
99

IDEal : E�icient and Precise Alias-aware Dataflow Analysis

JOHANNES SPÄTH, Fraunhofer IEM

KARIM ALI, University of Alberta

ERIC BODDEN, Heinz Nixdorf Institut, Universität Paderborn and Fraunhofer IEM

Program analyses frequently track objects throughout a program, which requires reasoning about aliases.

Most data�ow analysis frameworks, however, delegate the task of handling aliases to the analysis clients,

which causes a number of problems. For instance, custom-made extensions for alias analysis are complex

and cannot easily be reused. On the other hand, due to the complex interfaces involved, o�-the-shelf alias

analyses are hard to integrate precisely into clients. Lastly, for precision many clients require strong updates,

and alias abstractions supporting strong updates are o�en relatively ine�cient.

In this paper, we present IDE
al

, an alias-aware extension to the framework for Interprocedural Distributive

Environment (IDE) problems. IDE
al

relieves static-analysis authors completely of the burden of handling

aliases by automatically resolving alias queries on-demand, both e�ciently and precisely. IDE
al

supports

a highly precise analysis using strong updates by resorting to an on-demand, �ow-sensitive, and context-

sensitive all-alias analysis. Yet, it achieves previously unseen e�ciency by propagating aliases individually,

creating highly reusable per-pointer summaries.

We empirically evaluate IDE
al

by comparing TS
f

, a state-of-the-art typestate analysis, to TS
al

, an IDE
al

-

based typestate analysis. Our experiments show that the individual propagation of aliases within IDE
al

enables TS
al

to propagate 10.4× fewer data�ow facts and analyze 10.3× fewer methods when compared to

TS
f

. On the DaCapo benchmark suite, TS
al

is able to e�ciently compute precise results.

CCS Concepts: •So�ware and its engineering→ So�ware defect analysis;

Additional Key Words and Phrases: static analysis, data�ow, aliasing

ACM Reference format:

Johannes Späth, Karim Ali, and Eric Bodden. 2017. IDE
al

: E�cient and Precise Alias-aware Data�ow Analysis.

PACM Progr. Lang. 1, OOPSLA, Article 99 (October 2017), 28 pages.

DOI: 10.1145/3133923

1 INTRODUCTION

Tracking object states helps static analyses derive information about the quality and security of

a given so�ware. For example, typestate analysis (Alur et al. 2005; Fink et al. 2008; Naeem and

Lhoták 2008; Udrea and Lumezanu 2006; Whaley et al. 2002; Yahav and Ramalingam 2004) detects

programming errors that drive an object into an undesirable state. Shape analysis (Ghiya and

Hendren 1996; Sagiv et al. 1999) proves program and data-structure invariants, particularly by

reasoning about links between objects that are allocated on the heap. �is information is useful for

�nding so�ware bugs such as memory leaks (Dor et al. 2000) or detecting security vulnerabilities

by tracking the propagation of taints (i.e., private data) (Arzt et al. 2014).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM. 2475-1421/2017/10-ART99 $

DOI: 10.1145/3133923

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



99:2 Johannes Späth, Karim Ali, and Eric Bodden

1 File a = new File();

2 b = a;

3 b.open();

4 a.close();

Fig. 1. An example that depicts the importance of handling aliases in a static dataflow analysis.

Programs can access and manipulate instantiated objects through di�erent pointers, some of

which may not be visible in the current analysis scope. To compute correct results, a static analysis

must therefore properly handle aliasing. For example, the code snippet in Figure 1 allocates a File

object (line 1) and assigns it to the variable a. It then copies a to b (line 2), causing a and b to alias.

�e code then calls open on b (line 3) and close on a (line 4). If a typestate analysis that checks for

unclosed �les does not properly handle aliases, it will imprecisely report that b might not be closed

by the end of the program. A precise typestate analysis should instead report that b is closed as

soon as close is called on a, because b and a are aliases to the same File object. On the other hand,

aliasing is also a requirement for sound static analyses. �at is, the analysis shall not miss data�ows

that may occur at runtime. A key challenge of static analysis is to design analyses that are both

precise and sound at the same time, and, ideally, implemented in an e�cient manner. We identify

aliasing as a major component of the challenge and recognized a number of key de�ciencies in the

way that most static analyses currently handle aliasing.

De�ciency 1: Custom-made extensions for alias analysis are complex and cannot easily be reused. �e

implementation of static analyses are greatly simpli�ed by the use of data�ow analysis frameworks.

However, using such frameworks does not simplify the handling of aliasing: Virtually all existing

data�ow analysis frameworks (Padhye and Khedker 2013; Reps et al. 1995; Sagiv et al. 1996) o�oad

the burden of handling aliases to the client analysis, e.g., typestate, shape, or taint analysis, forcing

the designers of those static-analysis clients to consider, design, and implement their own aliasing

solutions. A common and intuitive solution is to embed the alias relationships into the client

analysis’ data�ow functions. However, this solution makes the alias analysis heavily intertwined

with the client analysis, preventing it from being reused for other clients.

De�ciency 2: O�-the-shelf alias analyses are hard to integrate well into client analyses. Because

of the problems mentioned above, static-analysis designers instead o�en resort to the use of an

o�-the-shelf alias analysis. �is option comes with its own set of problems though. In particular, it is

highly non-trivial to integrate an o�-the-shelf analysis in such a way that the resulting analysis as a

whole is maximally precise and e�cient (Späth et al. 2016). For optimal precision and performance,

client and alias analyses should integrate in a �ow-sensitive, context-sensitive, and demand-driven

manner such that aliases are only computed when necessary and only for calling contexts and

program locations in which they ma�er to the client analysis.

De�ciency 3: Current precise alias abstractions, if supporting strong updates, are relatively ine�cient.

When designing and implementing an analysis, the key to good performance and precision is the

choice of an appropriate heap model (Kanvar and Khedker 2016). To make a client analysis precise,

it typically requires so-called strong updates, which discard relationships that no longer hold at the

current program location. Performing a strong update requires must-alias information about all

aliases of a given pointer dereference (Lhoták and Chung 2011). In Figure 1, for instance, to infer

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



IDEal : E�icient and Precise Alias-aware Dataflow Analysis 99:3

that the call to close (line 4) closes not just a but also b, the analysis must know that both variables

must-alias. To track must-alias information, instead of tracking pointers individually, current

static analyses (Fink et al. 2008; Naeem and Lhoták 2011) track entire sets of pointers through the

program. Unfortunately, the resulting powerset-abstraction is relatively ine�cient, causing current

must-alias analyses to scale badly.

To overcome these de�ciencies, we present IDE
al

, an alias-aware extension to the existing

data�ow analysis framework Interprocedural Distributive Environment (IDE) (Sagiv et al. 1996). IDE
al

transparently extends IDE with a reusable, precise, and e�cient heap model that includes handling

of aliasing in an optimal integrated manner. To optimize for precision, IDE
al

supports strong

updates as well as a �ow-sensitive and context-sensitive analysis. To optimize for performance,

IDE
al

computes alias relationships in a demand-driven, client-context-dependent manner. Further,

to the best of our knowledge, IDE
al

is the �rst framework that resolves must-alias relationships

without resorting to expensive-to-compute powerset abstractions. With IDE
al

, we show that it

is indeed possible to compute must-aliasing correctly even when e�ciently tracking pointers

individually, not as sets of pointers.

IDE
al

can be useful wherever objects or their �elds’ contents must be tracked, in particular to

implement any kind of �eld and �ow-sensitive analysis. We speci�cally showcase IDE
al

’s practical

relevance, its precision and soundness by instantiating an IDE
al

-based typestate analysis (TS
al

)

and empirically evaluate it in comparison to TS
f
, a highly precise and e�cient state-of-the-art

typestate analysis by Fink et al. (2008). Our experiments show that the heap model in IDE
al

reduces

the amount of relevant data�ow facts to be propagated by a factor of 10.4×. In line with that, TS
al

analyzes 10.3× fewer methods compared to TS
f
. Despite IDE

al
computing aliases on-demand, and

TS
f

relying on a pre-computed whole-program pointer analysis, TS
al

is as e�cient and precise as

TS
f

even in the worst case, where it is applied to large benchmarks as a whole.

In a case study we discuss IDE
al

as the underlying framework of an analysis that detects

incorrect usages of the Java Cryptographic Architecture (JCA) library. �e JCA is a frequently

used cryptographic library that ships with any standard Java installation. �e analysis instantiates

IDE
al

as both a taint and a typestate analysis. In experiments on 200 Android applications, the

IDE
al

-based analysis terminates within two minutes per application on average, showing that

IDE
al

can be used to implement also feature-rich static analyses e�ciently. Our results further

con�rm earlier studies showing that few applications use cryptography correctly (Egele et al. 2013).

In summary, this paper makes the following contributions:

● We present IDE
al

, an extension to the IDE framework that resolves aliases automatically,

e�ciently, and precisely.

● We provide a practical solution to perform sound strong updates, while propagating aliases

individually.

● We discuss our implementation of an IDE
al

-based typestate analysis, and experimentally

evaluate its precision and recall compared to the state of the art, and assess its performance

at runtime.

● We present a full implementation of a client analysis, a crypto usage-checker, which uses

IDE
al

both for taint and typestate analysis.

2 BACKGROUND

�is section presents background information about the main building blocks of IDE
al

: the IDE

framework, its be�er-known historical predecessor IFDS, and the alias analysis Boomerang.

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



99:4 Johannes Späth, Karim Ali, and Eric Bodden

2.1 The Original IFDS Algorithm

�e algorithm for solving Interprocedural Finite Distributive Subset (IFDS) problems (Reps et al.

1995) is an e�cient �xed-point algorithm that can be used to de�ne a �ow- and context-sensitive

data�ow analysis. IFDS has three inputs, a �nite data�ow-domainD, a supergraph (an interprocedural

control-�ow graph), and �ow functions f ∶ S × D → P(D) that transform a single data�ow fact

d ∈ D before a statement s ∈ S to a set of facts that hold a�er the statement. In IFDS, �ow functions

are of four di�erent types. Normal-�ow functions specify the transformation of data�ow facts at

non-call statements. At call sites, the call-to-return-�ow function propagates data�ow facts at the

side of the caller. �e call-�ow function maps data�ow facts from the caller’s scope to those of

the potential callees. �e return-�ow function maps data�ow facts at exit points of a callee to the

successor statements of the original call site. Internally, IFDS transforms the data�ow analysis

into a reachability problem over an exploded supergraph ESG. A node in ESG comprises a data�ow

fact d ∈ D and its related statement s . �roughout the paper, we use ⟨s,d⟩ to refer to a node with

statement s and data�ow fact d in ESG.

Distributive �ow functions are key to the e�ciency of IFDS. For any two data�ow sets A,B ⊆ D
and �ow function f , f (A∪ B) = f (A) ∪ f (B) must hold. �is property makes it sound and precise

to propagate facts d ∈ D individually. Non-distributive frameworks instead must always propagate

entire �ow setsA ⊆ D. IFDS is particularly e�cient because distributivity enables storing point-wise

procedure summaries, one for each abstract input to a function, that can be reused as soon as the

matching individual fact is seen again at another call site.

2.2 The Original IDE Algorithm

Sagiv et al. (1996) extended IFDS to Interprocedural Distributive Environments (IDE). In addition to

the ESG of IFDS, IDE computes environments, functions env ∶D → L, where L is a bounded-height

la�ice, and D is the �nite data�ow-domain of the extended IFDS instance. �e environments

encode mappings of data�ow elements of D to values in the la�ice L. IDE expects environment

transformers for each statement to compute the environments. �e transformers are functions

t ∶Env(D,L) → Env(D,L), where Env(D,L) is the set of all environments. Similar to �ow functions,

the environment transformers describe the e�ect of a statement on the la�ice value for a particular

data�ow fact. IDE requires those environment transformers to be distributive: (t(⊓ienvi))(d) =
⊓i(t(envi))(d) for any d ∈ D and env1,env2, ... ∈ Env(D,L). �is property allows an environment

transformer to be split and represented by edge functions, functions of the form f ∶L → L that

are assigned to the edges of the ESG. Evaluation of the edge functions than computes the same

environment as the environment transformer. Using of identity function as edge functions on every

edge of the ESG, IDE can be used to solve IFDS problems.

Similar to IFDS, IDE is a �xed-point algorithm. During the ESG construction, the corresponding

edge functions are composed, met and propagated, once the construction of the ESG is done, the

resulting edge functions are evaluated to yield the �nal la�ice values associated with each node of

the ESG, i.e. the environment. �e la�er process is known as Phase 2 of IDE.

Figure 2 shows an example that uses IDE to perform linear constant propagation (Sagiv et al.

1996). �e �gure depicts the ESG that IDE generates during its �xed-point iteration. For this

example, D is the set of local variables and the graph represents the �ow functions on D as straight

edges. Each data�ow fact d (the local variable) is shown at the top of the column where the node is

drawn. Nodes are placed between two statements, because each node represents a fact that holds

a�er and before a statement. To uniquely identify a node, we refer to the statement that is before it.

Constant propagation starts at assignments of constant integers to variables, here at line 6. �e

assignment v = u (line 7) transfers the value of u to v. �e data�ow fact v that holds before the

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



IDEal : E�icient and Precise Alias-aware Dataflow Analysis 99:5

5 foo(){

6 int u = 0;

7 int v = u;

8 int w = bar(v);

9 }

u v w

0

+1

10 bar(int a){

11 b = a + 1;

12 return b;

13 }

Flow

Summarized Flow

IDE Edge FunctionFUNC

a b

+1

Fig. 2. Linear constant propagation modeled in IDE.

call to bar (line 8) �ows into callee bar. Upon termination of the analysis of bar, IDE stores the

summary information that a �ows to a and b. �is summary is then applied at the call site to bar.

In the �gure, this is highlighted by the squiggled edges labeled as summarized �ows. To complete

the linear constant propagation, IDE adds edge functions to compute the �nal environment. �e

environment of a linear constant propagation associates to each variable a set of integer values. To

the statement u = 0, IDE assigns the constant edge function λv .0, here denoted just by 0. Within

bar, the �ow from a to b at the statement b = a + 1 (line 11) receives the edge function λv .v + 1,

denoted by +1. �is edge function simply increases every incoming la�ice value by one. IDE

then promotes the edge function +1 to a summarized �ow of bar. �e summary of bar states that

value of variable a �ows to b and additionally increases the la�ice value by one. Eventually, IDE

composes the edge functions along each �ow, making use of the summaries where appropriate. In

the example, the linear constant propagation computes the environment that maps the variables u,

v and a to the value 0, and b and w to the value 1.

2.3 Boomerang: An All-Aliases Analysis

In any language involving pointer variables, data�ow can occur also indirectly, through reads and

writes from/to aliased memory locations. In Java this involves �eld reads and writes. To be sound

and precise, static analyses must handle such aliasing, i.e., they should resolve which pointers may

point to which memory locations. In this paper, we show that one can o�oad the entire tracking

of aliases from the IDE
al

framework using an all-aliases analysis. To resolve aliases internally,

IDE
al

builds on top of Boomerang (Späth et al. 2016), a demand-driven, context-sensitive and

�ow-sensitive pointer analysis. In contrast to traditional points-to and alias analyses (Sridharan

et al. 2005; Yan et al. 2011), for a given variable v , Boomerang determines the points-to set of v ,

and e�ciently computes all variables in the current scope that may point to the objects that this

points-to set refers to. Boomerang thus computes all aliases of v . Boomerang �rst computes a

backward pass to determine the points-to set of v , followed by a forward pass to determine all

aliasing variables (in the same scope as v , optionally �ltered by some calling context).

3 OVERVIEW OF IDE
AL

We now provide an overview of IDE
al

before explaining the internal details of the framework in

Section 4. �e work�ow of IDE
al

consists of two consecutive phases: the object-�ow propagation

(Phase OF) and the value-�ow propagation (Phase VF). Both phases execute an instance of IDE, they

only di�er in their propagated edge functions. �e propagations of both phases start at the same

seed, a client-de�ned source node of the ESG. �e seed is a node ⟨s,p⟩ of an abstract pointer p at a

statement s .

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



99:6 Johannes Späth, Karim Ali, and Eric Bodden

3.1 Phase OF: Object-Flow Propagation

�e purpose of Phase OF is to follow the �ow of an object through the program. Instead of statically

abstracting an object by its allocation site, IDE
al

uses access graphs (Ge�en et al. 2014; Khedker

et al. 2007). An access graph represents a local variable that is potentially followed by a regular

expression of �eld accesses (e.g., v.f+.g). IDE
al

uses the fully quali�ed �eld names to distinguish

�elds with the same names but declared in di�erent classes. �e data-�ow domain D of IDE
al

is

�xed to the set of all access graphs, referred to by A.

Given an access graph p ∈ A from the seed statement s , IDE
al

derives all other access graphs q
at any control-�ow successor t of s such that q at t is an alias to p at s . In other terms, the access

graph q may access the same object as p is pointing to. Tracking this �ow is challenging, because a

statement can introduce aliasing pointers directly and indirectly. A�er an assignment statement

of the form x = y, the pointers x and y alias directly. However, at �eld-write and call statements,

indirectly aliased access graphs may be introduced. To detect those indirectly aliased pointers,

Phase OF keeps track of points of aliasing (POAs), each of which executes a pointer query. From

the result of the pointer queries, IDE
al

derives and propagates indirect pointer �ows. �e pointer

query is required to compute all aliases of the pointer p at the given statement s , which IDE
al

uses Boomerang to compute. Phase OF uses IDE and models �ows of directly aliased pointers

using standard pointer-�ow functions (Section 4.1) that operate on A. We modi�ed the original

IDE algorithm to keep track of POAs that model indirectly aliased �ows automatically. As edge

functions, this phase �xes all functions to be the identity edge function.
1

Due to this fact, Phase 2

of IDE is not executed in Phase OF.

By construction of our modi�ed IDE algorithm, all nodes ⟨t ,q⟩ that are propagated may point-to

the same object as the seed node ⟨s,p⟩. We refer to the collection of all those nodes as the object-

�ow graph (OFG). �e edges of the OFG originate from (1) the standard-�ow functions and (2)

the indirect �ows at the POAs. �e OFG is the ESG of our modi�ed IDE problem with the �xed

standard �ow functions. In this work, we only use the OFG for visualization purposes but it is

never constructed explicitly by IDE
al

. A�er the �xed-point of IDE has been found, Phase OF is

complete and IDE
al

executes Phase VF.

3.2 Phase VF: Value-Flow Propagation

�e goal of Phase VF is to compute IDE environments. I.e. associate a value of a client-de�ned

�nite-height la�ice to each of the nodes of the OFG. As each node of the OFG is a pair of an access

graph and a statement, Phase VF computes the la�ice value associated to the access graph at the

statement. For Phase VF, IDE
al

triggers a second round of IDE, this time also Phase 2 of IDE is

executed. Phase 2 of IDE remains unchanged in IDE
al

. For Phase VF, IDE
al

uses the same standard

pointer �ow functions and the POAs that are used in Phase OF. In addition to the seed, Phase VF

requires the user to supply distributive environment transformers in the form of IDE edge functions

that describe the transformations of the la�ice values along the interprocedural path(s) of the OFG.

Note, the environment transformers can only be represented as edge functions, if the environment

transformers are distributive. �is holds in general for IDE and must also be guaranteed when

instantiating an analysis in IDE
al

.

Clients that have already been shown to obey the distributivity property and therefore are

instantiable in IDE
al

are linear constant propagation (Sagiv et al. 1996), more precise data�ows

in the presence of correlated calls (Rapoport et al. 2015) or the analysis of so�ware product

lines (Bodden et al. 2013).

1
Phase OF simpli�es to an IFDS problem. For the sake of the presentation, we present it as an IDE problem.

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



IDEal : E�icient and Precise Alias-aware Dataflow Analysis 99:7

I O C

INIT

OPEN CLOSE

CLOSE

Fig. 3. The finite state machine for File objects.

During Phase VF, all POAs are known and their queries are computed. �e results of the pointer

queries at each POA determines whether or not a bypassing pointer’s value is strongly updated.

Even though both IDE
al

phases perform an IDE �xed-point computation that is only distinguished

by the edge functions, IDE
al

has to compute the IDE �xed-point twice. A necessity when one wants

to perform strong updates but propagate aliased pointers separately. We discuss this in Section 3.3,

where we also elaborate on a typestate analysis example instantiated in IDE
al

.

3.3 Typestate Analysis in IDE
al

In this section we show how to instantiate an IDE
al

-based typestate analysis by de�ning a concrete

la�ice L and the respective environment transformers for a typestate analysis.

3.3.1 Instantiation. Typestate properties can be encoded in �nite state machines (FSM). �e

FSM for an object of type File is drawn in Figure 3. At the end of the lifetime of a File object, its

typestate must be in an accepting state C or I. Formally, a FSM for an object of type T has the form

A ∶= (Σ,S, s0,δ , F). Σ is the set of methods that may be invoked on an object of typeT changing the

state of the object, S the set of all possible states, s0 is the initial state, δ is the transition function

δ ∶S × Σ → S and F is the set of accepting states of the �nite state machine. �e la�ice for the

typestate analysis in IDE
al

is the la�ice LA ∶= (P(S),∪), the powerset of the set of states S ordered

by set union. Concretely, we map each node of the OFG to a set of states of the FSM.

�e data�ow domain D in IDE
al

is �xed to the set of all access graphs A and the environment

transformers concretizes to t ∶Env(A,LA) → Env(A,LA). We are now able to provide the environ-

ment transformers and show their distributivity. �e state of an object of typeT may only change at

a call site that invokes a methodm ∈ Σ on a receiver of typeT . For any other statement, the environ-

ment transformer is identity. Assume the base variable on which the call is invoked to be a. For such

a call a.m, the environment transformer ta .m has the form λenv .env[a ↦ {δ(s,m) ∣ s ∈ env(a)}]. 2

�at is, the set of states env(a) associated with the access graph a before the statement is replaced

by the set of states that is constructed by performing the transitionm on each of the states within

env(a). Any la�ice value associated with any other access graph than a is maintained.

We now show that the environment transformer for each statement is distributive. Assume

env1,env2, ... ∈ Env(A,LA) are concrete environments and d ∈ A. Without loss of generality,

one can restrict the environment transformer to be of the form ta .m and d to be the access graph

representing the local variable a. In all other cases, the transformers are the identity functions that

obey distributivity. �en it holds that:

⊓i(ta .m(envi))(d) = ⊓i{δ(s,m) ∣ s ∈ envi(d)} = ∪i{δ(s,m) ∣ s ∈ envi(d)}

= {δ(s,m) ∣ s ∈ ∪ienvi(d)} = {δ(s,m) ∣ s ∈ ⊓ienvi(d)} = (ta .m(⊓ienvi))(d)

�is proves that the environment transformers are distributive and can be represented by edge

functions f ∶ LA → LA on top of the OFG edges. Hence, in the remaining of the paper we will refer

to the edge functions instead of the environment transformers. It is important to mention that the

2
�e notation λenv .env[a ↦ S] means, that the la�ice value associated to the access graph a is the set of states S and

any other access graph maintains its values.

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



99:8 Johannes Späth, Karim Ali, and Eric Bodden

14 foo(){

15 File a = new File();

16 b = a;

17 b.open();

18 a.close();

19 }

Direct Flow

Strongly Updated Flow

Indirect Flow

Point of Aliasing

IDE Functions

P

FUNC

OFG

a b

P

P

CLOSE 15↦ {a, b}

15↦ {a, b}

Fig. 4. An example illustrating how an IDEal -based typestate analysis checks for unclosed files.

environment transformers for the typestate analysis change only the typestate of the access graph

on which the call is invoked, but do not change the typestate of any other aliasing access graph

that refers to the same object. �is su�ces because IDE
al

associates the resulting la�ice values

with all those aliasing access graphs automatically, by solving the appropriate POAs.

3.3.2 Example. Figure 4 shows an example of applying an IDE
al

-based typestate analysis that

checks for unclosed �les within the program, i.e. the FSM drawn in Figure 3. �e typestate analysis

starts o� at the seed node ⟨17, b⟩, a potential source of a typestate violation as the File object may

remain open. Based on the seed, IDE
al

starts the propagation in Phase OF and generates all the

nodes associated with b in the OFG. During this propagation, IDE
al

registers ⟨17, b⟩ as the �rst POA.

IDE
al

then issues an all-aliases query to Boomerang for b at line 17, yielding {15↦ {a, b}}. �is

result means that b at line 17 points to the object allocated at line 15, and that {a, b} are the only

pointers in scope at line 17 that point to this object. In other words, a is an alias to b. �erefore,

IDE
al

adds the indirect-�ow edge from b to a to the OFG. �is newly created node unveils a new

part of the OFG that contains the two nodes associated with a.

IDE
al

then discovers another POA ⟨18, a⟩ on the return from the call
3

to close (line 18). �e

results of the pointer query is the same as before and the second indirect-�ow edge from ⟨18, a⟩ to

⟨18, b⟩ is added to the graph. Since ⟨18, b⟩ has already been propagated, IDE
al

does not discover

any new nodes in the OFG, and it concludes the computations in Phase OF. In the �nal OFG, the

node ⟨18, a⟩ encodes that, a�er statement 18, a may point to the same object that b points to at

statement 17. IDE
al

now executes Phase VF to propagate user-speci�c values from a la�ice L along

the �nal OFG.

IDE
al

expects an initial la�ice value that is associated with the seed node for Phase VF. In the

example in Figure 4, we assign the singleton set with the state {O} of the FSM with the node ⟨17, b⟩.
�e object referred to by b is in an open state at this point. �e typestate analysis assigns the edge

function f18 = CLOSE to the OFG edge from ⟨17, a⟩ to ⟨18, a⟩. �is edge function holds the CLOSE

transitions {I→ C, O→ C} of the FSM in Figure 3. Eventually, IDE
al

composes and evaluates the

edge functions along all possible interprocedural paths of the OFG. �e initial la�ice element {O}
at the seed node �ows via the indirect-�ow edge from b to a into the function f18. Applying f18

to the input {O} yields the state {C}. �e la�ice value {C} then �ows via the indirect-�ow edge

back to b, and IDE
al

infers that b may be closed. To determine that the object will in fact be closed,

IDE
al

must prevent the opened la�ice element represented by {O} from bypassing the call to close.

3
For simplicity, we do not show the code of close() here, but IDE

al
will analyze it.

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



IDEal : E�icient and Precise Alias-aware Dataflow Analysis 99:9

Since IDE
al

can infer that a and b must-alias, the �ow from ⟨17, b⟩ to ⟨18, b⟩ that bypasses the call

to a.close() is removed in Phase VF. �e killed �ow is shown by the green dashed edge in the

OFG of Figure 4. We say the �ow is strongly updated. �e strong update prevents the propagation

of the stale information that b remains opened. We will discuss how IDE
al

determines must-alias

relations in Section 4.3. A�er the call a.close(), the la�ice value associated with ⟨17, b⟩ and ⟨18, a⟩
is the singleton set {C}. Since {C} is an accepting state of the FSM, both a and b point to objects

that are eventually closed.

IDE is a chaotic �xed-point iteration, and the order in which nodes of the ESG are created is

non-deterministic. In Phase VF of IDE
al

, �ows are killed depending on the existence of other nodes

in the graph. In the example, the value on variable b that bypasses the call a.close() is strongly

updated only if the POA ⟨18, b⟩ has been detected. �erefore, the iteration order is relevant for

IDE
al

, which explains our design decision to execute two consecutive IDE phases.

4 FRAMEWORK DESIGN

In this section, we explain the details of the main algorithm in IDE
al

. We de�ne the standard �ow

functions in IDE
al

, and describe how we handle points of aliasing, perform sound strong updates,

and support context-sensitive alias queries.

As explained in the previous section, IDE
al

uses a modi�ed version of IDE that keeps track

of POAs. To achieve that, IDE
al

intercepts the IDE �xed-point iteration to detect indirect �ows

of pointers at points of aliasing, which are special nodes of the OFG. Depending on the node,

additional indirect �ow edges are created and injected into the worklist of IDE.

We base our description on the pseudo-code provided for the standard IDE algorithm by Sagiv et al.

(1996, p. 147). �e IDE algorithm maintains and extends path edges that describe the (summarized)

intraprocedural realizable �ows within the OFG. We write a path edge as d1 → ⟨s,d2⟩, the data�ow

fact d1 is the intraprocedural data�ow element that the OFG node ⟨s,d2⟩ originates from and is

called the source fact.

�e �xed-point iteration of IDE is controlled by a function called Propagate (Sagiv et al. 1996).

Figure 5 depicts the Propagate function and highlights the required changes for IDE
al

. Due to

space restriction, we omit the full IDE algorithm here. In addition to the main worklist called

PathWorkList, IDE stores jump functions in the map JumpFn. �e jump functions map each path

edge to its edge function that describes how a la�ice value is transformed along the path edge. IDE

relies on the jump functions to decide if its �xed-point has been reached.

Within Propagate, we introduce two changes. First, a node of the OFG can be a point of aliasing.

In such a case, the necessary aliases are computed by a pointer analysis. �e call to computeAliases

(line 3) abstracts this construction, because the concrete aliases depend on the type of POA. For each

alias d3 of d2, a path edge with the same source fact d1 is created and propagated along with the

jump function f that reached node ⟨s,d2⟩. �e second change (lines 8-10) a�ects the propagation

during Phase VF. Some of the points of aliasing introduce strong updates. If a data�ow fact is

strongly updated, i.e., it receives the value of another aliased pointer, the �ow is killed and the

subsequent propagation is prevented.

Strong updates can only be performed in Phase VF, once all necessary alias queries have already

been performed (in Phase OF) and their results are known. �is enables IDE
al

to propagate aliasing

pointers in a distributive manner, while maintaining strong updates.

4.1 Standard Flow Functions

IDE
al

uses a set of �xed standard �ow functions to model the direct pointer �ow at statements.

�e interprocedural-�ow functions are straightforward. For each access graph whose base variable

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



99:10 Johannes Späth, Karim Ali, and Eric Bodden

1: procedure Propagate(d1 → ⟨s,d2⟩ ,f )

2: if isPointOfAliasing(⟨s,d2⟩) then

3: aliases = computeAliases(d1 → ⟨s,d2⟩)

4: for d3 ∈ aliases ∧ d3 ≠ d2 do

5: Propagate(d1 → ⟨s,d3⟩,f ) ▷ Indirect �ows through aliases

6: end for

7: end if

8: if Phase VF ∧ receivesStrongUpdate(d1 → ⟨s,d2⟩) then

9: return ▷ Strong update in Phase VF kills �ow.

10: end if

11: f ′ = f ⊓ JumpFn(d1 → ⟨s,d2⟩)

12: if f ′ ≠ JumpFn(d1 → ⟨s,d2⟩) then

13: JumpFn(d1 → ⟨s,d2⟩) = f ′

14: PathWorkList.add(d1 → ⟨s,d2⟩)

15: end if

16: end procedure

Fig. 5. The required changes in IDE for IDEal .

⟦x ← new⟧(⟪v, sEt⟫) =

⎧
⎪⎪
⎨
⎪⎪
⎩

∅ if v = x

{⟪v, sEt⟫}
(1)

⟦x ← y⟧(⟪v, sEt⟫) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

{⟪x , sEt⟫,⟪v, sEt⟫} if v = y

∅ if v = x

{⟪v, sEt⟫}

(2)

⟦x ← y. f ⟧(⟪v, sEt⟫) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

{⟪v, sEt⟫} ∪ {⟪x ,G⟫ ∣G ∈ tail(sEt)} if v = y ∧ s = f

∅ if v = x

{⟪v, sEt⟫}

(3)

⟦x . f ← y⟧(⟪v, sEt⟫) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

{⟪v, sEt⟫} ∪ ⟪x , cons(f , sEt)⟫ if v = y

∅ if v = x ∧ s = f

{⟪v, sEt⟫}

(4)

Fig. 6. The intraprocedural normal-flow functions of IDEal .

matches an actual parameter of the call, including the call receiver, the call-�ow function simply

replaces the base by its corresponding formal parameter. Similarly, at return sites, the return-�ow

function maps the base of an access graph back to the corresponding actual argument, while also

replacing the returned variable with the assigned variable (if applicable).

IDE
al

operates on a three-address code, an intermediate representation where statements contain

at most one �eld dereference. Table 1 lists the statements that IDE
al

handles, and Figure 6 provides

the de�nitions of the corresponding intraprocedural normal-�ow functions. Each function ⟦w⟧(α)
maps an access graph α at statement w to a set of access graphs that hold a�er statement w . We

represent an access graph as ⟪x , sEt⟫, where the base x is a local variable, and sEt is a �eld graph.

A �eld graph is a directed graph whose nodes are �elds and is uniquely identi�ed by the edge set E
and two special nodes, the �rst access s and the last access t .

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



IDEal : E�icient and Precise Alias-aware Dataflow Analysis 99:11

Table 1. Three-addressed code that IDEal handles.

Statement Notation

Allocation site x ← new

Assign statement x ← y

Field read statement x ← y.f

Field write statement x.f ← y

If statement if(x ≠ null) goto l

Call site m(p)

Equation (1) in Figure 6 shows the �ow function for an allocation site x ← new . IDE
al

kills each

access graph of the form ⟪x , ⋅⟫, due to the re-assignment of the base x .

Equation (2) describes the �ow of access graphs for a local-assignment statement x ← y. For

access graphs of the form ⟪y, sEt⟫, IDE
al

generates the aliasing access graph ⟪x , sEt⟫, which is the

result of assigning y to x . Similar to allocation sites, IDE
al

kills access graphs of the form ⟪x , ⋅⟫.

IDE
al

preserves the �ow for all other cases.

Equation (3) de�nes the �ow function for a �eld-read statement x ← y. f . �e �rst case handles

access graphs of the form ⟪y, f Et⟫, where the edge set E and �eld t are arbitrary. For each edge

(f ,д) ∈ E, for some �eld д, IDE
al

uses the tail operation to compute the �eld graph дĒt , where

Ē = E ∖ {(f ,д)}, generating the access graph ⟪x ,дĒt⟫. IDE
al

kills access graphs of the form ⟪x , ⋅⟫,

as shown in the second case of the equation. For all other cases, IDE
al

maintains the access graph

⟪y, f Et⟫.

Equation (4) handles a �eld-write statement x . f ← y. IDE
al

calls cons(f , sEt) to update each

access graph ⟪y, sEt⟫ that reaches the �eld-write statement by making the �eld f its head. Formally,

the cons operation computes the �eld graph f Ēt , where Ē = E ∪{(f , s)}. IDE
al

then constructs and

propagates the new access graph ⟪x , cons(f , sEt)⟫, as well as ⟪y, sEt⟫. At the �eld-write statement,

IDE
al

kills any access graph ⟪x , f Et⟫ with an arbitrary edge set E and a last �eld access t , because

y overwrites the �eld f of x .

�e described standard pointer �ow functions are used as defaults in IDE
al

, but they can be

adjusted by the client. For example, a taint analysis may model �ows through string concatenations.

4.2 Points of Aliasing

IDE
al

resolves points of aliasing by issuing alias queries to Boomerang (Späth et al. 2016) and uses

the result: all aliasing access graphs for a given pointer dereference. We denote a points-to query

that IDE
al

issues to Boomerang by BR(s,α), and it comprises a statement s and an access graph α .

�e result of the query is a set of pointer elements. A pointer element has the form (t ,At ), where t
is an allocation site and At is the set of all access graphs β for which t ∈ points-to(β) holds at s . �e

access graph α , for which the query is issued, is an element of the set At . We write β ∈ BR(s,α)
when α and β may alias at s . �at means, there exists a pointer element (t ,At ) such that β ∈ At .

We now discuss which nodes of the OFG are points of aliasing and the aliases they compute. A

POA can either be [Write], [Return], or [Null], and depending on this type, the computed aliases

di�er. In terms of the algorithm of Figure 5, we describe the result of the function computeAliases.

In the following, let us assume d1 → ⟨s,d2⟩ to be the path edge that is currently propagated, i.e., the

argument to computeAliases.

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



99:12 Johannes Späth, Karim Ali, and Eric Bodden

20 foo(){

21 A a = new A();

22 A b = a;

23 bar(a);

24 File d = b.h;

25 d.close();

26 }

27 bar(A c){

28 File f = new File();

29 c.h = f;

30 f.open();

31 }

OFG

a.h b.h d

R

R

CLOSE

28↦ {a.h, b.h, d}

28↦ {a.h, b.h}

Direct Flow

Strongly Updated Flow

Indirect Flow

[Return] POA

IDE Functions

R

FUNC

OFG

f c.h

R

28↦ {c.h, f}

Fig. 7. An example illustrating how IDEal resolves multiple [Return] POAs and performs sound strong
updates.

4.2.1 [Write]. A [Write] is a node ⟨s,d2⟩ in the OFG, where s is a �eld-write statement x . f ← y,

and d2 is an access graph ⟪x , f Eд⟫ with arbitrary E and last access д. Each alias of x generates

an aliasing access graph. IDE
al

computes those aliases by �rst issuing the query BR(s,⟪x ,∅⟫) to

compute all aliases of the access graph ⟪x ,∅⟫ before s . IDE
al

then concatenates the �eld graph

f Eд to each aliasing access graph ⟪z,vFw⟫ ∈ BR(s,⟪x ,∅⟫). �is creates the new access graphs

d3 = ⟪z, conc(vFw, f Eд)⟫. �e operation conc yields the �eld graphvĒд, where Ē = E∪F∪{(w, f )}.

�e set of aliases that is returned by computeAliases for a [Write] is the set of all d3s. For each

d3, IDE
al

then injects the new path edge d1 → ⟨s,d3⟩. When we draw the OFG, we highlight the

injection of such an edge as an indirect-�ow edge from ⟨s,d2⟩ to ⟨s,d3⟩.

4.2.2 [Return]. A [Return] is a node ⟨s,d2⟩ in the OFG, where s is a method callm(p), and d2

is an access graph ⟪p, f Eд⟫. When the callee returns the access graph to a call site, there might be

local aliasing access graphs in the caller’s scope that point-to the same abstract object. For example,

an alias to p may exist prior to the call site s , and instead of using ⟪p, f Eд⟫ to access the object of

interest, the aliased pointer may be used.

Similar to the treatment of [Write], IDE
al

computes all aliases to the pointer d2 = ⟪p, f Eд⟫,

denoted by d3 ∈ BR(s,d2). IDE
al

then adds indirect-�ow edges from ⟨s,d2⟩ to each node ⟨s,d3⟩

by propagating d1 → ⟨s,d3⟩. As the algorithm in Figure 5 shows, the same edge function that is

propagated to ⟨s,d2⟩ is also used for this indirect aliasing path edge with target node ⟨s,d3⟩. By

doing so, the additional indirect-�ow edges in Phase VF maintain the la�ice value �ow from d2

and propagate the value to each alias d3 a�er the call. In the case of a typestate analysis, this

value �ow transfers a possible state change on the access graph ⟪p, f Eд⟫ within the callee to all of

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



IDEal : E�icient and Precise Alias-aware Dataflow Analysis 99:13

its aliasing access graphs within the caller. For example, in Figure 7, at the call to open (line 30),

IDE
al

starts tracking the pointer f that references a File object and the pointer then �ows into the

callee open. At the return to bar, IDE
al

registers a [Return] that yields [28 ↦ {c.h, f}] and adds

an indirect-�ow edge from ⟨30, c.h⟩ to ⟨30, f⟩. Since c is a parameter of bar, the access graph c.h

escapes to foo via the call site at line 23. Since c.h corresponds to a.h in foo, IDE
al

creates the

node ⟨23, a.h⟩ and registers it as another [Return] that yields [28↦ {a.h, b.h}]. IDE
al

then adds

the appropriate indirect-�ow edge to the OFG. Without this indirect-�ow edge, IDE
al

misses that

the tracked object is loaded from b.h into to d in the next statement. A�er the call to close on d

(line 25), IDE
al

registers another [Return] that yields [28↦ {a.h, b.h, d}] and adds indirect-�ow

edges to the nodes ⟨25, a.h⟩ and ⟨25, b.h⟩.

4.2.3 [Null]. A [Null] is a node in the OFG that corresponds to a comparison to null in the

program. To avoid throwing a NullPointerException in Java, it is common to check for nullness of

variables before accessing them. �ese checks lead to branches in the control �ow. IDE
al

handles

[Null] to avoid imprecise propagations along the branches where IDE
al

knows that the object can

never be null. We discuss this in an example in the next subsection.

4.3 Sound Strong Updates

During Phase VF, IDE
al

performs sound strong updates for the client’s analysis information. To

achieve that, data�ows are killed in Phase VF, as shown by the early termination of the Propagate

that depends on the call to receivesStrongUpdate (Figure 5, lines 8-10). A created node of the

OFG receives a strong update i� there is an indirect �ow to that node from a POA and the POA’s

pointer query returned a unique pointer allocation. In such situations, the access graphs in question

can only point to a single abstract object, and thus must point to the same one. For example, in

Figure 7, IDE
al

labels the initial seed node ⟨30, f⟩ with the initial la�ice element {O}, because the

tracked object is initially in an OPEN state. �is la�ice element �ows along all the OFG paths (as

they are labeled by the identity edge function) and reaches the call to close at line 25. At this call,

it is sound to perform a strong update for the aliases a.h and b.h, because [Return] at ⟨25, d⟩ yields

a single allocation site. Since a.h and b.h are not involved in the call d.close(), but abstract the

same object, IDE
al

kills the call-to-return �ows in Phase VF, i.e. those path edges receive a strong

update. �is correctly prevents the O state from bypassing the call. Instead, IDE
al

transfers the

typestate information from ⟨25, d⟩, via the indirect-�ow edges, to the nodes ⟨25, a.h⟩ and ⟨25, b.h⟩,

and an IDE
al

-based typestate analysis will report that the File object pointed to by a.h and b.h is

eventually closed.

�e condition to perform a strong update (“singleton points-to set”) is insu�cient in cases where

the allocation site is within a loop or a recursive part of the program. Such re-entrant allocation sites

may represent multiple concrete runtime objects by a single abstract object. To ensure soundness

for these cases, IDE
al

con�gures the underlying pointer analysis to treat assignments of the form x

= null as allocation sites as well. Due to the semantics of Java, a null-assignment outside the loop

must exist, and the pointer analysis will pick it up, causing IDE
al

to avoid an otherwise incorrect

strong update. Figure 8 shows a code snippet with an allocation site inside a loop (line 35). At

line 36, the �le is opened by a call to a.open(). In the if branch, the �le is assigned to b. When the

branches join again, b.close() is called. When b returns from the call to close, IDE
al

registers a

[Return], computing all aliases to b at line 40: [33↦ {b}, 35↦ {a, b}]. �e pointer b may point to

two di�erent abstract objects, making a strong update of the pointers to these objects unsound.

IDE
al

therefore does not strongly update the call-to-return �ow to node ⟨40, a⟩. Following the �ow

path and tracking the object states, the typestate analysis computes that the object that b points

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



99:14 Johannes Späth, Karim Ali, and Eric Bodden

32 foo(){

33 File b = null;

34 while(...){

35 File a = new File();

36 a.open();

37 if(...){

38 b = a;

39 }

40 b.close();

41 }

42 }

Direct Flow

Not Strongly Updated Flow

Indirect Flow

[Return] POA

IDE Functions

R

FUNC

OFG

a b

R

R

CLOSE

35↦ {a}

33↦ {b}
35↦ {a, b}

Fig. 8. An example illustrating that IDEal does not perform unsound strong updates in loops.

to is de�nitely closed. However, the object pointed to by a is either closed or opened. �is result

matches the possible runtime execution where b may refer to an object from an earlier iteration of

the loop and a currently points to a di�erent object that is not closed.

Strong updates are also used at [Null] to prevent �ows along invalid branches. If IDE
al

creates

an OFG node ⟨s,⟪x ,∅⟫⟩ with a statement s ∶ if(x ≠ null), it registers a [Null] and issues an alias

query BR(s,⟪x ,∅⟫). If the access graph ⟪x ,∅⟫ has only one allocation site that di�ers from null,

all computed aliasing access graphs that bypass the condition check are also di�erent from null.

�erefore, IDE
al

avoids the propagations of these pointers to the branch where x is null. In Phase

VF, IDE
al

strongly updates the path edges with targets ⟨t , β⟩, where t is the false-successor of the

if statement and β ∈ BR(s,⟪x ,∅⟫). We showcase this behavior in the example in Section 5.

4.4 Context-Sensitive Alias�eries

While IDE
al

inherits its context-sensitivity from IDE, Boomerang is a context-sensitive pointer

analysis by design. To achieve optimal precision and performance, IDE
al

matches, for each alias

query, the contexts it provides to Boomerang to its own IDE contexts. IDE achieves context-

sensitivity by maintaining the source fact for each node created in the OFG, which is why IDE

propagates path edges instead of the plain OFG nodes. IDE
al

consults the source fact and the

incoming relationship of IDE/IFDS (Naeem et al. 2010) to match the call site(s) once an OFG node

reaches a return site. IDE
al

supplies Boomerang with the currently considered IDE contexts to

limit its alias queries to these given contexts. For example, when IDE
al

issues an alias query for

an access graph that originates from some parameter to the current method, it limits the scope of

Boomerang to search for allocation sites only within the callers of the current method that the

IDE solver visited, but no other callers. Considering other callers may yield spurious aliases that are

impossible along any actual runtime execution path of the program. In the following section we

give an example of the explained context-matching.

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



IDEal : E�icient and Precise Alias-aware Dataflow Analysis 99:15

43 foo(){

44 A b = new A();

45 A c = b;

46 File a = new File();

47 a.open();

48 bar(a,b,c);

49 }

50 bar(File u, A v, A w){

51 v.f = u;

52 File x = w.f;

53 if(x != null){

54 x.close();

55 }

56 }

OFG

a b.f c.f

R

46↦ {a}

Direct Flow

Strongly Updated Flow

Indirect Flow

[Return] POA

[Write] POA

[Null] POA

IDE Functions

R

W

N

FUNC

u v.f w.f x

W

N

R

CLOSE

44↦ {v, w}

46↦ {u, v.f, w.f, x}

46↦ {u, v.f, w.f, x}

Fig. 9. A complete run of IDEal .

5 COMPLETE RUN

Figure 9 shows an example of a complete run of IDE
al

. In the example, the File object that is

opened at line 47 represents the seed that the client provides. �is seed �ows as an argument

to bar (line 48) and is assigned to v.f (line 51), registering a [Write] at the node ⟨51, v.f⟩. �e

source fact of this POA is u, because it is the intraprocedural origin of the propagation. IDE
al

then

uses Boomerang to compute the aliases of v at line 51, but limited to the calling contexts that

initiated the propagation. �e source fact u of the POA is a parameter of bar and during the pointer

query for variable v a calling context of bar is requested by Boomerang. IDE
al

uses the incoming

relationship of IDE to limit the scope of Boomerang to only the call site 48, the call site where the

abstract pointer u entered bar. �erefore, the result of the alias query is [44↦ {v, w}]. �is �ltering

of calling contexts avoids computing aliases if there were any other callers of bar.

Due to the new aliasing pointer w, an indirect �ow to w.f occurs at the �eld write, and IDE
al

adds

an indirect-�ow edge from ⟨51, v.f⟩ to ⟨51, w.f⟩ to the OFG. �e derived transitive �ows discover

two more POAs: a [Null] at node ⟨52, x⟩ and a [Return] at node ⟨54, x⟩. �ese POAs trigger two

all-alias queries for variable x. For both queries, the source fact is again u, and when Boomerang

requests more calling context, it is still the call to bar at line 48. Eventually, both queries yield the

result [46 ↦ {u, v.f, w.f, x}]. �e [Return] creates the do�ed indirect-�ow edges that originate

from ⟨54, x⟩ in Figure 9. Since in both cases, for [Return] and for [Null], the size of the points-to

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



99:16 Johannes Späth, Karim Ali, and Eric Bodden

set is one, IDE
al

performs a strong update. All other �ows with the same target OFG nodes are

killed in Phase VF.

Finally, in Phase VF, IDE
al

computes the la�ice values for all OFG nodes. Following all existing

paths in the constructed OFG, IDE
al

deduces that the last action performed on each pointer is the

call to close. �erefore, the abstract object allocated at line 46, which is accessible via a, b.f, and

c.f in foo and u, v.f, w.f, and x in bar, is always closed at the end of its lifetime. �is matches the

runtime behaviour. If IDE
al

did not handle [Null] POAs, it would have used the identity function

for the else branch within bar, and incorrectly deduced that the tracked File object may remain

open. However, IDE
al

treats the null check precisely, inferring that the �le object cannot possibly

bypass the call to close.

6 EVALUATION

We evaluate IDE
al

through a typestate client analysis. We refer to this client by TS
al

and compare it

to the typestate analysis by Fink et al. (2008), referred to by TS
f
. TS

f
is a staged analysis where less

precise stages restrict the overhead for more sophisticated analyses in later stages. All stages are

based on the IFDS framework. �e last stage of TS
f

has a similar precision to TS
al

, which enables

us to directly compare the IFDS propagation statistics of TS
f

to that of TS
al

. Another important

di�erence between the two analysis is their heap model. To group aliased pointers and track their

shared typestate, TS
f

uses a powerset abstraction as their data�ow domain. Our experiments

empirically evaluate the characteristics of IDE
al

by addressing the following research questions:

● RQ1: What is the e�ect of the heap models TS
al

and TS
f

on the generated ESG?

● RQ2: How does TS
al

perform on large programs when compared to TS
f

in terms of

computation time?

● RQ3: How precise are the analysis results reported by TS
f

and TS
al

?

● RQ4: What impact do aliasing and strong updates have on TS
al

?

In addition to those research questions, this section completes with a case study that shows how

IDE
al

can be used to realize an e�cient and precise analysis that detects insecure cryptographic

API usages in Android applications.

6.1 Setup

Our framework IDE
al

, and hence TS
al

, is based on Soot
4

and relies on the IDE solver Heros
5
. �e

analysis TS
f

is publicly available
6

and is based on WALA
7
.

Both typestate analyses can verify typestate properties that are encoded as state machines.

Table 2 lists the typestate properties that we want to enforce. �e corresponding state machines

are available as part of TS
f

analysis. TS
al

maps them to the respective edge functions for IDE
al

.

For all experiments, the analyses pre-compute a 0-1-CFA call graph for the given programs. For

each program, we also analyze its library dependencies, including the Java Runtime Library. Given

that TS
f

is built on top of WALA and TS
al

is built on top of Soot, we carefully con�gured Soot and

WALA to enable a fair comparison for both analyses. All experiments are run on a modern laptop

computer with a 2.9 GHz Intel Core i7 processor running Java 1.8.0 73. For each run, we allocated

a maximum of 6 GB of JVM heap space.

4
h�ps://github.com/Sable/soot

5
h�ps://github.com/Sable/heros

6
h�ps://github.com/tech-srl/safe

7
h�p://wala.sourceforge.net/

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.

https://github.com/Sable/soot
https://github.com/Sable/heros
https://github.com/tech-srl/safe
http://wala.sourceforge.net/


IDEal : E�icient and Precise Alias-aware Dataflow Analysis 99:17

Table 2. Typestate properties represented in the micro benchmark by Fink et al. (2008).

Name Description

Vector Never try to retrieve an element of an empty vector.

Iterator Always call hasNext on an iterator before receiving the next element.

URL Never set options on an already connected URLConnection.

IO Do not read or write to a closed Stream or Writer.

KeyStore Always initialize a KeyStore before using it.

Signature Always follow the phases of initialization of a Signature.

Table 3. Comparing the e�iciency of TSf
2
, TSf

3
and TSal in terms of IFDS propagations and the number of

visited methods.

ESG Nodes Visited Methods

Typestate # Programs TS
f
2

TS
f
3

TS
al

TS
f
2

TS
f
3

TS
al

Vector 30 3,451 2,058 580 66 49 13

Iterator 17 507 456 171 25 20 8

URL 2 8,510 8,488 115 308 287 4

IO 14 3,161 1,005 283 96 39 8

KeyStore 3 2,732 92 45 91 8 3

Signature 6 35,175 94,537 356 1,130 1,112 8

�e default con�guration of TS
f

performs three analysis stages. During our initial experiments,

we discovered that the �rst stage does not report any typestate violation, preventing any computa-

tion of subsequent stages. We consulted with the authors of TS
f

who con�rmed this behaviour and

were unable to �x the problem. �erefore, to compute meaningful results for TS
f
, we deactivated

the �rst stage. �e remaining two stages are the Unique Veri�er (TS
f
2
) and the APFocus (TS

f
3
) (Fink

et al. 2008) that we base our evaluation on.

6.2 RQ1: Heap Models

In the heap model of TS
f
3
, each data�ow element consists of (1) the allocation site of the tracked

instance, (2) a set of must-aliased pointers to that allocation site, (3) a completeness �ag indicating

whether the set of must-aliased pointers is complete, and (4) the state the object is currently in.

To inspect the di�erences between the heap models of TS
f

and TS
al

, we ran both analyses on

a set of micro benchmarks that consists of 72 sample programs. �ese programs ship with the

implementation of TS
f
. �e micro benchmarks contain typestate violations with aliasing and strong

update scenarios that challenge typestate analysis. Hence, it is a good baseline for the comparison.

We have applied both TS
f

and TS
al

to check for the typestate properties in Table 2 in the

micro-benchmark programs. Table 3 summarizes our �ndings. In the table, the columns for ESG

nodes gather the number of OFG nodes in TS
al

, respectively the number of nodes in the exploded

supergraph for TS
f
. Visited Methods is the number of di�erent methods those nodes belong to, i.e.

visited by the underlying solvers. All numbers are arithmetic means taken over all input programs

(column # Programs) of the micro benchmark. Table 3 shows the statistics for TS
f

according to the

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



99:18 Johannes Späth, Karim Ali, and Eric Bodden

57 foo(){

58 A a = new A();

59 b = a;

60 B c = new B();

61 a.f = c;

62 B d = b.g;

63 bar(d);

64 }

Direct Flow

Indirect Flow

[Write] POAW

TS
al

OFG

c a.f b.f

W

TS
f
3

⟨60,{c}, true⟩

⟨60,{c, a.f}, false⟩

⟨60,{c, a.f}, false⟩

⟨60,{c, a.f}, false⟩

Fig. 10. An example illustrating the di�erences between TSf
3
and TSal with respect to the structure of dataflow

facts.

two analysis stages TS
f
2

and TS
f
3
. If TS

f
2

proves that the program is error free, TS
f
3

is not invoked.

On the benchmark, in 14 out of the 72 programs TS
f
3

was not invoked.

Since TS
f
3

is the most precise stage in TS
f
, we only compare TS

al
to this stage in the following

discussion. �e numbers for TS
f
2

are similar. Across all the micro-benchmark programs, TS
f
3

requires a geometric mean of 10.4× more nodes, and analyzes approximately 10.3× more methods

compared to TS
al

.

For the typestate property KeyStore, stage TS
f
3

only creates 92 nodes. For two of the three

KeyStore programs, the stage TS
f
2

proves the absence of a typestate violation and the stage TS
f
3

is never executed. For the typestate properties URL and Signature, TS
al

requires less than 1.4%

and 0.4% of the propagations that TS
f
3

requires, respectively. For URL, TS
al

starts from the call

sites to the method connect of any URLConnection object and reports an error once a method that

sets an option on the object is invoked. In contrast, TS
f
3

starts earlier at the allocation site of the

URLConnection itself. TS
f
3

records aliases only during forward propagation, while TS
al

gets the

automatic support from IDE
al

to detect aliases before the seeds by issuing the appropriate alias

queries to Boomerang. IDE
al

evaluates those queries on demand, requiring fewer propagations.

�e same reasoning applies to the typestate property Signature.

Table 3 shows that there is a big di�erence in the number of created nodes in TS
f

and TS
al

. �is

di�erence originates from the heap models that the underlying framework of each analysis uses.

Each element of the data�ow domain in IDE
al

consists of an access graph. �e access graph’s base

is a local variable associated with a declaring method. An access graph has only to be propagated

within that declaring method. �e data�ow abstraction used by TS
f

cannot make use of this

additional information. Figure 10 illustrates an example. We ignore the propagated typestate

property to simplify the example. Assume both TS
al

and TS
f
3

track the object that is created at

line 60. A�er line 61, TS
f
3

propagates the abstraction ⟨60,{c, a.f}, false⟩. �e completeness �ag is set

to false because a�er the �eld write statement, the tracked object is also accessible via the pointer

b.f, which is not in the set of musted-alias pointers ({c, a.f}). Since the representation does not

explicitly store b.f, TS
f
3

has to assume that the tracked object could also be accessed in method

bar (called at line 63), although no appropriate pointer ever escapes to the method. �erefore, TS
f
3

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



IDEal : E�icient and Precise Alias-aware Dataflow Analysis 99:19

Table 4. Analysis time for running TSal and TSf
3
on the DaCapo benchmark programs.

Vector IO Iterator

a
n
t
l
r

b
l
o
a
t

c
h
a
r
t

e
c
l
i
p
s
e

l
u
i
n
d
e
x

l
u
s
e
a
r
c
h

p
m
d

a
n
t
l
r

b
l
o
a
t

c
h
a
r
t

e
c
l
i
p
s
e

l
u
i
n
d
e
x

l
u
s
e
a
r
c
h

b
l
o
a
t

p
m
d

Seeds 2 6 1 10 12 1 10 1 12 4 1 1 1 14 1

Average Time

per Seed (s)

TS
f
3

Boomerang

TS
al

5
.3

1
8
.4

7
.4

2
.7 5
.8

5
.9

1
6
.7

4
.9

1
1
.3

2

4
.2 7

3
0

3
0

3
.7

2
7
.7

2
9
.3

3
.5

4

5
.2

1
.3

2
3
.3

3
0

2
.9

2
.5

2
.7

2
0
.5

5
.9

1
5
.2

1
.2

Timeouts
- - 2 2 - - 1 - 1 - 1 - 10 2 - - 9 8 4 3 - - - - - - 7 6 - -

propagates the data�ow fact ⟨60,{c, a.f}, false⟩ into bar, needlessly increasing the number of ESG

nodes. On the other hand, TS
al

does not propagate any data�ow facts into bar, as the object of

interest cannot be accessed from variable d, the only variable that escapes to bar. �e OFG drawn

in Figure 10 shows that no node for variable d is ever created. TS
al

completely skips the analysis of

bar.

When compared to TS
f
, the more precise data�ow facts of IDE

al
and their individual

propagation of aliased pointers enables TS
al

to analyze smaller, yet relevant, parts of the

program.

6.3 RQ2: Performance

In this research question, we compare the analysis time performances of TS
f

and TS
al

on larger,

real world programs. We setup both analyses with programs from the 2006 DaCapo benchmark

suite (Blackburn et al. 2006) and run all of the typestate properties from RQ1 on the programs. We

exclude the benchmark fop from our evaluation as it lacks some dependencies that are required to

perform static analysis. On the remaining benchmarks, we executed both analyses and compare

the results on basis of the exact same seeds. Given the di�erent analysis frameworks TS
f

and TS
al

depend on, the call graphs they use are not completely identical, and not exactly the same parts of

the program are reachable. As seeds, both analysis only consider allocation statements of objects of

interest that are reachable in the underlying call graph. We report results only on the set of seeds

that are consistent in both analyses. For the veri�cation of each seed, we limit the execution time

of the analysis to 30 seconds. �is is necessary as we aim for analyzing the complete program,

and in some cases, data�ow occurs through Java collections, such as HashSet or List, or massive

Visitor pa�erns that remain hard to analyze.

For a fair comparison with TS
f
, we con�gured TS

al
to always start at allocation sites of objects.

�is neglects the full potential of IDE
al

. For the typestate property IO for instance, it is su�cient to

begin the analysis only at calls to close and report an error once a subsequent read is invoked on a

FileReader. Based on the result from RQ1 and the fact that any of the preceding stages of TS
f

can

also be used for TS
al

, in RQ2 we limit the comparison to stage TS
f
3
.

Table 4 reports the result of this experiment. We cannot report any results for the properties URL,

KeyStore, and Signature, because the DaCapo benchmark has no uses of KeyStore, occurrences

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



99:20 Johannes Späth, Karim Ali, and Eric Bodden

Table 5. Comparing the reported errors of TSf and TSal .
a) Correct dataflow but no typestate violation.

True Positives False Positives False Negatives

Benchmark TS
f

TS
al

TS
f

TS
al

TS
−SU

TS
f

TS
al

TS
−al

Micro Benchmark 42 48 1 1 +3 6 0 +2

DaCapo 11
a)

11
a)

0 0 0 0 0 +6

of Signature, or seeds to URL. �e table shows the total number of seeds per benchmark program

per typestate property. �e table also contains a bar plot, above its bars, we depict the arithmetic

means over the analysis times per seed. �e reported times are averaged across �ve independently

repeated runs. Additionally, below the bar chart, we report the number of seeds that timed out.

Except for 5 out of the 15 analyzed combinations, TS
al

is faster than TS
f
. TS

al
tends to be slower

when verifying the Vector property. On geometric average across the Vector typestate, TS
al

is 1.1×

slower than TS
f
. On the other two typestate properties IO and Iterator, TS

al
is faster by a ratio

of 1.5× and 2.6×, respectively. �e analysis times do not re�ect the results from RQ1 as the two

analyses di�er in a major point. TS
f

relies on a points-to analysis that has been computed for the

call graph. On the other hand, TS
al

, or rather IDE
al

, uses the on-demand alias analysis Boomerang

to �nd aliases. �e time required to process the alias queries is included in the analysis time of

TS
al

. Across all programs, the time spent to compute the alias queries represent a major part of the

total analysis time (55%). In the bar chart in Table 4, we highlight the overhead time from using

Boomerang in TS
al

. Nevertheless, including the overhead of the demand-driven alias analysis

time, across the DaCapo benchmarks and all typestate properties, TS
al

is 1.3× faster than TS
f
.

On the DaCapo benchmark programs, including all their library dependencies, a typestate

analysis based on our framework IDE
al

is slightly more e�cient than a state-of-the-art

typestate analysis.

6.4 RQ3: Precision

�e authors of TS
f

have annotated all the programs of the micro-benchmark from RQ1 with the

ground truth, stating which results a precise and sound typestate analysis should report. Based on

that ground truth, in Table 5, we show the three results: true positives, the valid expected typestate

errors; false positives, the spurious reports that do not re�ect typestate errors; and false negatives,

missed typestate errors that should have been detected.

On the micro-benchmark from RQ1, TS
f

reports one false positive on the Vector typestate. For

this program, the �ow-insensitive alias analysis in TS
f

computes an alias set that has a spurious

element, leading to imprecise results. In addition to that false positive, TS
f

misses some �ows,

because it does not detect some of the typestate violations for the typestate properties Vector,

Iterator, and IO. Further investigation shows that TS
f

incorrectly handles array accesses and �ows

from thrown exceptions to the corresponding catch clause. However, we believe that this is more

of an implementation issue in TS
f

rather than a conceptual problem.

TS
al

reports one false positive on the micro-benchmark, but does not miss any report from the

ground truth results. �e false positive stems from a hasNext call within a synchronized block. �e

control-�ow graph that Soot creates contains edges from each statement within the synchronized

block to a catch block outside the block. Due to those exceptional edges, the hasNext call might be

missed and an error is reported.

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



IDEal : E�icient and Precise Alias-aware Dataflow Analysis 99:21

On the DaCapo benchmark suite, we manually inspected the reported errors from the analyses

performed in RQ2 to assess precision and recall. We restricted our inspection to the seeds for which

TS
al

reported errors, but also to those that �nished within the given time budget of 30 seconds. In

total, 11 typestate violations are reported. All the errors are reported for the typestate property

Vector: one is reported in eclipse, the other 10 are located in luindex. Further investigation

shows that all of the identi�ed and tracked objects may be in an error state, i.e. an element of

the Vector may be accessed before any element was added to the Vector. However, our manual

inspection unveiled that the accesses to the elements are guarded by appropriate size checks on

the Vector. �is means, at runtime, a typestate violation cannot occur. �is shortcoming is due to

the weakness of the expressiveness of the typestate pa�ern: the size checks cannot be modeled

within the typestate machine, and is not an artifact of the over-approximations of IDE
al

nor its

data�ow domains. In other words, there are potentially valid data�ow connections that lead to

those reports, but they are overcome by additional information that the analysis is not designed

to track. �erefore, we classify the reported errors as true positives (with respect to the tracked

typestate pa�ern).

An IDE
al

-based typestate analysis is as precise as an existing typestate analysis.

6.5 RQ4: E�ect of Aliasing and Strong Updates

In addition to comparing both analyses, we now discuss the impact of handling aliasing and strong

updates for the typestate client analysis TS
al

. Based on the same setup used in the earlier research

questions, we run TS
al

with two additional con�gurations. For one run, we ignore the alias queries

completely (denoted by TS
−al

). In the other con�guration, typestate updates are not strongly

updated (denoted by TS
−SU

). Both con�gurations allow us to compare the e�ect of aliasing and

strong updates on TS
al

. In general, turning o� strong updates introduces additional false positives,

but does not impact the number of false negatives. Strong updates only kill spurious typestate

�ows. In contrast, in the con�guration TS
−al

, when alias queries are disabled, false negatives are

expected as the data�ow path(s) may not be complete.

Table 5 additionally depicts the analysis when run in the con�gurations TS
−al

and TS
−SU

.

Column TS
−SU

lists the false positives that are added when strong updated are disabled, and TS
−al

lists the false negatives that are missed when aliasing is disabled. In addition to the original false

positive that TS
al

reports, disabling strong updates causes TS
−SU

to report three additional false

positives for the micro-benchmark. On the micro-benchmark, aliasing is only required for the

Vector programs where data�ow occurs through �elds. �erefore, two of the ground truth results

require the typestate analysis to soundly handle aliasing.

�e results of this experiment on DaCapo di�er slightly. When we disable aliasing for TS
al

, more

than 50% of the errors are not reported anymore. For all of those cases, the tracked objects are

stored inside �elds of other objects and are accessed indirectly within other methods through the

�elds. Such data�ows require aliasing information about the parent object, the object that the �eld

resides within, information that is missing when aliasing is disabled. On the other hand, disabling

strong updates on DaCapo programs does not report any false positives on the inspected seeds.

While strong updates marginally improve precision on the micro-benchmarks, on the

DaCapo programs, handling aliases has a higher in�uence and is required to obtain sound

results.

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



99:22 Johannes Späth, Karim Ali, and Eric Bodden

65 public class Encrypter{
66 private SecretKey key;
67 private int keyLength = 448;
68

69 public Encrypter(){
70 KeyGenerator keygen = KeyGenerator.getInstance("Blowfish");
71 keygen.init(this.keyLength);
72 this.key = keygen.generateKey();
73 }
74

75 public byte[] encrypt(String plainText){
76 Cipher cipher = Cipher.getInstance("AES");
77 cipher.init(Cipher.ENCRYPT_MODE, this.key);
78 byte[] encText = cipher.doFinal(plainText.getBytes());
79 return encText;
80 }
81 }

Fig. 11. An example of a broken cryptographic implementation.

6.6 Case Study: A CryptoAnalyzer built on top of IDE
al

In the preceding research questions, we evaluated IDE
al

by a qualitative comparison of an IDE
al

-

based typestate analysis to the analysis TS
f

implemented in WALA. We further want to demonstrate

the strength of IDE
al

by applying it to another concrete client analysis, an analysis that veri�es

the correct usage of the Java Cryptographic Architecture (JCA). Cryptography is a complex topic

on its own. In combination with an ambiguous API design of the JCA, multiple researchers have

shown that cryptography is commonly implemented incorrectly (Egele et al. 2013; Nadi et al. 2016).

Improperly used cryptography frequently leads to data leaks.

Figure 11 demonstrates an example of a misuse of a cryptographic cipher that originates from

the javax.crypto.Cipher class of the JCA. �e code snippet shows a class that is supposed to be

used for encryption. When an object of type Encrypter is instantiated, the constructor generates a

SecretKey of size 448 for the Blow�sh algorithm. �en in line 72, the generated key is stored as �eld

key of the constructed instance. Calling the encrypt method creates a Cipher object in line 76, but

for the AES algorithm. �e next line initializes the algorithm’s mode to encryption and supplies the

SecretKey that is stored in the �eld. �e doFinal operation in the next line performs the encryption

of the plainText.

�ere are three issues in this code example. First, the generated key and the encryption cipher

do not match (AES vs. Blow�sh). Second, and related, the key length of 448 is not suitable for an

AES algorithm that expects a size of 128. �ird, depending on the crypto provider, AES is used

with electronic codebook mode (ECB) which results in low entropy of the bytes of the encoded

ciphertext encText. While the �rst two misuses throw runtime exceptions, and thus are likely

detected during development, the la�er silently leads to insecure code.

Using IDE
al

, we implemented a static-analysis tool that detects those and similar issues for the

Java cryptographic API. On a high level, the analysis is composed of the typestate analysis TS
al

,

additional queries to an extended version of Boomerang which extract String and int parameters

on-the-�y, an IDE
al

-based taint analysis (i.e., edge functions are identity) and a constraint-solving

analysis. In the example code, the crypto analysis starts at the two calls to getInstance and ensures

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



IDEal : E�icient and Precise Alias-aware Dataflow Analysis 99:23

10
2

10
3

10
4

10
5

10
6

Constraint

Boomerang

Taint

Typestate

Call Graph

Analysis Time (ms)

Speci�cation # Misuses

MessageDigest 139

Cipher 8

PBEKeySpec 3

PBEParameterSpec 1

Fig. 12. The distribution of the analysis times separated into the di�erent subanalyses of our crypto analysis
and the classes ranked by the number of misuses.

with TS
al

that the init and generateKey, respective init and doFinal methods are invoked in that

order on the seed objects referenced by the variables keygen and cipher. �e integer value 448 for

this.keyLength is extracted through a query to Boomerang.

�e call sequence on the KeyGenerator object keygen satis�es the required typestate automaton.

�e analysis further infers that an abstract object, a SecretKey for the algorithm Blow�sh with a key

length of 448 has been generated at line 72. �e object �ows (taint analysis) to the �eld this.key

and eventually into the init method of the Cipher. �e Cipher object also satis�es the typestate,

but combining the algorithm parameter of the Cipher object, namely AES and the corresponding

parameter of the SecretKey, Blow�sh, leads to a contradiction when the crypto analysis tries to

solve the encoded constraints.

In addition to the aforementioned classes, we speci�ed rules for a total of 17 classes of the JCA that

drive the crypto analysis. �ose rules include classes like KeyStore, PBEKeySpec for password-based

encryption and SecretKey, their interactions and suggested choice of parameters.

We run the analysis on a set of 200 Android applications that we downloaded from Andro-

Zoo (Allix et al. 2016). All applications within the set were distributed via the Google PlayStore

and received an update in 2016 or 2017. Out of the 200 applications, a total of 144 use classes of

the JCA. We report our results within this subset. Figure 12 summarizes the analysis results. We

divide the analysis time into the di�erent subanalyses. �e box plot shows, in logarithmic scale:

the median, the lower and upper quartile (the box) that limit 50% of the data around the median,

and the lower and upper whiskers (i.e., the minimal and maximal analysis times). �e analysis

times vary vastly across the di�erent applications because they vary greatly in size.

Using call graphs constructed by FlowDroid (Arzt et al. 2014), the number of methods that are

call-graph reachable range from 524 to 16,282, with an average of 3,715. Across the 144 applications,

our crypto analysis requires an average (arithmetic mean) of 123.8 seconds to terminate. �e box

plot shows that most of the analysis time is spent in call graph construction (on average 63.1%

of the total analysis time), followed by the typestate-analysis time. �e number of seeds for the

typestate analysis varies from 2 to 46 across all 144 applications.

Despite the fact that the chosen 144 applications have been recently updated, our analysis �nds

only 5 applications that correctly use the JCA API. �e table in Figure 12 shows that most of the

misuses are related to MessageDigest. �e class is misused in 139 applications, mainly due to using

either MD5 or SHA-1, both of which are no longer recommended for the purpose of cryptography.

We manually veri�ed the correctness of some of the �ndings reported by the analysis. In

particular, we discovered security-related typestate errors in three applications. A�er the usage

of a PBEKeySpec, the developers should call clearPassword() to overwrite the internal copy of

the password. Our analysis correctly identi�es the missing calls. �e issue that is listed for

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



99:24 Johannes Späth, Karim Ali, and Eric Bodden

PBEParameterSpec in the table in Figure 12 concerns the number of times a hashing algorithm is

applied to a password in a password-based encryption. �e chosen iteration count is set to 100

but is supposed to be higher (our speci�cation expects at least 1000). Additionally, we found some

so�ware-quality related typestate errors. For example, in one application, a developer consecutively

calls the method init three times with the same parameters on a retrieved Cipher object. In a

couple of other applications, we discovered that developers (unnecessarily) reset MessageDigest

objects a�er their initialization.

Our �ndings con�rm previous studies that have reported that 88% of Android applications do

not correctly make use of the JCA API (Egele et al. 2013). Our case study shows that IDE
al

can be

used to implement practical, feature-rich client analyses e�ciently in a broader context.

6.7 Threats to Validity

�e evaluation we performed is restricted to a typestate analysis as it is the most related work that

we could �nd an implementation for. �ere is a variety of other clients, such as linear constant

propagation or analysis of correlated calls, that IDE
al

can be used for but we have not evaluated

them yet. It is interesting to see the performance of IDE
al

on other clients, such as a linear constant

propagation, but we consider it as future work. �erefore, the results give only an idea of IDE
al

’s

general performance. Finally, TS
f

and TS
al

are based on two di�erent analysis frameworks, WALA

and Soot, that do not operate on the exact same program representations, and have di�erent

implementations for the same standard points-to and call graph analyses.

7 RELATEDWORK

In this section, we discuss existing data�ow frameworks, most of which expose the problem of

aliasing to the client analysis, as well as solutions to aliasing that client analyses may apply. For a

more extensive discussion of the state-of-the-art alias analyses for object-oriented programs, we

refer the reader to the survey by Sridharan et al. (2013).

7.1 Dataflow Analysis Frameworks

Apart from IFDS (Reps et al. 1995) and IDE (Sagiv et al. 1996), there exists a wide range of data�ow

frameworks that simplify the implementation of interprocedural static data�ow analyses. For

example, TVLA (Sagiv et al. 1999) uses abstract predicates that evaluate to a three-valued logic. In

addition to 0 (false) and 1 (true), three-valued logic maintains a third value (1/2) that represents

unknown or maybe evaluations. Using predicates enables TVLA to infer aliasing automatically.

TVLA has been extended later to support interprocedural analysis (Gotsman et al. 2006; Jeannet

et al. 2004). While TVLA propagates sets of aliasing pointers, IDE
al

propagates aliasing pointers

independently, which drastically reduces the size of the analysis domain.

Separation logic de�nes another technique for data�ow analysis (Reynolds 2002). In separation

logic the heap is modeled explicitly. Each instruction directly operates on the model of the heap,

analog to an actual execution. Separation logic extends standard Hoare logic by adding a separating

conjunction. �e conjunction splits the heap into disjunct regions. At a callsite, for instance, the

heap can be divided into the region accessed within the callee and the region’s complement. With

an extension called bi-abduction, Calcagno et al. (2009) managed to design a scalable shape analysis

based on separation logic. IDE
al

propagates abstract pointers (to heap cells) instead of a model

of the cells on the heap, and it is not required to split the heap. Calcagno et al. (2009) achieve

scalability by performing a compositional analysis. Similar bene�ts are expected for IDE
al

by

pre-computing summaries, as described by Arzt and Bodden (2016).

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



IDEal : E�icient and Precise Alias-aware Dataflow Analysis 99:25

Blackshear et al. (2015) propose a goal-directed approach, called Hopper, to analyze programs that

are based on event-driven systems, such as Android. �e novelty lies in jumping along control-�ow

feasible paths, once a data�ow �ows into system code, e.g. Android. Instead of analyzing the

system’s code, the �ow directly jumps to the respective point in the non-system part of the program.

Hopper relies on separation logic, i.e. explicitly models the heap. �e authors report a signi�cant

performance boost through jumping. In future work, we want to investigate how IDE
al

can make

use of a similar functionality.

Ferrara (2014) proposes an abstract-interpretation-based generic framework to value-�ow anal-

ysis that includes heap-reasoning. �e authors formally prove that heap and value analyses can

be combined into one analysis, similar to IDE
al

. Two types of analyses that can be instantiated

within their framework are numerical and shape analysis. Opposed to their work, IDE
al

computes

context-sensitive results. �is, however, comes by the cost of restricting the value domain from a

in�nite to a �nite height la�ice, as IDE
al

does not support a widening operator.

Madsen and Møller (2014) describe a sparse data�ow analysis framework for JavaScript code. A

sparse data�ow analysis operates on def-use chains that it constructs from the control-�ow graph

of a given program. �is approach is di�erent from a traditional data�ow analysis that processes

every statement in the program. Sparse data�ow analyses leverage the fact that def-use chains are

typically more sparse than the control-�ow graph, thus the analysis requires fewer propagations of

data�ow facts. IDE
al

follows a similar approach by operating on the object-�ow graph that is a

sparse abstraction of the control-�ow graph.

7.2 Solutions to Aliasing

We have already compared to the typestate analysis by Fink et al. (2008) in detail and skip its

discussion here.

Yahav and Ramalingam (2004) propose a typestate analysis on top of TVLA, but the authors

report later that TVLA does not scale well to large programs (Fink et al. 2006). An interesting

contribution of their work, however, is separation, as they report a huge bene�t in separating the

typestate analysis into subproblems. We use a simple version of separation in TS
al

by invoking

IDE
al

per tracked object.

Naeem and Lhoták (2008) show how to perform a typestate analysis (TS
n
), using property

speci�cations called tracematches (Bodden et al. 2008). Tracematches are a language extension to

AspectJ
8
, and allow the analysis to select program points using declarative pa�erns called pointcuts.

TS
n

uses a coarse-grained �eld-insensitive abstraction for the objects that are allocated on the heap.

In contrast to TS
f

and TS
al

, TS
n

can check for pa�erns that detect buggy interactions of multiple

objects (e.g., updating a list while an iterator iterates over it). TS
n

implements this by tracking

all objects that are allocated in the input program, which is a signi�cant limitation to e�ciency.

Naeem and Lhoták (2011) later overcome this limitation by generating �ow-insensitive callee and

caller summaries. �e summaries are constructed by pre-analyzing the methods where pointcuts

have no matches. TS
n

then plugs in those summaries at the appropriate call sites. We plan to extend

IDE
al

to use a similar approach to synchronize information about multiple interacting objects.

Tripp et al. (2013) propose Andromeda, an IFDS-based taint analysis that handles aliasing by

propagating access paths individually. Similar to IDE
al

, Andromeda resolves aliases in a context-

sensitive and �ow-sensitive fashion through an on-demand backward analysis. Unlike IDE
al

, due

to propagating aliases individually, Andromeda does not support strong updates. Once tainted,

Andromeda does not untaint an object if it is sanitized through an alias. FlowDroid (Arzt et al.

2014) takes a similar approach to alias resolution.

8
h�ps://eclipse.org/aspectj/

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.

https://eclipse.org/aspectj/


99:26 Johannes Späth, Karim Ali, and Eric Bodden

8 CONCLUSION

We have presented IDE
al

, an extension to the IDE framework that automatically handles aliases in

a precise and e�cient manner. One of the key features in IDE
al

is performing sound strong updates,

which require must-alias information, while propagating aliases individually. �is individual

propagation of pointers enables IDE
al

to reuse �ne-grained procedure summaries, improving its

e�ciency. IDE
al

relieves static-analysis authors of the burden of encoding alias information in the

data�ow domain. Using IDE
al

enables static-analysis authors to easily implement a wide range

of data�ow analyses that track object �ows, such as typestate analysis and property inference by

simply de�ning the IDE edge functions, while aliases are handled internally by IDE
al

.

Our empirical evaluation shows that an IDE
al

-based typestate analysis is as e�cient and precise

as a state-of-the-art typestate analysis, despite the overhead time of the underlying on-demand alias

analysis. IDE
al

achieves that by the use of a more precise abstraction of data�ow facts that avoids

unnecessary over-approximations. �is results in analyzing only relevant parts of the program. In

our experiments, an IDE
al

-based typestate analysis requires 10.4× fewer data�ow propagations

than a state-of-the-art typestate analysis. On larger programs, the fewer propagations lead to a

1.3× faster typestate analysis.

ACKNOWLEDGMENTS

�is research was supported by a Fraunhofer A�ract grant as well as the Heinz Nixdorf Foundation.

�is material is also based upon work supported by the National Sciences and Engineering Research

Council of Canada.

REFERENCES

Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016. AndroZoo: collecting millions of Android

apps for the research community. In Proceedings of the 13th International Conference on Mining So�ware Repositories, MSR

2016, Austin, TX, USA, May 14-22, 2016. 468–471. DOI:h�p://dx.doi.org/10.1145/2901739.2903508

Rajeev Alur, Pavol Cerný, P. Madhusudan, and Wonhong Nam. 2005. Synthesis of interface speci�cations for Java classes.

In Symposium on Principles of Programming Languages (POPL). 98–109.

Steven Arzt and Eric Bodden. 2016. StubDroid: automatic inference of precise data-�ow summaries for the android

framework. In International Conference on So�ware Engineering (ICSE). 725–735.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick McDaniel. 2014. FlowDroid: precise context, �ow, �eld, object-sensitive and lifecycle-aware taint

analysis for Android apps. In Programming Language Design and Implementation (PLDI). 259–269.

Stephen M. Blackburn, Robin Garner, Chris Ho�mann, Asjad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,

Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee,

J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovic, �omas VanDrunen, Daniel von Dincklage, and Ben Wiedermann.

2006. �e DaCapo benchmarks: Java benchmarking development and analysis. In Object-Oriented Programming Systems,

Languages and Applications (OOPSLA). 169–190.

Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. 2015. Selective control-�ow abstraction via jumping. In

Object-Oriented Programming Systems, Languages and Applications (OOPSLA). 163–182.

Eric Bodden, Reehan Shaikh, and Laurie J. Hendren. 2008. Relational aspects as tracematches. In International Conference on

Aspect-Oriented So�ware Development (AOSD). 84–95.

Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira Mezini. 2013. SPL
LIFT

: statically

analyzing so�ware product lines in minutes instead of years. In ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’13, Sea�le, WA, USA, June 16-19, 2013. 355–364. DOI:h�p://dx.doi.org/10.1145/2491956.

2491976

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2009. Compositional shape analysis by means

of bi-abduction. In Symposium on Principles of Programming Languages (POPL). 289–300.

Nurit Dor, Michael Rodeh, and Shmuel Sagiv. 2000. Checking Cleanness in Linked Lists. In International Symposium on

Static Analysis (SAS). 115–134.

Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013. An empirical study of cryptographic

misuse in android applications. In 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS’13,

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.

http://dx.doi.org/10.1145/2901739.2903508
http://dx.doi.org/10.1145/2491956.2491976
http://dx.doi.org/10.1145/2491956.2491976


IDEal : E�icient and Precise Alias-aware Dataflow Analysis 99:27

Berlin, Germany, November 4-8, 2013. 73–84.

Pietro Ferrara. 2014. Generic Combination of Heap and Value Analyses in Abstract Interpretation. In Veri�cation, Model

Checking, and Abstract Interpretation (VMCAI). 302–321.

Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2006. E�ective typestate veri�cation in the

presence of aliasing. In International Symposium on So�ware Testing and Analysis (ISSTA). 133–144.

Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2008. E�ective typestate veri�cation in the

presence of aliasing. ACM Transactions on So�ware Engineering and Methodology (TOSEM) 17, 2 (2008).

Manuel Ge�en, Hannes Sa�rich, and Peter �iemann. 2014. Precise Interprocedural Side-E�ect Analysis. In International

Colloquium on �eoretical Aspects of Computing (ICTAC). 188–205.

Rakesh Ghiya and Laurie J. Hendren. 1996. Is it a Tree, a DAG, or a Cyclic Graph? A Shape Analysis for Heap-Directed

Pointers in C. In Symposium on Principles of Programming Languages (POPL). 1–15.

Alexey Gotsman, Josh Berdine, and Byron Cook. 2006. Interprocedural Shape Analysis with Separated Heap Abstractions.

In International Symposium on Static Analysis (SAS). 240–260.

Bertrand Jeannet, Alexey Loginov, �omas W. Reps, and Shmuel Sagiv. 2004. A Relational Approach to Interprocedural

Shape Analysis. In International Symposium on Static Analysis (SAS). 246–264.

Vini Kanvar and Uday P. Khedker. 2016. Heap Abstractions for Static Analysis. ACM Computing Surveys (CSUR) 49, 2 (2016),

29:1–29:47.

Uday P. Khedker, Amitabha Sanyal, and Amey Karkare. 2007. Heap reference analysis using access graphs. ACM Transactions

on Programming Languages and Systems (TOPLAS) 30, 1 (2007).

Ondrej Lhoták and Kwok-Chiang Andrew Chung. 2011. Points-to analysis with e�cient strong updates. In Symposium on

Principles of Programming Languages (POPL). 3–16.

Magnus Madsen and Anders Møller. 2014. Sparse Data�ow Analysis with Pointers and Reachability. In International

Symposium on Static Analysis (SAS). 201–218.

Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping through hoops: why do Java developers struggle

with cryptography APIs?. In Proceedings of the 38th International Conference on So�ware Engineering, ICSE 2016, Austin,

TX, USA, May 14-22, 2016. 935–946.

Nomair A. Naeem and Ondrej Lhoták. 2008. Typestate-like analysis of multiple interacting objects. In Object-Oriented

Programming Systems, Languages and Applications (OOPSLA). 347–366.

Nomair A. Naeem and Ondrej Lhoták. 2011. Faster Alias Set Analysis Using Summaries. In Compiler Construction (CC).

82–103.

Nomair A. Naeem, Ondrej Lhoták, and Jonathan Rodriguez. 2010. Practical Extensions to the IFDS Algorithm. In Compiler

Construction (CC). 124–144.

Rohan Padhye and Uday P. Khedker. 2013. Interprocedural data �ow analysis in Soot using value contexts. In International

Workshop on State Of the Art in Java Program analysis, (SOAP). 31–36.

Marianna Rapoport, Ondrej Lhoták, and Frank Tip. 2015. Precise Data Flow Analysis in the Presence of Correlated Method

Calls. In International Symposium on Static Analysis (SAS). 54–71.

�omas W. Reps, Susan Horwitz, and Shmuel Sagiv. 1995. Precise Interprocedural Data�ow Analysis via Graph Reachability.

In Symposium on Principles of Programming Languages (POPL). 49–61.

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Symposium on Logic in Computer

Science (LICS). 55–74.

Shmuel Sagiv, �omas W. Reps, and Susan Horwitz. 1996. Precise Interprocedural Data�ow Analysis with Applications to

Constant Propagation. �eoretical Computer Science 167, 1&2 (1996), 131–170.

Shmuel Sagiv, �omas W. Reps, and Reinhard Wilhelm. 1999. Parametric Shape Analysis via 3-Valued Logic. In Symposium

on Principles of Programming Languages (POPL). 105–118.

Johannes Späth, Lisa Nguyen �ang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-Driven Flow- and Context-

Sensitive Pointer Analysis for Java. In European Conference on Object-Oriented Programming (ECOOP). 22:1–22:26.

Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. 2013. Alias Analysis for Object-Oriented

Programs. In Aliasing in Object-Oriented Programming. Types, Analysis and Veri�cation. 196–232.

Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodı́k. 2005. Demand-driven points-to analysis for Java. In

Object-Oriented Programming Systems, Languages and Applications (OOPSLA). 59–76.

Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore Guarnieri. 2013. Andromeda: Accurate and

Scalable Security Analysis of Web Applications. In International Conference on Fundamental Approaches to So�ware

Engineering (FASE). 210–225.

Octavian Udrea and Cristian Lumezanu. 2006. Rule-Based Static Analysis of Network Protocol Implementations. In USENIX

Security Symposium. 193–208.

John Whaley, Michael C. Martin, and Monica S. Lam. 2002. Automatic extraction of object-oriented component interfaces.

In International Symposium on So�ware Testing and Analysis (ISSTA). 218–228.

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.



99:28 Johannes Späth, Karim Ali, and Eric Bodden

Eran Yahav and G. Ramalingam. 2004. Verifying safety properties using separation and heterogeneous abstractions. In

Programming Language Design and Implementation (PLDI). 25–34.

Dacong Yan, Guoqing (Harry) Xu, and Atanas Rountev. 2011. Demand-driven context-sensitive alias analysis for Java. In

International Symposium on So�ware Testing and Analysis (ISSTA). 155–165.

PACM Progr. Lang., Vol. 1, No. OOPSLA, Article 99. Publication date: October 2017.


	Abstract
	1 Introduction
	2 Background
	2.1 The Original IFDS Algorithm
	2.2 The Original IDE Algorithm
	2.3 Boomerang: An All-Aliases Analysis

	3 Overview of IDEal
	3.1 Phase OF: Object-Flow Propagation
	3.2 Phase VF: Value-Flow Propagation
	3.3 Typestate Analysis in IDEal

	4 Framework Design
	4.1 Standard Flow Functions
	4.2 Points of Aliasing
	4.3 Sound Strong Updates
	4.4 Context-Sensitive Alias Queries

	5 Complete Run
	6 Evaluation
	6.1 Setup
	6.2 RQ1: Heap Models
	6.3 RQ2: Performance
	6.4 RQ3: Precision
	6.5 RQ4: Effect of Aliasing and Strong Updates
	6.6 Case Study: A CryptoAnalyzer built on top of IDEal
	6.7 Threats to Validity

	7 Related Work
	7.1 Dataflow Analysis Frameworks
	7.2 Solutions to Aliasing

	8 Conclusion
	Acknowledgments
	References

