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We describe the application of algebraic polyhedral con-
straints to the computation of the 3D structure and mo-
tion of polyhedral objects. The method, which works when
complete 2D linedrawing information is available, guar-
antees the recovery of planar faces. The normals to
these faces are used for matching to models. Several ex-
amples are given to illustrate the scope of the method.

In [1] Murray et al. describe a motion processing system,
ISOR, which is able to recover the 3D motion and struc-
ture of polyhedral objects from an image sequence and goes
on, where possible, to recognize the object as one from a
database of object models. The system performs a 'bottom-
up' pass through a vision processing hierarchy in the four
stages: (i) Low level - Compute visual motion at intensity
edgels in a sequence of time-varying imagery; (ii) Segmenta-
tion - Segment the edgels (and thereby visual motion) into
groups lying on the same straight edges in the image; (iii)
Structure-from-motion (SFM) - Compute the 3D struc-
ture and motion of the partial wireframe of which the linked
straight edges in the image are the perspective projection;
and (iv) Recognition — Match the 3D partial wireframe to
a complete wireframe stored in a database of object models.

Here we make two modifications. First, the computation
of 3D structure from 2D visual motion is made under alge-
braic constraints which force the reconstructed partial wire-
frame in 3D to be strictly polyhedral. The motivation is to
make surfaces explicit at an earlier stage of the processing,
in particular, before model matching. One way of achieving
this would be to fit planes through the 3D edges and ver-
tices computed by the existing, unconstrained, algorithm. If
sets of edges were ajudged coplanar, it would then be pos-
sible to re-execute the algorithm with these additional con-
straints. However, such a method neglects the structural in-
formation contained in a single image of a polyhedral scene.
This work utilizes the information from linedrawing analysis
to provide a priori constraints to the SFM computation, us-
ing the techniques described by Sugihara [2,3]. The second
modification is that we match using the recovered planar sur-
faces as primitives, using the search method of Grimson and
Lozano-Perez [4] and the geometrical constraints described
by Murray [5,13].

1 THE UNMODIFIED SFM METHOD
For our present purpose, only details of the third stage of

the system, that where 3D scene structure is computed from
2D visual motion, are of direct concern. Prior to a resume
of that stage, we give the briefest details of the earlier stages
to clarify what information is explicit (see [1] for a fuller

Figure 1: (a) The "current" image of a toy truck from a
sequence where the camera translates towards the camera
and (b) the visual motion components

discussion).

1.1 Computing visual motion
The images in a sequence are processed in groups of three.

The second of the group is regarded as the "current" frame
and those captured one time interval earlier and one inter-
val later denned as the backward and forward frames, re-
spectively. Intensity edgels are computed in all three frames
using the Canny detector [6] which provides the position
r^ = (x,., j / e)T of each edgel e in the image to sub-pixel preci-
sion, along with its orientation and strength (change in grey
value). A thresholding operation niters out weak, isolated
edgels. Visual motion is computed at each edgel in the cen-
tral frame by analysing matching strength distributions be-
tween edgels in consecutive frames [1]. Sitting at an edgel e
in the current frame, a search is made around the position
r , in the forward frame for edgels / to which to match and
initial matching strengths between e and / at r_, are defined
initially using similarity measure which favours matching be-
tween edgels of similar strength and orientation. These initial
strengths are improved using neighbourhood support within
an iterative relaxation scheme. A similar search is made in
the backward frame, and probability distributions combined
simply by time-reversing the backwards displacements. The
resulting distribution around position r^ is analysed using a
principal axis decomposition [7], yielding two orthogonal vec-
tor components of visual motion and associated confidences.
Figure la shows the "current" image of a sequence of a toy
truck approaching the camera and the higher confidence com-
ponents of visual motion are shown in Figure lb. Note that
along the extended edges the aperture problem prevails, and
the major components are mostly normal to the edge direc-
tion. In this situation the lower confidence minor tangential
components are of such little statistical worth that they may
be discarded.

1.2 Segmentation

This stage segments the visual motion into groups lying
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Figure 2: The segmentation for the truck

along extended straight edges. Because the visual motion
is at edges, it suffices (in simple worlds!) to segment the
edgel positions, with no reference to the visual motion per
se. The segmentation proceeds through edgel linking into ex-
tended strings, breaking the strings into sections at points of
high curvature, and by determining which sections comprise
straight edges. Attempts are then made to link up straight
edges which appear to converge to a single vertex. Figure 2
shows the final result for the truck, where the circles indicate
vertices. As the visual motion is computed at the edgels,
it is a trivial matter to import the visual motion into the
segmentation graph.

1.3 The unmodified SFM algorithm
The unmodified SFM algorithm [1] is founded on the as-

sumptions that, first, each subgraph is the projection of a
rigidly moving object in the scene and, secondly, that straight
edges and vertices in the image map to straight edges and
vertices in the scene.

The scene can therefore be (over-)described by n+6 param-
eters {Ci, •• • ,Cn>EjH} where £ is the inverse or reciprocal
depth of the scene vertex which projects to image endpoint i,
V_ is the translational velocity relative to the camera, and Q_
is the instantaneous angular velocity relative to the camera.
These scene parameters are varied so as to minimize

(1)

where v^ is the measured (major) component of visual motion
at edgel e, y_J"'ed is the predicted component and we is the
confidence associated with the measurement. The remainder
of this section explains how vj"""1 is derived in terms of the
unknown scene parameters and known image quantities.

The overdetermination arises because, without external
knowledge, it is impossible to derive more than n + 5 of
the parameters because of the inevitable depth/speed scaling
ambiguity in monocular motion processing. There are two
obvious ways of reducing the dimensionality of the parame-
terization: (i) by fixing one of the reciprocal depth values or
(ii) by fixing the magnitude of the translational velocity.

Figure 3 sketches the scene and camera geometries under
consideration. Consider the image endpoint i at r^. It is
related to the corresponding scene point R^ by r,- = —1&;./?,
where / is the focal length of the camera, and £ = l/(Rj • z).
The full projected motion at r̂  is the time differential

• i) • (2)

The motion of the scene point can always be expressed as

Figure 3: The camera and scene geometries
so that after substitution:

Now consider a point r_ on the straight edge between end-
points r̂  and r^:

r = XL] + (1 - A)r, : 0 < A < 1.

The visual motion at this.point must be just

r = Ar,-

(5)

(6)

This is almost the data we measure and wish to predict,
but there are two details which must be taken care of. First,
the edgel position r^ will probably not lie directly on the line
between i and j ; edgels will meander either side of the true
line. To overcome this, we estimate A to be that describing
the nearest point on the straight line. In other words, given
an edgel at r^ between endpoints i and j

and hence the predicted full visual motion at the edgel is

i T " = Ae^ + (1 - Ae)r,, (8)

Secondly, we wish to derive a component of r£red. This is
found simply by vector projection onto the measured com-
ponent î ,. That is, our predicted value of the component

^ P r £ d =2e( i r d -^ ) / l«e | 2 - (9)
After some routine working, the magnitude of the predicted
component is given by [1]:

= V- e- 1)- CAe]l COS 6

U • x[(l - Ae)/,-!/< + Xefm + I2 sin 0]/l +

- I2 COS0]/l +

R, = V_+Q (3)

-l)ffi-Aef f>], (10)

where cos# = ( i - « J / | £ j , sinfl = (y_-2u)/\?U\< a n d where
fi — Xi cos 9 + yi sin 0, gi = y, cos 6 — Xi sin 9 and similarly for

2 POLYHEDRAL CONSTRAINTS
Although there is an implicit polyhedral assumption in the

existing SFM algorithm, in that we consider a 3D scene to be
made up of straight edges linked by vertices, nowhere do we
exploit the fact that the straight edges lying around a face
should be coplanar. To impose this though, obviously re-
quires that we discover which edges comprise the border of a
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face. This can be achieved by analysing the 2D line drawing,
at least providing it is complete, a process which also provides
other clues about relative depth. The two major methods of
reconstructing polyhedra from 2D line drawings are due to
Kanade [8], who recovered shape from line drawings using a
gradient space approach and Sugihara [2,3] who developed
linear algebraic constraints imposed in real space. Sugihara's
technique has advantages over that of Kanade. First, the for-
mer's constraints impose necessary and sufficient conditions
that the object is a polyhedron, where the latter's apply only
a necessary condition. Secondly, gradient space techniques
appear more sensitive to errors in 2D vertex positions than
the algebraic constraints. Here we utilize Sugihara's method
but, unlike previous published experimental work, we apply
the constraints under perspective projection.

2.1 Sugihara 's algebraic constraints
Using the information in the 2D graph derived for segmen-

tation, we first create a labelled 2D line drawing [9,10,11]
with lines corresponding to convex edges labelled '+', those
corresponding to concave edges labelled ' —' and those cor-
responding to occluding edges labelled '>' , where the arrow
points such that the area to the right of the arrow is the
occluding face.

Following [2,3], let V be the set of visible vertices, so that
|V| = n, and let T be the set of (partially or wholly) visible
faces, with \T\ = m. Now define the set K as 11 C V x T
• (v, f) € Tl iff v € V lies on / € T. Each pair (v,f) € H
is called an incidence pair and the triple 5 = (V, J-, TV) is an
incidence structure. This is easily computed from the labelled
line drawing.

Define scene points R lying on the face fj by

R-N_3 = -i (ii)

where N_- is normal to the face and sticks out of the surface
into free space. Using the perspective projection (equation
(3)) and writing N_}- = (ajbjCj)T, each (vi, fj) £ H gives rise
to an equation

- a,Xi/l - bjy,/l + Cj + Ci = 0. (12)

Collecting these together for every incidence pair in Tt results
in the system:

As =

where
• Cn)

(13)

(14). .. ambmcmCi

is an unknown column vector of length (3m + n) and A is a
known \H\ x (3m + n) matrix.

Any face fj divides space in two. If a point RJ is such
that R' • N_- + 1 > 0 then the point lies in front of the plane
of the face and if R/ • N_} + 1 < 0 it lies behind the plane.
Now consider two faces fj and fk sharing a concave edge,
as illustrated in Figure 4a. Consider the vertex v, such that
(vi,fk)eH but (vi,fj) 0 11. Clearly,

- bjyi/l + CJ + (i > 0. (15)

But suppose these faces share a convex edge (Figure 4b).
Then

+ a.jXi/1 + bjyi/l - CJ - C. > 0. (16)

In fact the situation is a little more complicated. The anal-
ysis above is only straightforwardly applicable when the join-
ing edge is not a re-entrant edge on a non-convex face. In
practice a test is made (in 2D) whether all the vertices of at
least one face lie to one side of the line created by extending

(c)

Figure 4: Linedrawings of polyhedra
the shared edge. If they do, then the correct inequality can
be chosen. For example in Figure 4c, all the vertices of face
fj lie on one side, so we can easily decide that vertices va and
vt lie on in front of, and behind, the plane of fj, respectively.

Then consider Figure 4d where fk occludes fj. Let
Up, vq, vr be the initial, end and mid point of the occlud-
ing edge, following along the label direction. (Note that vT

is not an obvious member of V. Sugihara explains that such
pseudo-vertices are added to V and the pseudo-incidence pair
("r, fk) to It during creation of the incidence structure. They
are then treated just like any other members.)

Either none or one oft;, or vp could touch f}, but not both.
Thus three constraints become available [3]:

- 0,-Xp/l - b3yp/l + c3 + CP > 0,

and

- bjyjl + CJ + C, > 0,

- a,jXr/l - b,yT/l + c, + Cr > 0.

(17)

(18)

(19)

Unfortunately, we cannot apply these constraints within a
single SFM computation, because of the possibility that the
occluding and occluded objects move differently, although
they can of course be used to constrain depths between sep-
arate applications of the SFM algorithm.

Constraints of the type (17) - (18) (and indeed the occlu-
sion constraints, if used) can be expressed as

Bs > 0 (20)

(where, for occlusions, the inequality sometimes permits
equality).

Hence, given that we wish to recover a polyhedral object,
one might pose the structure from motion calculation as:

Minimize
e(\2U\-KPred\f (21)

subject to the conditions

As = 0 (22)

Bs > 0. (23)

However, Sugihara highlights several difficulties with ap-
plying the constraints naively. The principal one is that not
all the equations in the equality constraint (Equation 24) are
linearly independent. We outline here the steps used by Sug-
ihara [2,3] to eliminate this problem.

2.2 Eliminating dependent constraints
Because only a few of the vertex positions in a polyhedron

are independent, some of the constraints expressed by the set
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72 depend on others. It is necessary both to eliminate these
dependent constraints and to elicit the set of independent
vertices [2,3].

First, it is necessary for the image vertices (xi«/i . . . xnyn)
to be in general position, that is, they must be algebraically
independant over the rational field so that there are no spe-
cial relationships between their positions. (Eg., three vertices
must not always be collinear, nor three edges concurrent.)
Given this condition, we seek a position-free incidence struc-
ture S, one where the constraint system has a non-trivial
solution when the vertices are in general position. Sugihara
proves the following:

Theorem 1 If S = (V, T, 72) is a incidence structure in
which no three faces sharing a vertex have a common line
of intersection then S is position-free if and only if for all
XCT:\X\>2,

where V(X) is the set of vertices that are on some faces in X
and Ti-(X) is the set of incidence pairs involving elements of
X.

Theorem 2 If S as described in Theorem 1 is position-free
and the vertices are in general position, then the system As_ =
0. is linearly independent.

Given some set of incidence pairs 72, we can use Theorem
1 to test whether it is position free. If it is not, we search
for a maximal set 72* C 72 for which the reduced incidence
structure 5* is position-free by testing that for all X C T :
\A > 2,

|V(*)l + 3|*l>|fc*(*)l+4; (24)
where Tl'(X) is the subset of 72.* involving elements of X and
V(X) = {v\v 6 V, {{v} x X) U 72* # 4>).

Let the reduced matrix associated with the constraints in
72* be A*. Theorem 2 indicates that it must be possible to
transform A* by appropriate column permutation into A',
which may be partitioned so that

A V = (Ai |A2)s ' = 0 (25)

where Ai is a non-singular |72*| x |72*| matrix whose inverse
therefore exists. The vector s_; has the same members as s_
but certain of the C values will have been permuted. Splitting
s_' into two vectors s.' = (i), £)T, it is possible to write

V = - - (26)

It is clear that we may associate the vector £ with the
reciprocal depths of the independent vertices, and ij with the
other, dependent, reciprocal depths and plane parameters.
The number of independent parameters is |£| = 3m + n —
rank(Ai).

2.3 Finding the independent set of vertices
Section 2.2 shows that a set of independent vertices must

exist. Here we briefly indicate the method proposed by Sugi-
hara to find such a set, and thus how to find the permutation
of columns that transforms A* to (A1IA2), s.to s', and B to
B' (used later).

It is possible to define the degree of freedom <TD {y) of a
set of vertices y C V such that the pair (V, <TD) is a matroid.
The subset of vertices we require is that which is the maxi-
mal independent subset of V, that is a base of the matroid.
Sugihara proves the following:

Theorem 3 If S* = (V, .F, 72*) is a position free incidence
structure then y C V — V(72 — 72*) is an independent set of
the matroid (V, <TD) if and only if for all X C T

\v\X)\ + 3\x\ > \K*(X)\ + \V(X) n y\.

Using this, and the fact for any y CV:

such that y' C y and y' is an independent set of matroid
(V,O\D), we can build an independent subset y by choosing
vertices {v} one by one from V — V(72 — 72*). Starting with
y = (f> we test whether {tf}U^y is independent using Theorem
1. If it is, y —> {v} uy, otherwise {v} is discarded. As soon
as \y\ = <7D(V) = | | ] , y must be the required base [2] .

3 A NEW SFM ALGORITHM
Under the constraints, the structure-and-motion of the

3D wireframe is fully described by the depths or reciprocal
depths of the vertices in the base y, that is, by f, and by the
six motion parameters V_ and £2. However, the constraints
have done nothing to resolve the depth/speed scaling ambi-
guity, and so we must still reduce the number of the param-
eters by one to \(\ + 5. Here, we fix the reciprocal depth of
one of these independent vertices, say &, to unity.

The SFM problem becomes one of minimizing

efllLel - \VePred\)2 (27)

subject now only to the inequality conditions

B V = B'H£ > 0. (28)

Here, the parameter vector is p = ( & . . . £,e,, V_j fi)T, B' is B

after column permutation, and H is a linear transformation.

The complete procedure to obtain structure from motion
is then:

1. Label the line drawing or 2D vertex-edge graph.

2. Find the maximal position-free incidence structure 5*
using Theorem 1.

3. Find the maximal independent set of vertices and
thereby which vertices are associated with £.

4. Set £i = 1 and guess initial values for the parameters
(£2-"£|£i) that satisify B'Hf > 0. and guess initial
values for the six motion parameters V_ and Q.

5. Starting with these initial values, minimize D with re-
spect to the parameters. If Dmin is below some thresh-
old, and the £ at minimum satisfies the inequalities,
goto Step 6. Otherwise go to Step 4.

6. If 72* = 72, end. Otherwise if 72* ^ 72 the scene posi-
tions might not satisfy the constraints in 72 — 72* be-
cause these have been removed. Correct the positions
of the vertices involved with elements in 72 — 72* by
finding the intersections of the surfaces already com-
puted. Then end.

4 SOME EXPERIMENTS

4.1 Toy truck
Figure 5 shows the line labelling derived from the segmen-

tation of the truck. The entire incidence structure proves to
be position-free in this case and the base set contains five in-
dependent vertices which are used in the SFM optimization.
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Figure 5: The line labelling for the truck

(a) (b)

Figure 6: Structure recovered (a) with and (b) without
the constraints
Thus the dimensionality of the optimization is reduced from
21 to 10. The reconstruction with constraints is shown in
Figure 6 a and that without in Figure 6 b. There is a sub-
stantial improvement in the recovered structure, particularly
marked for this case of translation towards the camera be-
cause there is very little depth information around the focus
of expansion, here at the image centre.

As well as reducing the dimensionality of the problem, we
have also recovered explicitly the planar faces of the object.
Recall that the first 3m components of 77 contain the surface
normals of the planar faces of the reconstructed object. Mur-
ray [5] has described a method of matching surface normal
and relative position data to CAD-type models. The method
is based on that of of Grimson and Lozano-Perez [4], but
develops geometrical matting constraints appropriate when
the overall scale of the 3D data is unknown. This is the case
here, because the structure data still suffer the depth/speed
scaling ambiguity.

A data to model match is grown by considering the compat-
ibility of the following metrics between pairs of data patches
(a and 6) and pairs of model faces (i and /) :

Data

Model

£„ •

The vector N^ is the unit normal to data patch a, D_ab is
the unit vector in the direction between patches a and b, and
Nnh = and similarly for the model metrics. The
various vectors are illustrated in Figure 7. Because the data
normals have sensing errors, and because the model faces
have finite extent, both sets of metrics exhibit ranges of va-
lidity, which much overlap for consistency.

The surface normals from 77 are normalized and placed at
the centre of each reconstructed face, as shown in Figure 8a.
Figure 8 b shows the labelling of faces of the surface model.
Because of symmetry, there are two matches which are feasi-
ble under the constraints, shown in Table 1.

A match which is feasible under the local pairwise con-
straints does not necessarily possess a valid global transfor-
mation (R, t, F) relating model and sensor spaces, n and a,

Figure 7: Vectors on the data and model

Figure 8: Vector labels in the case of the truck
as <r = FR/i + t where R is a rotation matrix, t is a transla-
tion and f1 is a scaling factor. Using each feasible match we
derive first the rotation R (using the quaternion technique of
Faugeras and Hebert [12]) and then the translation and scal-
ing that best relate model and data spaces. We then assess
whether this represents a good global transformation by de-
termining the overall deviation of the sensed patch positions
from their respective matched faces after transformation.

In the case of the toy truck, this process enables us to
reject the second feasible interpretation as globally invalid.
The scale factor derived for the first feasible and globally
valid interpretation finally resolves the depth/speed scaling
ambiguity [5], enabling the recovery of absolute depths and
translation velocity. For example, the veridical width of the
toy truck was 76mm and that recovered was 71.1mm; the
veridical translational velocity was V_ = (0,0,—20)mm per
frame and that computed was (0.3, 0.1, —17.9)mm per frame.

4.2 A chipped block
We include a second example with an indiddence structure

which is not position-free. Figure 9 shows the visual motion,
the labelled line drawing and the reconstruction, where the
vertex and edge indices are those given by the segmentation
stage. The full incidence structure S comprises

, f2

This is not position free, but the removal of, for exam-
ple, the pair (i>i3,/3) from H (that is, setting 72.* = 72. —
{(vi3, fi)}) makes 5* so. Using theorem 3, a base set of
independent vertices is found as

y = {v2V! Hi* v16},

thus reducing the size of the parameter space from fourteen
to nine.

= {(»2, / l ) (»13, / l ) (t)14, fl) (Vl, / 2 ) (fll , h)

(V2,f2) (Vl2,f2)(vw,f3) {v*,, fs) (vu , f3)
("13, /3) (v7, f4) (l>i2, ft) («2, ft)

1 Data patches
Model faces Match 1 —>

Match 2 —•

1
4
4

2
8
9

3
8
&

4
7
7

b
7
7

6
1
1

V
2
2

8
3
3

Table 1: The two interpretations feasible under the pairwise con-
straints. The second is found globally invalid by transformation.
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Figure 9: Image (a), line drawing (b) and reconstruction
with (c) and without (d) constraints

There is a clear improvement in the quality of the recovered
structure when compared with the reconstruction without the
constraints [1].

5 COMMENTS
We have demonstrated that the geometrical reasoning

method of Sugihara can be used successfully within the
framework of a SFM algorithm and that the surface infor-
mation recovered is of sufficient quality to match to simple
CAD models, enabling absolute depths and motion to be re-
covered.

Matching to surfaces rather than edges has the advantage
that the search space for matching is considerably reduced,
because faces are always fewer in number than edges. By
way of empirical illustration, to obtain the feasible matches
using 8 data surface patches and 9 model faces took around
2 cpu-seconds on a Sun 3/160. Even if we restrict the edge
matching problem, using only 8 of the 22 data edges, match-
ing to the model of 26 edges took 54 cpu-seconds. (The code
per attempted compatibility test is of similar complexity in
the two cases.)

In most cases explored, the recovered structure was im-
proved over that obtained by the unconstrained algorithm.
However, it is clear that by adding extra constraints or ex-
pectations about the scene, there is a risk of failure because
those expectations are not met, perhaps through noise or,
more fundamentally, if the quite strict requirements of Sug-
ihara's method are not met. Figure 10a, b shows an image
and line labelling of a CSG model house. If we attempt to
find an independent set and supply noise-free values of their
3D positions only half the object is successfully described. If
we attempt to recover SFM with the constraints, the recon-
struction is a failure, as shown in Figure 10c,d.

Perhaps the most alarming requirement is that the 2D line-
drawing be complete. Given that most existing edge detec-
tors are designed to preserve geometry rather than topology,
this is almost impossible to guarantee. There are other draw-
backs which temper enthusiasm for the method. Firstly, the
computational cost of the method is quite high, requiring in
the case of finding the base set of vertices multiple passes
through the power set of the faces. Secondly, apart from
checking the initial and final reciprocal depths for consitency,
the inequality constraints, which yield clues about relative

Figure 10: Image (a) and line drawing (b) of the moving
CSG House. Reconstruction with (c) is worse than that
without (d) constraints

depth, do not guide the SFM minimization. Although stan-
dard techniques exist for active use of inequality constraints
in the minimization of linear and quadratic functions, the
present minimization function can not be set into such forms.
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