus increasing the requirement for computa-
tion. The MD-GAN still has the highest test time of 100 

s, which translates to the lowest efficiency of the models. 
Apart from training efficiency, the DDDG-GAN is more 
remarkable in the testing phase, making it a practicable 
model in real-life applications, considering the demand 
for high training efficiency and testing.

Ablation study
To assess the effectiveness of the proposed feature fusion 
mechanism, we conducted an ablation study under two 
scenarios; we approximated various feature fusion tech-
niques, including no fusion (independent outputs), sim-
ple averaging, concatenation with a dense layer, weighted 
averaging, and the proposed attentive feature fusion 
mechanism. The performance metrics, including accu-
racy, precision, recall, and F1-score, are summarized in 
Tables 6 and 7.

In Scenario 1, the proposed attentive fusion mecha-
nism surpassed all other methods with an accuracy of 
92%, a precision of 90%, a recall of 96%, and an F1-score 
of 93%. More straightforward techniques, such as No 
Fusion, achieved lower accuracy (85%) due to the absence 
of integration between the outputs of the discrimina-
tors, guiding to suboptimal performance (Table 7). Sim-
ple Averaging enhanced the metrics slightly (accuracy: 
88%, F1-score: 88%) but was incapable of catching sub-
tle dependencies between features. Concatenation with 

Fig. 12  Time complexity comparison over 5 epochs training



Page 23 of 28Saihood et al. BMC Medical Informatics and Decision Making          (2024) 24:403 	

a Dense Layer achieved better (accuracy: 91%, F1-score: 
91%) by leveraging more decadent feature interchanges, 
while Weighted Feature Averaging performed moder-
ate advancement (accuracy: 90%, F1-score: 90%) by bal-
ancing the contribution of each feature. The proposed 
attentive fusion mechanism presented a superior perfor-
mance by effectively integrating discriminative features, 
capturing subtle attributes that improved classification 
performance.

In Scenario 2, which describes a real-world test sce-
nario, the proposed attentive fusion mechanism also per-
formed the most elevated metrics, with an accuracy of 
70%, a precision of 70%, a recall of 73%, and an F1-score 
of 72%. In this scenario (Table  7), No Fusion demon-
strated significant performance degradation (accuracy: 
62%, F1-score: 62%), mirroring the incapacity to gener-
alize without feature integration. Simple Averaging pro-
vided a slight improvement (accuracy: 65%, F1-score: 
65%), while Concatenation with a Dense Layer and 
Weighted Feature Averaging achieved better (accuracy: 
68% and 67%, respectively). However, these methods 
still needed to work on handling the variability and com-
plexity of unseen cases—the attentive fusion mechanism 
excelled by integrating essential features and maintaining 
strong generalization in a challenging real-world setting.

Discussion
The proposed DDDG-GAN incorporates several innova-
tions that make it superior to the state-of-the-art semi-
supervised learning approaches to classify lung nodules. 
In this regard, the DDDG-GAN exploits, in an efficient 
way, semi-supervised learning paradigms to overcome 

the inherent problems of the limited labelled medical 
imaging data. This is motivated by the knowledge that 
a large amount of unlabeled data and a small quantity 
of labelled data improves both the aspects, the learning 
efficacy and generalizability of the model. The strategy 
makes the process independent of large labelled datasets 
that are usually complicated and expensive to obtain in 
medical contexts.

The t-SNE visualizations in Fig.  13 demonstrate the 
effectiveness of the feature extraction and fusion process 
in distinguishing between benign and malignant nodules. 
The distinct clustering in individual and fused feature 
maps highlights the model’s capability to maintain class-
specific information while allowing for proximity near 
the decision boundary. This characteristic is essential for 
enhancing the diagnostic accuracy of the model, ensuring 
that benign and malignant nodules are accurately identi-
fied based on their unique features. The balance achieved 
in the fused feature map indicates that the model is well-
tuned to leverage the class’s commonalities and differ-
ences for improved classification performance.

The clear separation of the clusters in the fused fea-
ture map indicates that the fusion process effectively 
combines the discriminative features from FD1 and FD2 
without significant overlap. The proximity of the clusters 
suggests that while they are close enough to the decision 
boundary, they retain their class-specific characteristics. 
This balance is crucial for improving the model’s accurate 
classification of nodules. The semi-supervised DDDG-
GAN model benefits significantly from the apparent 
separation and balanced proximity of the clusters in the 
fused feature map. These characteristics enhance the 

Table 6  Ablation Study of Feature Fusion Strategies (tested based on scenario 1)

Feature Fusion Strategy Accuracy (%) Precision (%) Recall (%) F1-Score (%)

No Fusion (Separate Outputs) 85 83 86 84

Simple Averaging 88 86 90 88

Concatenation + Dense Layer 91 89 94 91

Weighted Feature Averaging 90 88 93 90

Proposed Fusion (Attentive Map) 92 90 96 93

Table 7  Ablation Study on Unseen Dataset (Scenario 2)

Feature Fusion Strategy Accuracy (%) Precision (%) Recall (%) F1-Score (%)

No Fusion (Separate Outputs) 62 60 65 62

Simple Averaging 65 64 67 65

Concatenation + Dense Layer 68 67 70 68

Weighted Feature Averaging 67 66 69 67

Proposed Fusion (Attentive Map) 70 70 73 72
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model’s discriminative power, generalization capability, 
and efficient use of labelled and unlabeled data, improv-
ing classification accuracy and enhancing decision-mak-
ing in lung nodule classification.

Grad-CAM and SHAP outputs in Figs. 5 and 6 provide 
a robust framework for understanding and validating the 
DDDG-GAN model’s decision-making process in lung 
nodule classification. Grad-CAM visualizations offer spa-
tial context by highlighting the regions of interest, ensur-
ing the model focuses on diagnostically relevant areas. At 
the same time, SHAP values provide a detailed numerical 
breakdown of feature importance, explaining the influ-
ence of individual features on the model’s predictions. 
Together, these tools validate the model’s strengths in 
correctly identifying benign and malignant nodules and 
identifying areas for improvement by revealing misclas-
sifications and guiding targeted refinements. This dual 
approach enhances the model’s accuracy, interpretability, 
and trustworthiness, which is crucial for reliable medical 
diagnostics.

What truly sets the DDDG-GAN apart and is a reason 
for its success is a two-generator, two-discriminator-
based architecture. Each generator undergoes training on 
a different class of nodules, benign or malignant, ensur-
ing their synthesized image strongly represents their 
respective courses Fig.  4. The architecture of the dual 
generator ensures mode collapse- a phenomenon that 
traditional GANs often suffer from, and it offers a rich 
set of high-fidelity images. Thus, The model can gener-
ate a much better generalized capability from the training 
data, leading to significant improvements in diagnostic 
accuracy with the dual discriminators specialized for 
each class respectively Fig. 6.

As this work has incorporated dual discriminators, 
giving them individual attention facilitates the differ-
entiation of those features that can demarcate between 

the benign and malignant nodules. This advancement 
allows better classification and increases the model’s 
reliability when applied to real-world medical applica-
tions with higher data variability. The advanced feature 
fusion mechanism employed by the DDDG-GAN places 
discriminative feature maps from the dual generators 
and dual discriminators into the attentive feature map. 
In this way, significant features representing nodule 
malignancy are captured by fusion and fed into convolu-
tional and fully connected layers for accurate classifica-
tion. Therefore, the capability increases the ability of a 
model to capture the fine-grained differences between 
benign and malignant nodules, precisely what is needed 
in medical diagnosis and other fine-grained classification 
applications.

The DDDG-GAN arranges the loss functions so that 
there is a balance in the contributions by the cross-
entropy loss and contrastive loss; the combination leaves 
little doubt that this will generate fused feature maps 
which will be firmly and separately set apart in cases of 
both benign and malignant nodules for better feature 
discrimination and accurate classification. The attentive 
feature mapping afterwards will enhance the model’s 
capability for diagnosing nodules, making it clinically via-
ble with more accuracy.

Regarding a direct comparison, DDDG-GAN achieves 
the highest accuracy, 92.34%, and recall, 95.71%, in Sce-
nario 1, as illustrated in Table  1. It is superior to the 
other semi-supervised methods, such as self-training, co-
training, and graph-based training. It is highly desirable 
to have a high recall in medical diagnosis to avoid miss-
ing any cases of malignancy so that the patients can be 
treated early enough for a better outcome. The proposed 
model also had the highest precision, totalling 89.93%, 
with the highest F1 score, 92.62%, distorting both the 
Specificity and sensitivity for well-balanced performance 

Fig. 13  The t-SNE visualizations, (left): the features extracted from a malignant nodule, (middle): the features extracted from a benign nodule, 
and (right): the fused features from both classes
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in discrimination between benign and malignant mod-
ules. It is crucial to avoid false positives and negatives, 
both of which are a source of serious concern in clinical 
diagnosis.

Although a decrease in performance was found in sce-
nario 2 when DDDG-GAN was tested on the unseen 
LUNA16 dataset, it still presents a considerably high 
accuracy of 70.2 per cent and a recall of 73.43%. It dem-
onstrates better generalization capabilities in comparison 
to current state-of-the-art methods. High generalizabil-
ity is crucial for the model’s applicability in real clinical 
scenarios where data variability is typically high. The 
Grad-CAM visualizations shown in Fig.  5 further aid 
in understanding the decisions made by the model. The 
visualizations below provide clear evidence of the specific 
parts of the nodule that the model focuses on when mak-
ing the classification. If a nodule is classified correctly, 
the heatmaps offer insight into diagnostically relevant 
features that support the model’s classification decisions. 
In misclassification cases, the heatmaps provide context 
on areas for improvement and guiding refinements.

The proposed DDDG-GAN demonstrates supe-
rior efficiency in the training and testing phases (see 
Figs. 12 and 14). During training, it shows a consistent 
reduction in time across five epochs, starting at 468 s 
and decreasing to 430 s, outperforming the Pyramid 
Attention-Based GAN, Reinforcement Learning-Based 
GAN, and MD-GAN, which all exhibit higher and 
more variable training times. In the testing phase, the 

DDDG-GAN maintains its efficiency with the lowest 
time of 70 s, compared to 80 s for the Pyramid Atten-
tion-Based GAN, 90 s for the Reinforcement Learn-
ing-Based GAN, and 100 s for the MD-GAN. This 
consistent performance in training and testing phases 
underscores DDDG-GAN’s practicality and robustness 
for real-world applications, particularly in resource-
constrained environments.

The possibility of progressive generative models, 
such as GANs and diffusion models, to revolutionize 
clinical workflows cannot be magnified. These models 
deliver a powerful solution to expand datasets, specifi-
cally for underrepresented patient groups, confirming 
that AI systems are trained on various and representa-
tive data. This ability handles a critical bottleneck in 
clinical AI development, where imbalanced or deficient 
datasets often determine the generalizability and fair-
ness of models. Moreover, the power of these genera-
tive models to synthesize high-fidelity, class-specific 
medical images allows the creation of tailored datasets 
that mirror rare or minority cases, which are otherwise 
difficult to collect in sufficient quantities. By seamlessly 
combining synthetic data into training pipelines, these 
technologies can significantly improve the robust-
ness and diagnostic accuracy of AI systems, paving 
the way for more fair and efficient clinical workflows. 
This advancement highlights their transformative func-
tion in making accurate medicine more accessible and 
trustworthy.

Fig. 14  Time complexity comparison in the testing phase
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Conclusions
This study introduces a novel DDDG-GAN for the semi-
supervised classification of lung nodules. The innovative 
architecture of DDDG-GAN addresses several critical 
challenges in medical image analysis, including data scar-
city, mode collapse, and the need for generalizability.

Most importantly, the dual-generator concept helps 
the DDDG-GAN overcome the mode collapse problem 
commonly found in a traditional GAN. Since its two 
generators train individually on benign and malignant 
nodule data, the model ensures the generation of diverse 
and high-fidelity synthesized images with representative 
characteristics of their respective classes. Such diversity 
in the synthesized data makes the model more robust 
and better at representing those minor, diagnostically rel-
evant differences between benign and malignant nodules.

Correlated with the dual-generator structure, the dual-
discriminator framework enhances generalization from 
training to unseen data. Each discriminator specializes 
in a specific class and possesses in-depth knowledge of 
the unique features of that class. Consequently, the clas-
sification result becomes more accurate, and the model is 
more reliable under clinical scenarios where data variabil-
ity can be very high. Due to the discriminators, they can 
focus on class-specific attributes. Therefore, the model 
learns to generate realistic images while most effectively 
distinguishing between different kinds of nodules.

The DDDG-GAN features a sophisticated mechanism 
of feature fusion. It fuses the discriminative feature maps 
output by the dual generators and dual discriminators 
into an attentive feature map. Critical features indicat-
ing nodule malignancy are contained in the attentive 
feature map. The convolutional and fully connected lay-
ers further process such captured features for accurate 
classification. In this way, the model becomes adept at 
classifying the minor differentiation between benign and 
malign nodules, which is extremely important in a medi-
cal diagnosis.

The experimental evaluations confirm the model’s 
superior performance. In Scenario 1, training on 80% 
and testing on the remaining 20% of the LIDC-IDRI 
dataset, the model has shown outstanding performance 
in terms of accuracy, 92.34%, precision, 89.93%, recall, 
95.71%, and the F1 score, 92.62%. These metrics indi-
cate the model’s ability to learn robustly and its effec-
tiveness in classifying lung nodules. Our results showed 
that the DDDG-GAN, when tested on the unseen 
LUNA16, had a relatively good or high accuracy of 
70.2% and perfect recall of 73.43%, far better than the 
results of some semi-supervised learning methods, 
which shows its effectiveness in generalizing in work-
ing with new unseen data. In other words, our method 
reached an accuracy of 92%, a precision of 90%, a recall 

of 96%, and an F1-score of 93%, significantly surpass-
ing Pyramid Attention-based GAN (accuracy: 82%, 
F1-score: 84%), Reinforcement Learning-based GAN 
(accuracy: 77%, F1-score: 78%), and MD-GAN (accu-
racy: 76%, F1-score: 78%). Likewise, in Scenario 2, 
DDDG-GAN reached an accuracy of 70%, a precision 
of 70%, a recall of 73%, and an F1-score of 72%, exceed-
ing the corresponding metrics of the approximated 
methods. These results emphasize the robustness and 
significance of the proposed dual-discriminator and 
dual-generator architecture in improving classification 
performance and handling challenges such as mode 
collapse and data lack.

Also, the corresponding time complexity analysis 
confirms the applicability of the DDDG-GAN since its 
training and testing times were always shorter than iden-
tified by the other state-of-the-art methods. Efficiency 
in computation time and high performance make the 
DDD-GAN an efficient and helpful tool in such accurate 
medical image analysis situations where this is applied in 
resource-constrained situations.

While the proposed DDDG-GAN demonstrates vital 
performance metrics on benchmark datasets such as 
LIDC-IDRI and LUNA16, its clinical validation still 
needs to be improved. The current study does not evalu-
ate the model on real-world clinical datasets, which often 
include patients with comorbidities or imaging condi-
tions that could alter the appearance of lung nodules. 
Such diverse cases could affect the model’s generalizabil-
ity. To address this limit, future work will focus on vali-
dating the model in a clinical environment by testing it 
on data collected from hospitals and clinics, enclosing a 
broader spectrum of patient demographics and medical 
conditions.

Despite the recent strides DDDG-GAN has taken 
towards pulmonary nodule semi-supervised classifica-
tion, there is still much scope for further research to 
improve and enhance its applicability. It could be further 
improved by developing better generalization techniques 
than currently exist in the model, such as advanced data 
augmentation methods for domain adaptation to deal 
better with diverse and unseen datasets. Also, multi-
modal data, as in the case of MRI or PET scans and CT 
scans, could be incorporated, providing more insight into 
diagnosis information and thus making this model all the 
more accurate and robust. Automated hyperparameter 
optimization techniques, such as Bayesian optimization 
and genetic algorithms, would make the process auto-
matic and result in better model performance without 
much manual intervention.
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