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Abstract

Kinship verification from facial images is an interesting and challenging problem.
The current algorithms on this topic typically represent faces with multiple low-level
features, followed by a shallow learning model. However, these general manual fea-
tures cannot well discover information implied in facial images for kinship verification,
and thus even current best algorithms are not satisfying. In this paper, we propose to
extract high-level features for kinship verification based on deep convolutional neural
networks. Our method is end-to-end, without complex pre-processing often used in
traditional methods. The high-level features are produced from the neuron activation-
s of the last hidden layer, and then fed into a soft-max classifier to verify the kinship
of two persons. Considering the importance of facial key-points, we also extract key-
points-based features for kinship verification. Experimental results demonstrate that our
proposed approach is very effective even with limited training samples, largely outper-
forming the state-of-the-art methods. On two most widely used kinship databases, our
method achieves 5.2% and 10.1% improvements compared with the previous best one,
respectively.

1 Introduction

Face verification in unconstrained conditions has obtained increasing attention and encourag-
ing progress in recent years [2, 3, 11, 18, 25]. Biologists find that human facial appearance is
an important cue for genetic similarity measurement [5, 6, 12]. Motivated by this finding and
related applications such as social media analysis, missing children searching, children adop-
tions and finding imitation [10, 23, 26], kinship verification through facial image analysis has
attracted more and more attention over the past few years [7, 8, 10, 14, 15, 21, 22, 24, 26, 27].
Some kinds of kinship from the KinFaceW database [14] are shown in Figure 1.
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Mother-Daughter Mother-Son

Figure 1: An illustration of some kinds of kinship from two databases. Face images from the
first to second row are from the KFW-I database. Face images from the third to fourth row
are from the KFW-II database.

The current best-performing kinship verification algorithms typically represent faces
with over-complete low-level features and strongly depend on the choice of metric learning
algorithms. However, such low-level features cannot well represent the underlying informa-
tion of kinship implied in facial images, and thus the performance of current kinship verifica-
tion is still unsatisfying. Meanwhile, we find that deep models play a key role in effectively
extracting high-level features for face identification [2, 11, 18]. Based on the existing studies
on kinship verification and the great progress of general face identification, we attempt to
use deep models for addressing the problem of face-based kinship verification. In particu-
lar, we propose to use the powerful deep convolutional neural networks (CNN) for kinship
verification, in which a group of CNNs are simultaneously learned to verify different kinds
of kinship. In our method, a pair of facial images from intra-class (with kinship relations) or
inter-class samples (without kinship relations) are sent to CNNs, with a fully-connected lay-
er to generate a feature representation, which is finally fed into a two-way soft-max classifier
to predict the kinship. Experimental results demonstrate that our methods for kinship verifi-
cation largely outperform both the previous best machine algorithms and human prediction.
Besides, we find that key-points of faces, e.g., eyes, mouth, and nose, are especially useful
for kinship verification. This is possibly due to the phenomenon that if two persons are with
kinship relations, they are often similar in some facial key-points instead of the whole face.
This is different from general face recognition. Due to the importance of key-points, we also
design key-points-based feature representation based on the deep CNNs. The results show
that facial key-points can further improve the accuracy of kinship verification.

The main contributions of this paper are three folds. First, to the best of our knowledge,
we are the first to study kinship verification with deep learning, and demonstrate that deep
CNN s is a very effective solution even with very limited samples. Second, key-points-based
face representation is introduced for kinship verification, which further improves the accura-
cy of kinship verification. Third, we extensively evaluate various methods, and find that the
proposed method largely boosts the state-of-the-art level of kinship verification, with 5.2%
and 10.1% enhancements over the previous best methods on two most widely used databases,
respectively.
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2 Related Work

Our work in this paper is closely related with kinship verification and deep convolutional
neural networks, which are briefly introduced as follows, respectively.

2.1 Kinship Verification

In the past few years, many vision researchers have investigated the problem of kinship ver-
ification via facial image analysis, and many papers have been published in top journals/
conferences [7, 14, 15, 22, 24, 26, 27]. The earliest attempt to solve kinship verification is
based on local facial feature extraction and selection [8]. Firstly, the key parts of a face are
localized, and then multiple features (e.g., color, gray value, histogram of gradients) are ex-
tracted with classic classifiers such as k-nearest-neighbor (KNN) or support vector machine
(SVM) for kinship classification. In order to obtain better features, some improvements are
proposed, like Gabor gradient orientation pyramid [26], salient part and self-similarity [7]
and dynamic expressions [10]. Also, some researchers try to solve kinship verification with
more effective learning models. For example, Yan et al. learn multiple discriminative met-
rics for kinship verification, and achieve the best results [24]. Though the performance keeps
increasing, these studies are mainly based on low-level features and shallow models, whose
results are not sufficiently satisfying. And to the best of our knowledge, the powerful deep
learning has not yet been explored in kinship verification based on facial image analysis.

2.2 Deep Convolutional Neural Networks

Recently, deep learning has shown its effectiveness in various vision tasks, such as image
classification, object recognition and face verification. Krizhevsky et al. [13] propose an
8-layer network which significantly outperforms other methods. Szegedy et al. [19] replace
the network with a deeper convolution neural network called GoogLeNet. Girshick et al.
[9] propose a method called R-CNN to solve the problem of object recognition. They use
an image segmentation technique to find candidate image regions, then use an AlexNet to
classify those candidates. Szegedy et al. [20] improve R-CNN by increasing the selective
search proposals with candidate image regions and replace AlexNet with Googl.eNet. For
the task of face verification, Huang et al. propose a deep model without supervision [11].
Cai et al. apply deep nonlinear metrics to enhance verification [2]. Some researchers use
the structure with more than one network for face verification. The Siamese network [1]
is a discriminative network using two deep convolution neural networks to extract features
from two input facial images respectively. The distance between the outputs of the two
sub-networks is defined as the dissimilitude. Different from [1], Sun et al. adopt two deep
neural networks to solve face verification [18], in which one neural network is used to learn
features through face identification, and another neural network is for face verification with
the generated features as input. These studies achieve surprisingly good performance for
face identification and verification, which motivates us to exploit a deep convolutional neural
network structure for kinship verification.
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Figure 2: The proposed architecture of basic CNN for kinship verification. For all layers,
the length of each cuboid is the map number, and the width and height of each cuboid are
the dimension of each map. The inside small cuboids and squares denote the 3D convolution
kernel sizes and the 2D pooling region sizes of convolutional and pooling layers. The input
is a pair of RGB images and the output is a two-value label.

3 Our method

In our method, we first propose a basic structure of CNN. Considering the importance of
facial key-points on kinship verification, we modify the basic structure to a new structure of
CNN based on key-points.

3.1 Basic Structure of CNN

Overview of the structure. The basic structure of CNN (CNN-Basic) used in this work
contains three convolutional layers, followed by a fully-connected layer and a soft-max layer.
As shown in Figure 2, the input is a pair of 64 x 64 images with three channels (RGB).
Following the input, the first convolutional layer is generated after convolving the input via
16 filters with a stride of 1. Each filter is with the size 5 x 5 x 6. The second convolutional
layer filters the input of the previous layer with 64 kernels of size 5 x 5 x 16. The third
convolutional layer contains 128 kernels of the size 5 X 5 x 64. After the convolutional layers,
a fully-connected layer projects the extracted features into a subspace with 640 neurons.
Max-pooling layers follow the first and second convolutional layers. We adopt the ReLU
function as the activation function of the convolution layers. Finally, this network is trained
via a two-way soft-max classifier at the top layer. Some operations in CNN are explained as
follows.

Activation function. The widely used activation function to model a neuron’s output is
the sigmoid function. However, considering the training time with the gradient descent algo-
rithm, the non-saturating nonlinearity is much faster than this kind of saturating nonlinearity.
And thus we adopt the ReLLU function as the activation function of neurons, which has been
shown to achieve better performance than the sigmoid function. With ReLU, the convolution
operation is formulated as

/) = max <o’bj(r) +Zwij(r) *xi(r)> 7 1)

where x’ and y/ are the i-th input map and the j-th output map, respectively. w'”/ denotes the
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Figure 3: The ten face regions used in our network. The images on the top row are five
key-point regions. The images on the bottom row are the original image and its four local
regions, i.e., the top-left corner, the top-right corner, bottom-left corner, bottom-right corner.

weight between the i-th input map and the j-th output map. b/ is the bias of the j-th output
map, and x denotes the convolutional operation.

Max-pooling. In general, the pooling layer summarizes the outputs of neighboring
groups of a feature map via down-sampling. The two frequently used pooling methods are
max-pooling and average-pooling. In this paper, we choose max-pooling with a neighboring
region size of 2x2. Max pooling is helpful to increase the translation invariance and avoid
over-fitting, which is defined as

i i
yj,k - 0<Hrlna;f<v {xj-erm,k-stn} ’ (2)

where y’/ , denotes the outputs of the i-th feature map in the location of (j, k). Similarly, xj.’k
denotes the value of location (j, k) in the i-th feature map.

Implementation details. The CNN is trained by back-propagation with logistic loss over
the predicted scores using the soft-max function. To initialize weights, we use a Gaussian
distribution with zero mean and a standard deviation of 0.01. The biases are initialized as
zeros. In each iteration, we update all the weights after learning the mini-batch with the size
of 128. In all layers, the momentum is set as 0.9 and the weight decay is set as 0.005. To
expand the training set, we also randomly flip images and add grayscales during training.

3.2 Key-points Structure of CNN

When a subject is demanded to verify the kinship from two face images, it is highly possible
that the key-points are focused, such as their eyes, mouth and nose. We consider that the
facial key-points have a significant impact on kinship analysis, and thus design a key-points-
based feature representation for kinship verification. In particular, we detect the centers of
two eyes, the corners of the mouth and the nose with a facial point detection algorithm [17].
Then each face image is cropped and aligned according to the five key-points. To extract
more complementary information, we also crop other five face regions without key-points
detection. The five images are the original image and its four local regions, i.e., the top-left
corner, the top-right corner, bottom-left corner, bottom-right corner. Figure 3 shows the ten
face regions.

In order to improve kinship verification with these face regions, we propose a new struc-
ture (CNN-Points) which is shown in Figure 4. The new structure contains 10 basic CNNs
(see Figure 2), each of which receives a pair of face regions. Ten sets of 640-dimensional
features are produced from the last hidden layer of the basic CNNs. The last hidden layer of
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Figure 4: Overview of the proposed CNN-Points structure for kinship verification. The
input is a pair of RGB images, which are cropped into ten face regions and fed into dif-
ferent basic CNNs. Then ten 640-dimensional feature representations are generated. After
a fully-connected layer, the final representation of the relationship becomes to be a 6400-
dimensional representation and followed by a soft-max layer for predicting their kinship.

the CNN-Points is fully-connected to the ten basic CNNs, which is defined as
. 10 640 _
Y= X X wiesriatd' |, (©)
k=1 j=1

where y/ is the output of the i-th neuron activation, w}k denotes the weight between the
input features and the i-th neuron, and f(-) is chosen to be the sigmoid function. The final
representation is 6400-dimensional features, and fed into a soft-max classifier to predict the
kinship of two persons.

4 Experiments

To show the effectiveness of the proposed deep CNNs, we conduct a series of experiments
on two publicly available kinship datasets.

4.1 Dataset

Two publicly available kinship datasets (KFW-I, KFW-II) [14] are used to evaluate our
method. These two datasets are the most widely used databases for kinship verification.
The difference between them is that each pair of facial images in KFW-I is collected from
different pictures whereas that in KFW-II is collected from the same picture. In addition,
KFW-II is larger than KFW-I in size. There are four types of kinship in the two datasets:
Father-Son (FS), Father-Daughter (FD), Mother-Son (MS), and Mother-Daughter (MD). In
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Fold KFW-1 KFW-II
FD FS MD MS all subset

1 [1,27] [1,31] [1,25] [1,23] [1,50]
2 [28,54] [32,64] [26,50] [24,46] [51,100]
3 [55,81] [65,96] [51,75] [47,69] | [101,150]
4 [82,108] [97,124] [76,101] [70,92] | [151,200]
5 [109,134] | [125,156] | [102,127] | [93,116] | [201,250]

Table 1: The face index of the five folds cross-validation on the KFW-I and the KFW-II
databases.

KFW-I dataset, there are 156, 134, 116, and 127 pairs of facial images for these four rela-
tions, respectively. In KFW-II dataset, each kinship relationship contains 250 pairs of facial
images. Some examples from KFW-I and KFW-II are shown in Figure 1.

4.2 Experimental Setups

According to the provided eyes’ positions in the two datasets, face images are aligned and
cropped into 64 x 64 pixels. Although there are several validation methods on the two dataset-
s [15, 16], we follow the standard protocol provided in [15]. In this standard protocol, the
datasets are equally divided into five folds. We perform five-fold cross validation experi-
ments on the datasets.

Table 1 shows the index of face pairs on the two datasets in our experiments. For face
images in each fold of these datasets, all pairs of face images are picked out to generate
positive and negative samples. Namely, the positive samples are the true pairs of face images
(one from the parent and one from others’ children), and the negative samples are the false
pairs of face images (one from the parent and the other from a child whose true parent is not
him/her). Obviously, the number of negative samples is much larger than that of the positive
samples. So we adopt a sample balancing operation, by which the numbers of positive and
negative samples are almost the same in each batch sent to CNNs.

We have compared our method with four widely used metric learning methods and multi-
metric learning methods which are proposed to address kinship verification, namely Con-
catenated Metric Learning (CML), Local Discriminative Distance Metrics (LDDM), Multi-
feature Neighborhood Repulsed Metric Learning(MNRML), and Discriminative Multi-Metric
Learning (DMML) [4, 15, 24]. To show an important baseline, we also compare our method
with the human for kinship verification from facial images [14].

4.3 Results and Analysis

Table 2 and Table 3 show the verification results of different kinship verification algorithms
on KFW-I and KFW-II, respectively. Our method significantly outperforms the state-of-the-
art method. The previous best method used for kinship verification is DMML [24]. Results
listed in Table 2 indicate that our method increases the previous best method by 2.3% for
the FD subset, 1.6% for the FS subset, 8.6% for the MD subset, 8.5% for the MS subset and
5.2% for the mean accuracy on the KFW-I dataset. The results listed in Table 3 indicate that
our method increases the previous best method by 5.4% for the FD subset, 10.9% for the FS
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subset, 12.9% for the MD subset, 11.4% for the MS subset and 10.1% for the mean accuracy
on the KFW-II dataset.

Table 2 and Table 3 also show comparison between different machine algorithms and
humans for kinship verification. The human performance is reported by Lu et al. [14], in
which they firstly select 50 positive samples and 50 negative samples from each of the four
subsets of KFW-I and KFW-II, and then choose 10 humans (5 males and 5 females) for
kinship verification. All of them are 20-30 years old and have never received training for
kinship verification before the experiment. In Table 2 and Table 3, HumanA means that only
the cropped face regions are presented to humans which are the same as that sent to our
CNNs. HumanB denotes that the whole original facial images are presented to observers, so
that observers can use additional information such as hair and backgrounds.

According to the results shown in Table 2 and Table 3, several conclusions could be
drawn as follows.

1. Our proposed method largely outperforms the other four machine algorithms including
the state-of-the-art method, which implies that the deep convolution neural networks
is a feasible and effective method to solve the problem of kinship verification via facial
images.

2. The method of CNN-Points further improves kinship verification of CNN-Basic. The
reason is that they can make good use of facial key-points to learn richer facial fea-
tures for kinship verification. The results show that facial key-points contain effective
information for kinship verification.

3. Tt is clear that the accuracy on KFW-II is much higher than that on KFW-I for all
machine algorithms. However, the improvement for human performance is not so
obvious. The reasons are two-folds. On the one hand, the data size of KFW-II is
larger than that of KFW-I, which is beneficial to improve the performance of machine
algorithms. On the other hand, humans have a lot of prior knowledge about face
recognition before kinship verification, and thus their performance does not strongly
rely on the data size as that of machine algorithms.

We also investigate the influence of the data size on our proposed methods. Figure 5
shows the error rate of CNN-Points with respective to different kinds of kinship verification
on KFW-I and KFW-II, respectively. We can observe from the figure that the performance

Method FD FS MD MS Mean | V.S. DMML
CML [24] 65.5% 69.5% T72.0% 64.5% 67.9% -4.4%
IML [24] 67.5% 70.5% 72.0% 655% 68.9% -3.4%

MNRML [15] | 66.5% 72.5% 72.0% 662% 69.3% -3.0%
DMML [24] | 69.5% 74.5% 755% 69.5% 72.3% 0.0%
HumanA [14] | 58.0% 61.0% 70.0% 66.0% 63.8% -8.5%
HumanB [14] | 65.0% 67.0% 77.0% 75.0% 71.0% -1.3%
CNN-Basic | 70.8% 75.7% 794% 73.4% 74.8% +2.5%
CNN-Points | 71.8% 76.1% 841% 780% 71.5% +5.2%

Table 2: Accuracy of different methods on KFW-1. The previous best method is DMML
[24].
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Method FD FS MD MS Mean | V.S. DMML
CML [24] 73.0% 713.5% 76.5% T76.0% 74.8% -3.5%
IML [24] 74.0% 74.5% 78.5% T76.5% 15.9% -2.4%

MNRML [15] | 743% 769% 77.6% T14% 76.6% -1.7%
DMML [24] | 76.5% 7185% 79.5% 78.5% 78.3% 0.0%
HumanA [14] | 61.0% 61.0% 73.0% 69.0% 66.8% -11.5%
HumanB [14] | 68.0% 70.0% 80.0% 78.0% 74.0% -4.3%
CNN-Basic | 79.6% 849% 88.5% 883% 85.3% +7.0%
CNN-Points | 81.9% 894% 924% 89.9% 88.4% +10.1%

Table 3: Accuracy of different methods on KFW-II. The previous best method is DMML
[24].

}' F-D I i F-D
— 508, I - FS — 50§ I | [|=m=Fs
SRS [ R N S
S A | ®:: M-D < ent Mo
P N3 } - s o “% bl
2w ' ‘ T 4o N T T I
= R2Y | = %
—_ i S 3
: N 5| %
2 % : = 0
@ 30 ‘\' T © % %
2 4. S
5 e ———— 18 0w
8 P, — = %
T 201 S LT - E D 20 RN — }
3 e, L & e SR
L ‘ el = 1 - S .
= | = e e,
5 | g '..' -\~
> 10 ‘ 10+ i T [

l I3 S

100 150 200

50
pair of images number

o'

25 100 125 0

pair ofs?mages ;lsumber
(a) (b)

Figure 5: 1. Four kinds of kinship verification accuracy of CNN-Points versus different num-

bers of images on the KFW-I (a) and KFW-II (b), respectively.

becomes better as the data size increases. The experimental results imply that the data size
has a significant influence on the final accuracy. Since the optimization of CNN is based on
iterative optimazation, we also examine the performance with different numbers of iterations.
Figure 6 shows the error rate of four kinds of kinship verification as the iteration increases on
KFW-I and KFW-II, respectively. It is clear that the error rates of all cases quickly decline
in the early several times of iterations and become stable after about 20 times of iterations
on two datasets. The experimental results demonstrate that the CNNs are well trained for all
cases of kinship verification.

5 Conclusion and Future Work

In this paper, we have proposed deep CNNs to address kinship verification via facial image
analysis. The proposed model generates effective high-level features related with key-points-
based representations. Experimental results demonstrate that the proposed method largely
enhances the state-of-the-art performance, and outperforms human performance. In future,
we intend to explore more deep neural networks structures, and more data for pre-training.
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Figure 6: The relationship between training sizes and the error rate of four kinds of kinship
verification with CNN-Points on the KFW-I (a) and KFW-II (b), respectively.
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