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Abstract
Background: With the advance of large-scale omics technologies, it is now feasible to reversely
engineer the underlying genetic networks that describe the complex interplays of molecular
elements that lead to complex diseases. Current networking approaches are mainly focusing on
building genetic networks at large without probing the interaction mechanisms specific to a
physiological or disease condition. The aim of this study was thus to develop such a novel
networking approach based on the relevance concept, which is ideal to reveal integrative effects of
multiple genes in the underlying genetic circuit for complex diseases.

Results: The approach started with identification of multiple disease pathways, called a gene forest,
in which the genes extracted from the decision forest constructed by supervised learning of the
genome-wide transcriptional profiles for patients and normal samples. Based on the newly
identified disease mechanisms, a novel pair-wise relevance metric, adjusted frequency value, was
used to define the degree of genetic relationship between two molecular determinants. We applied
the proposed method to analyze a publicly available microarray dataset for colon cancer. The
results demonstrated that the colon cancer-specific gene network captured the most important
genetic interactions in several cellular processes, such as proliferation, apoptosis, differentiation,
mitogenesis and immunity, which are known to be pivotal for tumourigenesis. Further analysis of
the topological architecture of the network identified three known hub cancer genes [interleukin
8 (IL8) (p ≈ 0), desmin (DES) (p = 2.71 × 10-6) and enolase 1 (ENO1) (p = 4.19 × 10-5)], while two
novel hub genes [RNA binding motif protein 9 (RBM9) (p = 1.50 × 10-4) and ribosomal protein L30
(RPL30) (p = 1.50 × 10-4)] may define new central elements in the gene network specific to colon
cancer. Gene Ontology (GO) based analysis of the colon cancer-specific gene network and the sub-
network that consisted of three-way gene interactions suggested that tumourigenesis in colon
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cancer resulted from dysfunction in protein biosynthesis and categories associated with
ribonucleoprotein complex which are well supported by multiple lines of experimental evidence.

Conclusion: This study demonstrated that IL8, DES and ENO1 act as the central elements in
colon cancer susceptibility, and protein biosynthesis and the ribosome-associated function
categories largely account for the colon cancer tumuorigenesis. Thus, the newly developed
relevancy-based networking approach offers a powerful means to reverse-engineer the disease-
specific network, a promising tool for systematic dissection of complex diseases.

Background
Global gene expression profiling with DNA microarrays
has been widely used in deciphering the underlying mech-
anisms for complex diseases, which have mixed contribu-
tions from numerous genetic and environmental factors,
and their complex interactions. Now, there are several
available approaches that use microarray data to find dis-
ease susceptibility genes, based on different metrics that
measure the importance of genes involved in pathogene-
sis. For example, some traditional statistical measures that
describe the modelling effects of predictive variables on
the studied phenotypes [1], or informatics-based meas-
ures that assess the discriminative ability of putative gene
features in differentiating phenotypic attributes of sam-
ples [2-4]. Recently, we introduced a disease-relevance
concept, designed a novel relevance measure, and devel-
oped an ensemble decision approach for estimating the
strength of (marginal) relevance of a putative gene related
to complex diseases [5]. Relevance at large has been well
studied in the fields of computer science and decision sci-
ence. Over the last three decades, increasing interest in
applications in a wide range of areas, in particular,
machine learning for feature subset selection, has been
witnessed. Bell and Wang [6] have reviewed that relevance
concepts have evolved considerably, from a simple and
intuitive relevance concept for marginally filtering a fea-
ture to the sophisticated mathematical formalism of the
concept that is quantitative and normalized, and which
aims to capture the reality of biological complexities
(epistasis or gene-gene interactions). Distinguishing it
from the correlation metric commonly used for describing
the relationships between genes, the relevance concept
can be used to characterize target-dependent behaviour
and properties of feature genes, and thus is well suited to
identify novel disease-relevance genes and to construct
disease-specific gene networks. The former has already
been well addressed in the previous report [5], and the lat-
ter was the focus of the present study.

Most of the previous efforts to identify molecular determi-
nants of complex diseases have tended not to focus on the
intricate interplay between genes responsible for the
observed cancer phenotype. Instead, they have mainly
used single-gene-based statistical analysis, which is less
able to provide a full understanding of the sophisticated

interactions between the genetic risk factors. A lesson
learned from the increasing evidence coming from model
organisms and human studies [7], suggests that interac-
tions among multiple genes/loci contribute broadly to
complex traits. Therefore, there is a clear need to develop
systematic approaches to unravel the high-order interact-
ing patterns on the high-dimension chips (e.g. microar-
rays) because they may lead to a better understanding of
the complexities involved in diseases.

Gene interaction assay or gene networking have been
widely studied [8-11]. The main focus of networking
approaches is to build target-independent networks, i.e.,
directly describing or modelling the pair-wise relation-
ships between genes, without relation to the target (a
physiological or disease condition). This includes a vari-
ety of approaches, such as Pearson's (or derived) correla-
tion-based approach [12,13], Boolean network [14,15],
Bayesian network [16,17], differential equations [11,18]
or model free approach [19]. Although these methods
have been successfully used to elucidate the functional
relationship between genes, they are unlikely to directly
output the specific gene networks in response to abnor-
mal physiological conditions such as disease. Recently,
several attempts have been made to identify the aberrant
behaviour in gene networks in disease conditions. Ergun
et al. [20] have applied an approach with two phases to
non-recurrent primary and metastatic prostate cancer
data. In phase one, a network model of regulatory interac-
tions was reverse engineered. In phase two, the network
was used as a filter to determine the genes affected by the
condition of interest. The authors identified the androgen
receptor (AR) gene among the top genetic mediators, and
the AR pathway as a highly enriched pathway for meta-
static prostate cancer. Furthermore, they have also demon-
strated that the AR gene can be used as a marker to detect
the aggressiveness of primary prostate cancers. Daniel et
al. [21] have searched for cancer regulatory programs that
link transcription factors to target genes that are condi-
tionally activated in specific types or subtypes of cancer.
Their results have suggested that alterations in pathways
that active some transcription factors might be responsi-
ble for the observed gene deregulation and cancer patho-
genesis. Segal et al. [22] have developed a module-
network approach to identify modules that underlie
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tumourigenesis. Nevertheless, a comprehensive and sys-
tematic approach to constructing de novo disease-specific
gene networks is lacking, possibly due to no suitable met-
ric to describe disease-driven gene-gene relationships.

The main objective of this study was to evaluate a newly
defined disease-driven pairwise relevance metric for iden-
tifying interacting gene pairs, followed by constructing
disease-specific gene networks related to complex dis-
eases. In some sense, the developed relevance-concept
based networking approach was extended from our previ-
ously proposed algorithm [5] that aimed to identify dis-
ease relevance genes based on a marginal measure or best
trees for classification. To describe disease-driven gene-
gene relationships, we defined a novel joint relevance
measure, called Adjusted Frequency Value (AFV) to evalu-
ate the strength of a gene-gene interaction in the gene for-
est related to complex diseases. We applied the proposed
method to analyze a publicly available microarray dataset
for colon cancer. First, we constructed a colon cancer-spe-
cific gene network. Then, we performed pathway analysis
based on curated cell processes, and function enrichment
analysis based on Gene Ontology for the gene-gene and
three-way gene interactions, in order to establish in which
biological processes this network participate, and in
which functions associated with colon cancer etiology.
Separately, we also identified the hub genes in the con-
structed gene network for mining the central elements
related to colon cancer pathogenesis. Next, a literature
searching was carried out to validate the above findings.
Finally, the powers of the classifications based on the
colon cancer-specific gene network and the colon cancer
related gene subset were compared. As a result, we dem-
onstrated that the colon cancer-specific gene network cap-
tured the most important genetic interplays in several
cellular processes, such as differentiation, mitogenesis,
proliferation, apoptosis, inflammation and immunity,
which are known to be pivotal for tumourigenesis. Fur-
ther analysis of the topological architecture of the network
identified three known hub cancer genes [interleukin 8
(IL8); desmin (DES) and enolase 1 (ENO1)], while two
novel hub genes [RNA binding motif protein 9 (RBM9)
and ribosomal protein L30 (RPL30)] may define new cen-
tral elements in the gene network specific to colon cancer.
In addition, Gene Ontology based analysis suggests that
the tumorigenesis in colon cancer results from dysfunc-
tion in protein biosynthesis and the functional categories
associated with ribonucleoprotein complex.

Results
Description of the colon cancer data
The proposed method was used to analyze a well-known
data set in the microarray literature, colon cancer data,
analyzed initially by Alon et al. [23]. It consists of absolute
measurements from Affymetrix oligonucleotide arrays,

with 62 tissue samples of 2000 human gene expressions
(40 tumours and 22 normal tissues).

Construction of gene forest related to colon cancer
This analysis started with building a gene forest, from
which significant gene-gene relationships were extracted.
To this end, a 5-fold cross validation resampling strategy
was used to construct multiple replicates of training and
test sets. In this procedure, colon cancer and normal sam-
ples were randomly divided into 5 non-overlapping parts
of roughly equal size, denoted as Di (i = 1, 2, ..., 5) for
colon cancer and Ni (i = 1, 2, ..., 5) for normal samples,
respectively. A combination of Di and Ni constituted a test
set and the rest of the data were used as the training set.
Thus, all combinations produced 25 pairs of training and
test sets, {Ld, Td} (d = 1, 2, ..., 25). By repeating this proce-
dure 20 times, we obtained 500 pairs of data. On each
pair, a classification tree was constructed and tested using
a computational statistic Matlab toolbox [24], where each
gene was a node variable and in this way a gene forest with
500 trees was constructed. We used Gini's diversity index
as the criterion for choosing a split. The tree growth was
stopped if a further split at the current node did not
improve the purity of its child nodes or when there were
less than two samples. For the detail of construction of
gene forest related to colon cancer, see the Methods sec-
tion or the previous report [5].

Distribution of AFVs
From the newly built gene forest, we identified 780 gene
pairs (involving 165 genes) appearing in the same trees.
Per the definition and formula provided in the Methods
section, the AFVs for these gene pairs ranged from 0.09 to
19.14, which was generally much smaller than the mar-
ginal relevance value that measured the contribution of a
single gene feature [5]. The distribution of the 780 gene
pairs' AFV values is shown with blue circles in Figure 1. In
order to determine their statistical significance, we per-
formed 1000 permutations in which the sample labels
were randomly shuffled. The estimated empirical null dis-
tribution of AFV obtained from estimating 8881 gene
pairs in 1000 random trees gave the largest value of 4.43
and the threshold for significance level of 0.01 was esti-
mated to be 0.53. The permuted distribution is shown
with red circles in Figure 1. Apparently, both curves indi-
cate that this metric follow an extreme value distribution
and the curve for the real data shifted to the right of the
null distribution. Thus, the gene pairs with AFV over the
threshold were considered as having significant gene-gene
interactions.

Construction of colon cancer-specific gene network
We found 200 significant (p ≤ 0.01, AFV threshold 0.53)
colon cancer-specific gene-gene interactions among 74
genes, with the smallest p value <1.13 × 10-4 (for details on
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all the gene pairs, see Additional file 1). All AFV values of
the 200 significant gene pairs were used to create a graph-
ical representation (Figure 2). The background of the heat
map is red, and the AFV values are encoded by other col-
ours, as indicated by the side bar. The heat map indicates
that only a small proportion (7.40%, 200/2701) reached
the significance level, but this number was much higher
than expected (0.01 × 2701≈27), which was randomly
selected under the null distribution. Intuitively, several
genes (e.g. IL8, DES, RPL30, RBM9 and ENO1) had an
unusually higher number of significant interacting genes
(encoded by non-red colours), which suggests that they
may play a central role in the disease process. By annotat-
ing the 74 genes to the Entrez Gene [25] and Unigene [26]
databases at NCBI, we found 52 known genes that
accounted for 109 gene interactions out of the identified
200 gene pairs. To simplify the further bioinformatics
analysis, we only focused on the 52 genes whose function
had been well characterized and documented in GO. By
connecting two genes in each gene pair, we constructed an
un-weighted gene network for colon cancer (Figure 3).
One can easily identify that five genes (IL8, DES, RPL30,
RBM9 and ENO1) had the highest connectivity scores.
IL8, a chemotactic and inflammatory cytokine (a ligand),
had 33 connections with the 52 known genes; next was
DES, a type III intermediate filament found near the Z line
in sarcomeres, which had 17 connections.

The functional implications of the constructed network
remained to be elucidated. Thus, we used 'Functional

Annotation' in DAVID Bioinformatics Resources to per-
form functional enrichment analysis based on Gene
Ontology [27]. We defined the 74 genes as the test set and
the entire 2000 genes as the background. We set a mini-
mal node size of five genes from the test set, and a nomi-
nal significance level of 0.05, given by the EASE Score
method, a modified Fisher Exact test. We identified 13 sig-
nificant GO terms, as shown in Table 1. In order to iden-
tify more specific functions, we eliminated the redundant
but broad terms among the 13 GO terms. Finally, we
obtained seven more specific GO terms (shown in bold
type in Table 1). From the two dimensions 'Cellular Com-
ponent' and 'Molecular Function', we found that the
pathogenesis of colon cancer was consistently linked to
ribosome (associated categories such as 'ribosome', 'ribo-
nucleoprotein complex' and 'structural constituent of
ribosome'). Based on the dimension 'Biological Process',
we concluded that 'protein biosynthesis' largely
accounted for colon cancer tumourigenesis. These conclu-
sions are well supported by multiple lines of experimental
evidence. One study has demonstrated that there is
increased synthesis of ribosomes in colorectal tumours,
and that this increase is an early event in colon neoplasia
[28]. In another recent study [29], it has been shown that
perturbation of specific ribosomal proteins is likely to
promote certain genetic diseases and tumuorigenesis.

Identification of hub colon cancer genes
We used a Poisson distribution to identify statistically sig-
nificant hub nodes in the colon cancer specific network.
Under the null hypothesis that the 52 genes were ran-
domly connected, a gene with >10 connections in a ran-
dom network was considered a rare event with probability
of 0.0046. Thus, we set this threshold to claim a hub gene.
By this criterion, we identified five hub genes: IL8 (33 con-
nections; p ≈ 0), DES (17 connections; p = 2.71 × 10-6),
RBM9 (15 connections; p = 4.19 × 10-5), RPL30 (14 con-
nections; p = 1.50 × 10-4) and ENO1 (14 connections; p =
1.50 × 10-4). Even after adjusting for the number of genes
tested, the five genes remained to be valid hub genes with
highly significant connectivity. Their corresponding Bon-
ferroni-corrected p values were ≈0, 1.41 × 10-4, 2.18 × 10-

3, 7.79 × 10-3, 7.79 × 10-3, respectively. Three of the five
hub genes (IL8, DES and ENO1) are proved cancer-related
hub genes, while knowledge for the remaining two genes
waits to be expanded. The detailed cross-talks with the
three proved cancer-related hub genes are listed in Table
2.

The protein encoded by Interleukin 8 (IL8), is a member
of the CXC chemokine family. This chemokine is one of
the major mediators of the inflammatory response. IL8
can promote cell proliferation and migration through
metalloproteinase-cleavage proHB-EGF in human colon
carcinoma cells [30], and induction of IL8 preserves the

Distribution of AFVsFigure 1
Distribution of AFVs. Blue circles described the scatter 
plot of AFVs estimated from the field data of 780 gene pairs, 
while red circles described the scatter plot of AFVs estimated 
from the permutated data of 8881 gene pairs in a random 
forest of 1000 trees.
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angiogenic response in HIF-1alpha-deficient colon cancer
cells [31]. Desmin (DES) encodes a muscle-specific class
III intermediate filament. Mutations in this gene are asso-
ciated with desmin-related myopathy, a familial cardiac
and skeletal myopathy (CSM), and with distal myopa-
thies. It is also a negative marker for colon cancer discrim-
ination [32]. Enolase 1, more commonly known as alpha-
enolase, is a glycolytic enzyme expressed in most tissues.
It is a homodimer composed of 2 alpha subunits. Its gene,
the ENO1, also encodes the Myc-binding protein-1,
which downregulates the activity of c-myc protooncogene
[33]. However, there are few studies that can establish the
hub roles of the remaining two genes (RPL30 and RBM9).
The ribosomal protein L30 (RPL30) encodes a ribosomal
protein that is a component of the 60S subunit. Disease
specific humoral immune responses against TBP-1,
p27(BBP), and RPL30 have been induced in patients with
hepatocellular carcinoma (HCC), and the antibodies
against these antigens may be also used as tumour mark-
ers [34]. Gene RBM9 encodes an RNA binding protein
that is thought to be a key regulator of alternative exon
splicing in the nervous system and other cell types [35].
The protein also interacts with the estrogen receptor 1
transcription factor and regulates estrogen receptor 1 tran-
scriptional activity [35]. However, there is a dearth of

information that show its direct effects on the tumouri-
genesis in cancer.

Pathway analysis of hub colon cancer genes
To validate the newly identified five hub genes, we per-
formed a pathway analysis using PathwayAssist software
(Stratagene, La Jolla, CA, USA) [36]. The knowledge-based
gene network (Figure 4) was constructed by finding out all
cellular processes directly linked to the hub genes. Based
on this analysis, IL8, DES and ENO1 are proven central
elements in this network, with 92, 24 and nine links,
respectively. However, there are insufficient data to prove
the hub roles of RPL30 (one link) and RBM9 (no link), as
revealed by the above AFV-based networking, and these
two genes may define new central elements in the gene
network specific to colon cancer. Based on the cellular
processes to which the hub genes were linked, the colon
cancer-specific gene network captured the most important
genetic interplays in several cellular processes such as dif-
ferentiation, mitogenesis, proliferation, apoptosis,
inflammation and immunity, which are known to be piv-
otal for tumourigenesis.

We also conducted a pathway analysis to identify all cel-
lular processes (or proteins) that link the five hub genes

The heat map for the gene-gene interactions relevant to colon cancer in terms of AFVFigure 2
The heat map for the gene-gene interactions relevant to colon cancer in terms of AFV. The interaction strength 
was depicted by colours, as indicated by the side bar. The gene names or accession numbers (for unknown genes) were shown 
above the heat map. Symbol '&' indicated the two replicates of a probe, and '*' indicated the two probes correspond to the 
same gene.
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by implementing "Find all shortest paths between
selected entities" in PathwayAssist Software. Again, IL8,
DES and ENO1 were the central elements (Figure 5).
Interestingly, in this network, RPL30 and DES can be
linked through GJA1 (connexin-43), the major protein of
myocardial gap junctions, which are thought to have a
crucial role in the synchronized contraction of the heart
and in embryonic development. It was also interesting to
note that the common cellular processes for the three hub
genes IL8, DES and ENO1 greatly varied from cell prolif-
eration and differentiation to maturity and death. This
may have been due to the large number of cellular func-
tions to which IL8 was linked (see also Figure 4).

High-order interactions in the colon cancer-specific gene 
network
In the colon cancer-specific gene network, 76 three-way
interactions (triangles) among 60 genes were identified by
an exhaustive searching algorithm for the network motifs.
Based on 1000 random networks, only the triangle struc-
ture, which included all possible edges between the three
nodes, was over-represented (p = 0.012) in this network at
the significance level of 0.05 using MAVisto software [37].
Hence, we focused on the triangle as the structural ele-
ment in further analysis. In addition, we also searched for
larger n-cliques, which were complete sub-graphs with n
nodes. A maximum-size 5-clique was found that

The colon cancer-specific gene networkFigure 3
The colon cancer-specific gene network. The network was made manually by integrating 109 significant gene-gene inter-
actions among 52 known genes. The functional category "regulation of physiological process" was highlighted with green 
shadow. Five centres defined by IL8, DES, RPL30, RBM9 and ENO1 were made to be easily visualized. The colour or shape 
coding of the entities was the same as used in PathwayAssist, as indicated by the bottom bar.
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described the dense cross-talks between five genes: CD37,
DES, MYH9, RBM9 and RPL30. However, this 5-clique
could not be fully confirmed by our current knowledge of

the five molecules, and further experimental validation is
required.

Table 1: The GO terms that significantly enriched with gene-gene interactions. In the bold style are the more specific GO terms

Category GO term p Description

Biological Process GO:0009059 0.0006 macromolecule biosynthesis
GO:0006412 0.0066 protein biosynthesis
GO:0044249 0.0071 cellular biosynthesis
GO:0009058 0.0143 biosynthesis
GO:0006936 0.0245 muscle contraction
GO:0016043 0.0306 cell organization and biogenesis

Cellular Component GO:0043228 0.0007 non-membrane-bound organelle
GO:0043232 0.0007 intracellular non-membrane-bound organelle
GO:0005840 0.0022 ribosome
GO:0030529 0.0099 ribonucleoprotein complex
GO:0043234 0.0151 protein complex

Molecular Function GO:0005198 0.0032 structural molecule activity
GO:0003735 0.0055 structural constituent of ribosome

Table 2: The gene interactions that involved 3 known cancer genes in colon cancer-specific gene network

Hub gene Gene AFV p Hub gene Gene AFV p

IL8 EPHB4 9.53 0.0001 DES MORF4L2 10.23 0.0001
RBM9 9.46 0.0001 RPL30 8.37 0.0001
ENO1 7.54 0.0001 RBM9 4.38 0.0002
EIF2S2 5.88 0.0001 TPT1 4.03 0.0002
IL1R2 4.34 0.0002 PRPS1 3.69 0.0002
MAOB 3.98 0.0002 IL8 3.69 0.0002
F13A1 3.72 0.0002 CD37 3.59 0.0002
DES 3.69 0.0002 MYH9 3.53 0.0002
TPM1 3.64 0.0002 PLAUR 2.17 0.0007
RPL30 3.45 0.0002 KIF5A 1.71 0.0008
NK4 3.41 0.0002 SRF 1.58 0.0011
PRPS1 2.88 0.0002 IFITM2 1.53 0.0011
ACTB 2.59 0.0003 RPS9:15* 1.22 0.0023
FGFR2 2.52 0.0003 RPS9:275* 0.87 0.0036
HLA-B 2.06 0.0007 ENO1 0.83 0.0039
FUT1 1.92 0.0008 HNRPD 0.83 0.0039
TNNC1 1.35 0.0016 PHKG2 0.82 0.0041
RPS29 1.33 0.0018 ACTA1 0.70 0.0051
RPLP1 1.29 0.0019
EEF1G 1.24 0.0023 ENO1 IL8 7.54 0.0001
RPL37 1.15 0.0024 F13A1 2.69 0.0003
CANX 1.07 0.0026 RBM9 1.21 0.0023
OPHN1 1.06 0.0026 RPS29 1.00 0.0032
ATF4 0.97 0.0033 DES 0.83 0.0039
MT1G 0.93 0.0036 AP3B2 0.79 0.0045
A2M 0.86 0.0037 EPHB4 0.76 0.0046
NFIA 0.84 0.0037 MAOB 0.72 0.0048
ZFP36L1 0.73 0.0047 TPM1 0.72 0.0050
SRF 0.72 0.0048 EPHB3 0.65 0.0064
PRTN3 0.71 0.0050 ACTB 0.61 0.0074
UBTF 0.67 0.0060 EIF2S2 0.61 0.0074
CPSF1 0.65 0.0064 MYL9 0.58 0.0081
TMSB4X 0.54 0.0098 FUT1 0.56 0.0090

*the two probes correspond to the same gene RPS9
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Then, an enrichment analysis based on GO was per-
formed. We defined the functional facets of the 60 genes
using the DAVID resources [27], and the parameters were
set as described above. We identified 11 GO functional
categories, of which the terms, 'ribosome', 'ribonucleo-
protein complex', 'structural constituent of ribosome' and
'protein biosynthesis', were the most specific functionali-
ties, as shown in Table 3. These results were consistent
with the enrichment analysis of two-way interactions,
which suggested that the above categories largely captured
the functional facets of the colon cancer specific gene net-
work.

Comparison of classification performances
In our previous study [5], we identified 20 highly signifi-
cant colon cancer relevant genes based on a marginal rel-
evance index that measured their separate contribution to
the gene forest for classification. Logically, the gene net-
works that included both the marginal and joint contribu-
tions of the colon cancer genes may better define the
susceptibility risk for developing colon cancer. To verify
this hypothesis, we compared the three gene sets: the 20
genes that extracted from our previous study, the 74 genes
that extracted from gene-gene interactions and 60 genes
that extracted from three-way interactions. We estimated

the average accuracy of the three sets by leave-one-out val-
idation using 5 classifiers: diagonal linear discriminate
analysis (DLDA), 3 nearest neighbours (3NN), nearest
centroid (NC), support vector machine (SVM) and Baye-
sian compound covariate (BCC), which were all imple-
mented using the BRB-Arraytools software version 3.5.0
stable release [38]. As a result, although the differences
were not statistically significant, the gene network with
gene-gene interactions, in most of the classifiers, had an
equal or better power than the 20 marginally relevant
genes in classifying tissue samples, or the gene set defined
by three-way interactions, as conceptually this set was a
subset of the data defined by two-way interactions (Figure
6). This result suggested that gene network may contain
additional contributions from the gene-gene interactions
and the three-way interactions.

Discussion
Most cancers, including colon cancer, are complex disor-
ders that can be caused by multiple genes and their com-
plex interactions. With the advance of high throughput
technologies, it is now feasible to reversely engineer the
underlying genetic networks that describe the complex
interplay of molecular elements that lead to complex dis-
eases. In this study, we proposed and evaluated a novel

The knowledge-based gene network involving all cellular processes directly linked to the hub genesFigure 4
The knowledge-based gene network involving all cellular processes directly linked to the hub genes. This net-
work was constructed by finding out all cellular processes directly linked to the 5 hub colon cancer genes using PathwayAssist 
software.
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relevance-concept metric (AFV) for identifying joint con-
tributions to complex diseases based on genome-wide
gene expression profiles, followed by constructing dis-
ease-specific gene networks. This approach was partly an
extension of our previously proposed algorithm [5],
which aimed to identify disease relevant genes based on a

marginal measure or best trees for classification. In order
to establish the power of the novel pair-wise relevance
metric (AFV), we analyzed genome-wide colon cancer
microarray data. Most of the results were supported by
previous findings, and some interesting results can be

The knowledge-based gene network involving all cellular processes (or proteins) that link the hub genesFigure 5
The knowledge-based gene network involving all cellular processes (or proteins) that link the hub genes. This 
network was constructed by finding all the cellular processes shared by the hub genes by implementing the option "Find all 
shortest paths between selected entities" in PathwayAssist software.

Table 3: The GO terms that significantly enriched with three-way interactions. In the bold style are the more specific GO terms

Category GO term p Description

Biological Process GO:0009059 0.0014 macromolecule biosynthesis
GO:0006412 0.0056 protein biosynthesis
GO:0044249 0.0080 cellular biosynthesis
GO:0009058 0.0150 biosynthesis

Cellular Component GO:0043228 0.0018 non-membrane-bound organelle
GO:0043232 0.0018 intracellular non-membrane-bound organelle
GO:0005840 0.0039 ribosome
GO:0043234 0.0077 protein complex
GO:0030529 0.0301 ribonucleoprotein complex

Molecular Function GO:0005198 0.0074 structural molecule activity
GO:0003735 0.0102 structural constituent of ribosome
Page 9 of 15
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considered as hypothesises, which require further experi-
mental validation.

Currently, two innovative concepts, disease relevance and
system biology, and the corresponding computational
algorithms are intriguing and appealing to map the com-
plexities in complex disease and are deemed to offer new
promises for promoting deep dissection of complex dis-
ease in the new century. The concept of disease relevance,
first proposed and defined by us [5], was derived from a
similar concept widely used in a range of areas, in partic-
ular, in machine learning of industrial systems and social-
economic systems. This concept tactically exploits the uni-
versal axiom of "a whole is larger than the sum of its inte-
gral components" for explaining the genetic complexities
of biological systems. The purposes of introducing the rel-
evance concept into the proposed approach for disease-
specific gene networking are: (i) to characterize the target-
dependent behaviour and properties of gene-gene interac-
tions that are largely ignored in the prevalent correlation
metric; and (ii) to define a statistic that measures the
degree of pair-wise relevance of a gene pair for reversely
reconstructing genetic networks for complex disease. The
second concept, system biology, is a fashionable label for
a new generation of large-scale experiments (e.g. the
genome-wide transcriptional profiling used in this study)
[39], which study biological systems by holistically view-
ing the structure of the system and its response to individ-
ual perturbations [40]. These perceptions are conceptually
intriguing because they provide ways of better under-

standing complex disease [5] and are thus applauded in
the fields of computational biology [40-43] and applied
domains (e.g. cancers [44], atherosclerosis [45] and drug
discovery [9,10]).

To our knowledge, this study is a pioneering attempt at
developing a relevance concept based systematic
approach to reversely engineer the underlying genetic net-
works that describe the complex interplay of molecular
elements that lead to complex diseases. The main advan-
tages of the proposed method are as follows: (i) Current
networking approaches mainly focus on building genetic
networks at large without probing the interaction mecha-
nisms specific to a physiological or disease condition.
However, our approach can identify the joint contribu-
tion of two genes to complex diseases and construct com-
plex disease-specific gene networks. (ii) The novel
relevant metric AFV was not the directly calculated corre-
lation between two individual genes, but was drawn from
the same gene subsets (or pathways) that had high dis-
crimination between different phenotypes. In this study,
there were 2000 gene-expression patterns. If we used cor-
relation-based methods, there would be 1,999,000 possi-
ble interactions. However, there were only 780 gene pairs
extracted from our constructed gene forest. Furthermore,
a correlation metric is commonly used for describing the
relationships between genes, whereas the relevance con-
cept can be used to characterize the target-dependent
behaviour and properties of a feature gene, and thus is
well suited to identify novel disease-relevant genes and to

Comparison of the mean classification performances of the three gene poolsFigure 6
Comparison of the mean classification performances of the three gene pools. The 20 highly significant colon cancer 
relevant genes were identified in our previous study. The 74 and 60 genes were extracted from the gene network based on 
gene-gene interactions and three-way interactions, respectively.
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construct disease-specific gene networks. (iii) During tree-
building we did not perform either pre- or post-pruning in
order to minimize the risk of losing any important feature
gene because of the limited sample sizes. Thus, we identi-
fied most, if not all genes related to colon cancer (includ-
ing trivial genes), even if some genes might be removed
from the ensemble decision analysis. (iv) The proposed
method can be straightforwardly applied to different types
of data of high dimension in nature. For example, in a
recent study [46], we applied the similar tree-based
ensemble method for mapping multiple loci for rheuma-
toid arthritis (RA) via analysis of 746 multiplex families
genotyped with >5000 genome-wide single nucleotide
polymorphisms (SNPs). We successfully identified 41 sig-
nificant SNPs relevant to RA, 25 associated genes and a
number of important SNP-SNP interactions (SNP pat-
terns). Many findings (loci, genes and interactions) have
experimental support from previous studies while novel
findings may define unknown genetic pathways for this
complex disease.

To further investigate the efficiency of our approach, we
also analyzed other independent microarray data for pros-
tate cancer. The identified genes and biological processes
were highly related to prostate cancer, which was sup-
ported by multiple lines of experimental evidence. The
detailed results are given in Additional file 2. Thus, both a
recent study [46] and the present study demonstrated that
the proposed pair-wise relevance metric was useful when
applied to analysis of genome-wide data and offered a
promising measure to reversely engineer the underlying
genetic networks for complex human diseases.

Conclusion
It can be seen that most of the previous efforts for identi-
fying molecular determinants for complex diseases less
often focused on the intricate interplays of genes respon-
sible for the observed cancer phenotype, but were largely
implemented using single-gene based statistical analysis
approaches that are less efficient in providing a deep
understanding of the sophisticated interplays between
these genetic risk factors. In this study, we proposed and
evaluated a novel relevance-concept metric (AFV) to
assess the joint contributions of genes for complex dis-
eases, followed by constructing disease-specific gene net-
works related to complex diseases. After that, we
identified the hub genes of the constructed gene network,
and then performed functional annotation and literature
searching to investigate the relationship of the local ele-
ments with the studied disease. Next, we mined the three-
way gene interactions (motifs), and then conducted func-
tion enrichment analysis of gene-gene and three-way gene
interactions to find out the global characteristics related to
disease pathogenesis. Application to a colon cancer
microarray dataset demonstrated that the colon cancer-

specific gene network captured the most important
genetic interplays in several cellular processes such as dif-
ferentiation, mitogenesis, proliferation, apoptosis,
inflammation and immunity that are known to be pivotal
for tumorigenesis. Further analysis of the topological
architectures of the network identified three known hub
cancer genes (IL8; DES and ENO1), while two novel hub
genes (RBM9 and RPL30) may define new central ele-
ments in the gene network specific to colon cancer. Gene
Ontology based analysis of the colon cancer-specific gene
network and the subnetwork consisted of three-way gene
interactions suggested that the tumorigenesis in colon
cancer was resulted from dysfunction in 'protein biosyn-
thesis' and the categories associated with ribonucleopro-
tein complex. In conclusion, this study demonstrated that
the newly developed relevancy-based networking
approach offered a powerful means to mine joint contri-
butions of genes for complex diseases and reverse-engi-
neered the de nova disease-specific network, a promising
tool for systematic dissection of complex diseases.

Methods
Definitions
A gene chip, a snapshot of the mRNA transcriptional activ-
ities of p genes in n tissue samples collected from either
cancer or health patients, mathematically can be
described by a n × p matrix, X = (xij), where xij represents
the expression level for the jth gene (gj) on the ith sample
(Xi). The data for each sample consists of a vector of
expression profile, Xi = (xi1, xi2, ..., xip) and a category label
(yi) describing the physiological (or pathological) condi-
tion that a subject has (e.g. diseased or healthy).

In our previous studies, we developed a systematic ensem-
ble decision approach for hunting for disease genes using
microarray expression profiling. The basic strategies were
as follows. (i) To build all possible gene subsets by
repeated learning and testing of multiple resampling-gen-
erated training and test datasets that were used for map-
ping the underlying molecular pathways that lead to
complex disease. As a disease relevant gene subset was
obtained by using a tree-based recursive partitioner, we
named gene forest for the pool of such gene subsets; (ii)
To identify all the disease relevant genes based on the
behaviour and role of the molecular features in the gene
forest. To this end, we defined a marginal relevance index
that measured its contribution to the gene forest and
derived a formula called ensemble vote, FV, which was the
weighted frequency estimate of a putative disease gene
that appeared in the trees of the forest. In the present
study, we extended the ensemble-decision approach to
identify disease-relevance gene-gene interactions and to
build disease-specific gene networks.
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Definition 1
The relevance of a gene-gene interaction pair (gi, gj) for a
disease is defined as their joint contribution to the gene
forest for the disease. We claim that the gene-gene interac-
tion is relevant to the disease if gi and gj appear simultane-
ously at a significantly higher frequency in the same trees
in the forest than that in a random forest that corresponds
to the null hypothesis of no gene-disease relevance.

Definition 2
Given an undirected graph, G, which comprises a set of
vertices (genes) V and a set of edges, E ⊆ V × V, the graph,
G, is a disease-relevant gene network if every edge <ν1, ν2>
in E is a disease-relevant gene-gene interaction.

Construction of gene forest related to disease
First, a resampling technique was employed to build up
pairs of training and test sets, {Ld, Td} (d = 1, 2, ..., m), for
learning and testing, respectively. Then, a binary decision
tree was grown on Ld by a recursive partition algorithm. At
each non-leaf node, a decision was made with regard to
the choice of a feature gene and a threshold value (cut-off)
such that the class impurity was reduced to a minimum
when a branch was made by an induction rule. After the
optimal bifurcation was made, the microarray samples
were divided into two non-overlapping subsets (two child
nodes). The same process was conducted successively
until the stopping criteria for tree growth were satisfied.
For each tree grown, it was tested on the holdout set Td to
evaluate its discriminating power for classification. This
process was repeated on each pair of {Ld, Td} (d = 1, 2, ...,
m), which consequently resulted in a decision forest with
m trees. In each tree, all the genes for bifurcation at non-
leaf nodes composed a disease relevant gene subset (path-
way), which denoted as Gd (d = 1, 2, ..., m). All Gd extracted
from the m trees composed the gene forest. The aim of this
step was to identify most, if not all genetic pathways that
lead to complex disease.

Construction of disease-specific gene network
Based on the gene forest established in the previous step,
we extracted all gene pairs in the same gene subsets. In
order to quantify the joint contribution of a gene pair,
according to Definition 1 we designed a novel pair-wise
relevancy metric, called Adjusted Frequency Value (AFV),
which was formulated as follows:

where I(gi, gj|Gd) was an indicator function and Gd was the
gene subset that contains the gene pair:

A weight, ωd, was a measure for the classification perform-
ance of Gd on a test set, such as the accuracy rate used in
this study. In short, one gene pair's AFV value was
weighted frequency of the two genes appear simultane-
ously in the same trees in the forest.

Because the asymptotic distribution of AFV could not be
derived analytically, we resorted to a permutation
approach to obtain its empirical null distribution. In the
permutation approach, we randomly assigned a label
(phenotype), yi, to each microarray and then the same

procedures for the field data were applied to the permu-
tated data. Given the empirical AFVs and a user-specified

significance level (e.g. α = 0.05 or 0.01), a critical value for

AFV was determined by its (1-α)% percentile in the simu-
lated null distribution. A gene-gene interaction was dis-

ease relevant if it's , the threshold value at

significance level α (one-tailed). According to Definition
2, if a gene network was built in such ways that every pre-
sented edge was a disease-relevant gene-gene interaction,
it was a gene network specific to the disease, a sub-net-
work enriched with pathogenic pathways that lead to the
disease.

In order to characterize the functional facets of the con-
structed disease-relevant gene network, we performed
functional enrichment analysis based on GO using 'Func-
tional Annotation' in DAVID Bioinformatics Resources
[27]. All the 2000 genes analyzed in this study were used
as the background. The probability of a GO term enriched
with the gene-gene interactions was assessed by the EASE
Score method, a modified Fisher Exact test. A smaller
EASE Score was related to a higher likelihood of enrich-
ment of a GO term with the gene-gene interactions. In this
study, to avoid the possible loss of the true positive
results, we did not perform multiple-test correction for the
multiple GO terms evaluated. Therefore, the p-value
quoted should be considered as a heuristic measure, use-
ful for roughly rating the relative enrichment of each GO
term. We removed all redundant terms if all the genes
annotated to a term were also annotated to a child term.
In this case, we retained the child term because its func-
tion was more specifically defined.

Identification of hub disease genes
The topology and properties for most cellular networks
were largely determined by a relatively small number of
hub nodes (genes), which, in the context of a disease-rel-
evant network, were key genes that lead to disease or
maintaining health physiological condition. Connectivity
(the number of links) was often used to measure impor-
tance of a hub node, which, in random network, follows
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a Poisson distribution [47]. We used the following for-
mula to determine whether a node could be categorized as
a hub node. Suppose that p1 was the probability of con-
necting any two nodes in a random network with n nodes,
the probability of connectivity of equal or larger than t
was as follows:

where λ = n × p1; p1 was estimated using the number of
links in the constructed disease-specific gene network
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The algorithm flow chart of the proposed network approachFigure 7
The algorithm flow chart of the proposed network approach.
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divided by the number of all possible links. We claimed a
hub gene if its p value was smaller than the nominal sig-
nificance α.

Pathway analysis of hub colon cancer genes
To identify more specific pathways associated with the
underlying pathogenic mechanisms of colon cancer, we
used PathwayAssist software (Stratagene, La Jolla, CA,
USA) to find all the cellular processes linked to the hub
colon cancer genes using the option "Find all entities con-
nected to selected entities (Expand Pathway)". Then, we
identified all the cellular processes shared by the hub
genes by implementing the option "Find all shortest paths
between selected entities".

High-order interactions in the colon cancer-specific gene 
network
We further investigated high-order gene interactions. In
this study, triangles (three-way interactions), which have
all possible edges among the three vertices, were extracted
from the network by an exhaustive searching algorithm
and tested using MAVisto software [37]. Then, in order to
characterize the functions of these triangles, we annotated
the gene pool of the triangles to GO, and assessed the
enrichment of each GO term with these genes, using the
DAVID resources [27], as described above. Again, for the
reasons specified above, we did not perform multiple tests
for multiple GO terms evaluated.

In order to better explain the novel network approach, we
also made a graphic algorithm flow chart, as shown in Fig-
ure 7.
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