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Abstract

The combination of multimodality medical images is generating increasing clinical
interest, but the absence of robust automatic registration algorithms is an obstacle to
these techniques entering routine clinical use. In this paper we present a new algorithm
based on surface fitting that makes use of anatomical knowledge of adjacency of identi-
fied anatomical structures to solve the 3D rigid body registration problem. The algo-
rithm has been applied to the registration of MR CT and vascular images of the head,
and has achieved accuracies similar to those obtained using interactive location of cor-
responding landmarks.

1 Introduction

Our experience of multimodality medical image combination using interactively
identified corresponding point landmarks has demonstrated that there is signifi-
cant clinical demand for accurately registered images, in particular, the combina-
tion of MR, CT and angiographic images for planning neuro and cranial base
surgery [1], and nuclear medicine PET or SPECT images with MR or CT images
of the head, neck, heart or pelvis. In these applications, the registration transfor-
mation relating the images can be adequately described by the six degrees of free-
dom of a 3D rigid body. A limitation of our own and other existing registration
algorithms is that they require considerable user interaction, and the results can be
very dependent on the skill and motivation of the user. Several authors have pro-
posed registration algorithms based on surface fitting, but no implementation has
been demonstrated to be robust and automatic in clinical use [2-5]. We propose a
modification to surface fitting that makes use of anatomical knowledge to enable
related but non-equivalent structures identified in different modalities to be fitted.
We believe that this modification will be easier to automate than conventional sur-
face fitting, and enables new classes of images to be registered. This paper
describes the algorithm and presents preliminary results for two applications.

2 Method
2.1 Fitting Related but Non-equivalent Surfaces

It is not always possible to identify equivalent high-contrast surfaces in images
that are to be registered. Two modalities may contain image features correspond-
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ing to surfaces of different structures with a known relationship to each other. For
example, the inner surface of the skull and the outer surface of the brain are two
related but non-equivalent structures. The inner surface of the skull is clearly visi-
ble in CT images but is not a distinct feature in MR images, and whilst the outer
surface of the brain is clearly visible in MR images, it is hard to delineate from CT
images. These structures are not equivalent, because there are membranes, blood
vessels and cerebro-spinal fluid (CSF) between the brain surface and the inner
surface of the skull, and because the brain surface itself is highly folded. Points on
the brain surface, however, lie within the inner surface of the skull. The concept of
containment illustrated by this example cannot be used by a conventional surface
fitting algorithm, but is frequently used by observers assessing the accuracy of
registration: in order to confirm that images are correctly registered, an expert
observer will not only check that the equivalent features used for registration
(points or surfaces) overlie each other, but they will also check that known ana-
tomical relationships between other structures are obeyed (subject to partial vol-
ume and spatial resolution limitations).

We have developed a modification to the conventional surface fitting algorithm
that enables this type of information to be incorporated. The distribution of dis-
tances separating points on a pair of related but nonequivalent surfaces can be
determined using preregistered images. This one dimensional distribution is then
used to modify the distance transform, calculated using a 3D chamfer filter [9], to
produce a cost image, in which each voxel is labelled with the cost associated
with it being occupied by a point on the related surface. This algorithm has been
tested on MR, CT and angiographic images of the brain, but is likely to be more
generally applicable.

2.1.1 Representation of Anatomical Knowledge

Knowledge about the relationship between anatomical structures can be repre-
sented in several ways. A semantic network [6] can describe relationships
between objects (eg: adjacency or containment) but provides no quantitative
information about the distribution of object locations. An analogic model - such
as the point distribution model [7] - can represent variability in the location of
points on objects using principal component analysis. In our application, there is
no need to describe the entire image, or to handle deformations of structures.
Instead, it is necessary to represent the relationship between two surfaces quanti-
tatively, which is a simpler task. For example, one surface of interest may lie
inside a second surface, with the distances between points on the surfaces varying
over the surface. The precise inter-surface relationship may also vary between
individuals, so both the inter- and intra-individual variations in surface location
must be represented. As a first approximation, this can be achieved using a one
dimensional distribution of occupancy frequency as a function of distance from
the surface. A distribution of this type can be acquired from measurements made
on images. The occupancy distributions generated from image data will incorpo-
rate both anatomical variation and image processing artifacts. For the registration
of MR and CT images this distribution was measured from patient images that
had been previously registered using our interactive point landmark registration
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software [8]. These preregistered images used for acquiring the distance distribu-
tion information will be called reference images, to distinguish them from indi-
vidual patient images being registered.

An interactive intensity threshold based region growing tool (part of the soft-
ware package Analyze®) was used to delineate the inner surface of the skull from
the reference CT images. The outer surface of the brain was interactively identi-
fied from the reference MR images using our own software. The CT surface was
represented as a 3D binary image in which voxels within the inner surface of the
skull (object voxels) had the value 1, and all other voxels had the value 0. The MR
derived brain surface was represented as a non-connected list of 3D points. The
CT surface was transformed using a 3D chamfer filter (modified to work on
images with non-cubic voxels) to generate a distance image in which all voxels
were labelled with their distance from the inner surface of the skull. These dis-
tances were negative within the skull, and positive outside it. A histogram of dis-
tances between points on the brain surface and the inner surface of the skull was
then generated by reading the voxel value from the distance image corresponding
to each 3D point in the MR surface representation.

2.1.2 Use of Anatomical Knowledge for Registration of MR and CT Images
of the Head

For individual patient images to be registered, the inner surface of the skull is
delineated from the CT image, and the outer surface of the brain from the MR
images, as described above. The distance transform from the inner surface of the
skull is then computed using the 3D chamfer filter.

The distance distribution information acquired from the reference images is
combined with the distance image to generate a cost image. Each voxel in the dis-
tance image has a label that represents its distance from the inner surface of the
skull. This distance is negative inside the inner surface (within the skull cavity),
and positive outside this volume. The distance distribution histogram acquired
from the reference images relates these distances to the probability of voxels at a
given distance from the inner surface of the skull being occupied by a brain sur-
face voxel. The distance histogram is combined with the distance image in the fol-
lowing way. First, the distance value corresponding to the peak of the distance
histogram is subtracted from all voxels in the distance image. Second, the shape
of the histogram (now modified so that its peak lies at zero distance) is used to
modify the distance gradients in the cost image. The higher the occupancy fre-
quency, the greater the gradient in the cost image. The occupancy frequency val-
ues were thresholded into three bands “high”, “medium” and “low”, with
gradients 2, 1 and 0.5 respectively. These values were incorporated into the cost
image by multiplying the distances by these gradients, and adding offsets to avoid
discontinuities.

2.1.3 Testing the Algorithm

The algorithm was tested in two ways for this application. Firstly, using registered
images, known misregistrations were applied sequentially in each of the degrees
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of freedom individually. Ideally, for each degree of freedom, the cost should be a
well behaved function of misregistration, with the lowest cost solution arising
when the images are correctly registered, and cost increasing monotonically with
misregistration. The performance of conventional chamfer matching was com-
pared with the algorithm incorporating anatomical knowledge to establish
whether the use of anatomical knowledge leads to a more well behaved optimisa-
tion space. Secondly, the algorithm was used to register images for which the reg-
istration transformation had already been determined using point landmark
registration software [8]. The solutions provided by the two algorithms were thus
compared.

2.2 Registration of Blood Vessel Centrelines to Anatomical Surfaces

There is, in fact, no reason why the non-equivalent structures being fitted both
need to be surfaces. The chamfer matching algorithm requires that one structure is
represented as a continuous surface, but the other structure is represented as a list
of discrete points. In a conventional chamfer match, these discrete points repre-
sent a surface, but they could equally well represent line segments, provided that
there is a sufficient number of line segments, or the segments are sufficiently tor-
tuous to constrain all the degrees of freedom of the registration transformation.
An important clinical application of this technique is the registration of blood ves-
sels reconstructed from bi-plane digital subtraction angiography (DSA) with MR
images. DSA remains the modality of choice for many vascular imaging applica-
tions, but the angiograms obtained are projection images, and are frequently diffi-
cult to relate to structures of interest visible in tomographic modalities from the
same patient. Several algorithms have been proposed for reconstructing three
dimensional vascular networks from these bi-plane or stereo projections [10,11].
Such reconstructions comprise lists of blood vessel centre line coordinates with
vessel radii. These representations are 3D, but only contain vascular information,
and relating them to tomographic images remains difficult. The anatomical rela-
tionship between blood vessels that are large enough to be been seen using DSA
(greater than 0.5mm in diameter) and the surfaces of anatomical structures is
often clearly defined. In the brain, for example, the larger cerebral arteries lie on
the surface of the cerebrum, held in place both by small vessel branches that pen-
etrate the surface and by the pia mater membrane. These arteries follow the fold-
ings of the sulci and gyri of the cortex. Before CT and MR imaging became
widely available, radiologists were able to make use of this close coupling of ves-
sels to brain to infer anatomical information about non-vascular structure from
cerebral angiograms alone [12]. Similarly, in the heart, the principal coronary
arteries do not penetrate the myocardium, but are anchored to it by small vessel
branches that do penetrate the myocardium. The method for registering blood ves-
sel centre lines derived from DSA with surfaces derived from tomographic
modalities is thus similar to that described in above. It was evaluated by register-
ing segments of the major cerebral arteries to the brain surface. Registered refer-
ence data was unavailable in this application, so could not be used to measure the
distribution of distances from blood vessel centreline points to the corresponding
surface. This distribution was therefore inferred from the “text book” style ana-
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tomical knowledge described above. Because the major cerebral arteries lie on the
brain surface, their vessel centrelines should lie at a distance equal to the vessel
radius from this surface. The cost image was generated from the distance image
by adding a distance corresponding to the relevant vessel’s radius.

2.2.1 Testing the algorithm

Data was acquired from a phantom made from a cadaver brain. The vessels of the
brain were perfused with a gel that gives high signal from spin-echo MR images.
Coronal T weighted MR images were acquired with a slice thickness of 2mm.
The surface of the brain was delineated using an interactive segmentation tool,
and transformed using the chamfer filter. The centreline coordinates of the right
pericallosal artery and right middle cerebral artery were selected on the same MR
images, and stored as a list of 3D point coordinates. These large cerebral arteries
have a diameter of approximately 2mm, so the cost image was generated from the
distance image by adding 1mm to all distances. The effect of misregistration on
the cost solution was simulated by applying a range of transformations individu-
ally for each degree of freedom.

2.3 Distance transforms and influence zones

An implicit assumption of surface fitting algorithms is that the transformation that
generates the best surface fit corresponds to the correct registration transforma-
tion. For some surfaces, this assumption is invalid, as two very distant portions of
equivalent or related surface may have very similar curvature. This problem could
be overcome by labelling surface patches with an anatomical label. A high cost
could then be assigned to solutions where equivalent patches were not overlying
each other. This can be achieved using influence zones. Surface voxels can be
given a label as well as being identified as lying on the surface. The label can
identify that surface voxel as belonging to a certain surface patch. For example,
brain surface voxels might be labelled with the name of the brain lobe, or even the
name of the sulcus or gyrus that they lie on. When the distance transform is gener-
ated, these labels can be propagated through the distance image producing influ-
ence zones, which are volumes of the distance image containing voxels that are
closer to that surface patch than to any other. The points being fitted to distance
image can likewise have a label assigned to them.

2.4 Optimisation

We use the combination of multiple resolutions (which blur out many of the local
minima) and stochastic optimisation algorithms (which tend to be more robust at
finding the global minimum than conventional down hill methods) to overcome
the problem of a large search space containing many local minima. The optimisa-
tion proceeds first at a low resolution with a large search space, then at progres-
sively higher resolutions and smaller search spaces. At each resolution, a genetic
algorithm [13] is used to determine the global minimum.
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3 Results
3.1 Registration of MR and CT images of the head

Figure 1 shows the distribution of distances of points on the brain surface from
the inner surface of the skull for a single set of reference MR and CT images. The
peak of this distribution corresponds to the most likely location for points on the
brain surface to lie (-0.7mm). For the purpose of incorporating the information in
this distribution into the distance transform from an individual patient, this histo-
gram was split into four regions: distances greater than 0 = low occupancy fre-
quency; 0 to -2mm = high occupancy frequency; -2mm to -5mm = medium
occupancy frequency; less than -Smm = low occupancy frequency.
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Fig 1. Distribution of distances of points on the brain surface with respect to the inner surface of
the skull measured on registered MR and CT images for one patient.

Figures 2 and 3 demonstrate the effect on the behaviour of the cost function
resulting from incorporating the information derived from this distribution into
the distance transforms. Figure 2 demonstrates that using the conventional dis-
tance image, the minimum cost solutions for translation in the z direction (cranio-
caudal) and the rotation about the x axis (a line passing through both auditor
meati) are different from those found using the point landmark based registration.
Figure 3, however, shows that by combining the distance image with the informa-
tion derived from the distance distribution histogram, the cost gradients are
steeper and the lowest cost solution corresponds to the point landmark solution for
all degrees of freedom.

For two patient studies evaluated so far (one of which was the same study as
that used to train the algorithm), the genetic optimisation algorithm converged to
a solution within 2mm translation and 2 degrees rotation of the solution found
using point landmark registration.
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Fig 2. Conventional chamfer matching of MR and CT images. Change in cost (square
of chamfer distance) resulting from translation or rotation in six degrees of freedom.
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Fig 3. Chamfer matching of MR and CT images incorporating anatomical knowledge.
Change in cost resulting from translation or rotations in six degrees of freedom.

3.2 Registration of MR and Vessels in the Head.

On the left of figure 4 is an example slice from a coronal MR dataset from a
cadaver brain. Adjacent to it are the distance transform of the same coronal slice
and the distance transform modified to incorporate the anatomical knowledge
about blood vessels running along the surface of the brain.




Fig, 4. An example slice from a coronal MR dataset of a ¢
transform (centre), and modified distance transform (right).

Registration using the modified distance transform in figure 4 was evaluated
using blood vessel data derived from the same MR images. Two vessel segments
were used: a branch of the middle cerebral artery passing through the sylvian fis-
sure, and the pericallosal branch of the anterior cerebral artery. Figure 5 demon-
strates that the best registration transformation for these two vessels lies within a
2mm translation and a 4 degrees rotation of the known solution.
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Fig. 5. Modified chamfer matching of brain surface and vessels. The minimum cost solution
for all degrees of freedom is within 2mm or 4 degrees of the known solution.

4 Discussion and Conclusions

The algorithm presented in this paper potentially provides a means of automating
the registration process for many applications. Anatomical knowledge combined
with the use of registered reference images provides a means of customising the
algorithm for particular clinical applications. We have shown how this can be
done with MR, CT and angiographic images.

Different registration algorithms place different demands on pre-segmentation
of the image data. In our algorithm, well defined surface structures need to be
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identified from MR and CT images. Although we have done this segmentation
interactively for the test data presented in this paper, automatic segmentation
algorithms have been proposed for delineating these structures [eg 14]. The seg-
mentation task is different from that required for conventional surface fitting
because it is not necessary to delineate equivalent structures in the modalities
being registered, and because the uncertainty in the surface delineation can be
coded into the modified distance transforms. The algorithm requires the additional
information on adjacency and proximity of identified structures, which in this
paper was derived from registered reference images, together with very basic ana-
tomical knowledge of the kind “cerebral blood vessels greater than 0.5mm diame-
ter are constrained by the pia-mater membrane to lie on the outside of the cerebral
cortex”. The work presented here has used only a single influence zone. The
incorporation of multiple influence zones into the distance transform would allow
for the use of multiple associated features consisting of point distributions, lines
or surfaces. The incorporation of anatomical knowledge into the cost function is
currently very simplistic. The use of multiple influence zones and occupancy
functions derived from many reference datasets would rigorous.

The registration of MR images and 3D reconstructions of vascular networks in
the brain up until now has remained an unsolved problem both because of the dif-
ficulty in reconstructing the complete cerebral circulation from bi-plane angi-
ograms, and because of the absence of equivalent structures in the two modalities
that can be used for registration. We have demonstrated that, given a brain sur-
face, and a 3D reconstruction of a small number of major cerebral artery seg-
ments, the modified chamfer matching algorithm can determine the registration
transformation relating these datasets. The blood vessel segments used for this
work were derived from the MR images so that the correct transformation was
known a priori. It is possible to reconstruct many of the major vessels of the cere-
bral circulation after the user has interactively identified the vessels in bi-plane
angiograms provided the x-ray projection geometry is known [10], but it is not
currently feasible to reconstruct a significant proportion of the cerebral circulation
[11]. If, however, a small number of vessel segments were manually reconstructed
from the angiograms, these could be used for registration of those vessels to MR
coordinates. This would establish the relationship between X-ray and MR coordi-
nate systems and could provide and additional constraint for reconstruction of the
vascular data.

For all non-linear optimisation problems, an algorithm that successfully avoids
local minima in optimisation space is essential if the results are to be reliable. The
genetic algorithm appears to be a rapid and robust method for finding an approxi-
mately correct solution (somewhere near the bottom of the global minimum, as
opposed to a distant local minimum), provided that the population size is suffi-
ciently large, but appears to be computationally expensive as a means of finding
the very bottom of the global minimum. One way of speeding up the optimisation
process would be to provide good starting estimates of the required registration
transformation (eg: by means of interactive identification of a small number of
equivalent points in the modalities being registered) thus constraining the search
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space. As currently implemented, and depending on the precise parameters used,
the algorithm typically took about one hour to run on a Sun SparcStation 10.
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