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Abstract—The distributed matrix multiplication problem
with unknown number of stragglers is considered, where the
goal is to allow a master to efficiently and flexibly obtain
the product of two massive matrices by distributing the
computation across N servers. We assume there are at most
N − R stragglers but the exact number is not known a
priori. Motivated by reducing the latency, a flexible solution is
proposed to fully utilize the computation capability of available
servers. The computing job for each server is separated into 2
layers, constructed based on Entangled Polynomial (EP) codes
by Yu el al. The final results can be obtained when a larger
number of servers complete the task from the first layer or
a smaller number of servers complete the tasks from both 2
layers. The required finite field size of the proposed solution is
less than 2N . Moreover, the optimal partitioning of the input
matrices is discussed. Our constructions can also be generalized
to batch matrix multiplication.

I. INTRODUCTION

Distributed matrix multiplication has received wide inter-
est because of the huge amount of data computing required
by many popular applications like machine learning. In par-
ticular, the following basic distributed matrix multiplication
is considered: A master wishes to obtain the product of
two massive input matrices A ∈ Fλ×κ and B ∈ Fκ×µ,
where F is some finite field. Each matrix is encoded into N
shares and distributed to N servers. Each server performs
computation on its own shares and sends the results to
the master. After collecting enough results, the master can
decode the desired product AB. To reduce the overall system
latency caused by stragglers (servers that fail to respond
or respond after the master executes the reconstruction),
distributed matrix computing schemes with straggler toler-
ance are provided in [1]–[34]. Among the state-of-the-art
schemes, some are based on matrix partitioning such as
Polynomial codes [2], MatDot codes and PolyDot codes [3],
Generalized PolyDot codes [4] and Entangled Polynomial
(EP) codes [5], and others are based on batch processing
such as Lagrange Coded Computing [6] and Cross Subspace
Alignment codes [30]. The majority of the literature assumes
a fixed number of stragglers, i.e., the data is distributed to N
servers and after any R of them complete their computing,
the final product can be obtained by the master. Here R is
predetermined and called the recovery threshold. However,
when the number of stragglers is smaller than N − R,

the master still only uses the results from R servers, and
the results of other servers are wasted. In [32]–[40], the
authors consider a setting in which the number of stragglers
is not known as a priori and design schemes that can
cope with this setting. References [35], [39], [40] focus
on the task scheduling for general distributed computing
or distributed learning. The matrix-vector multiplication
setting is considered in [32], [33]. Reference [34], [36]–
[38] consider matrix-matrix multiplication, but they can only
handle a special partitioning, i.e., A is split row-wisely and
B is split column-wisely. Arbitrary partitioning of input
matrices is important in massive matrix multiplication since
it enables different utilization of system resources (e.g., the
required amount of storage at each server and the amount
of communication from servers to the master). When the
number of stragglers is fixed, EP codes [5] provide an
elegant solution for arbitrary partitioning by encoding the
input matrix blocks into a carefully designed polynomial.

This paper proposes flexible distributed matrix multipli-
cation in order to achieve low latency. The desired product
AB can be decoded from collecting the results of a flexible
number of servers. As long as the master collects enough
results from servers, the computing is completed. This idea
of multi-message is also considered in [37], [39], [40]. A
naive solution to achieve flexibility is simply applying the
EP code [5] with a recovery threshold of RK, where each
server gets K pairs of shares instead of one pair of shares.
The master can calculate the final results with any RN out
of the KN computing results. Thus, each server only needs
to compute RK/N results when there is no straggler, and in
general the number of results computed in each server can
be adjusted based on the number of stragglers. However, by
doing so, the computation needs to be done in a field with
minimum size of KN , and multiplication in a larger field
results in a much bigger delay for each multiplication [41].

To obtain a smaller field size, we propose the following
solution. The main idea is that non-stragglers can finish more
tasks to compensate for the effect of the stragglers without
knowing the pattern of the stragglers a priori. Specifically,
the computation is divided into 2 layers, where the first layer
has a larger recovery threshold and the second layer has a
smaller recovery threshold. Each server keeps calculating



and sending results to the master until enough servers send
results to the master, which can be either a larger number
of servers for the first layer or a smaller number of servers
for both 2 layers. The remaining servers are viewed as
stragglers. Our construction only requires a field size of
less than 2N . The computation load of each server can be
reduced when there are fewer stragglers than N −R. Since
computation load is one of the main reasons of delay, our
scheme performs better than fixed EP codes with respect to
delay, as shown in Fig. 1.

Notation: We use calligraphic characters to denote sets.
For positive integer N , [N ] stands for the set {1, 2, . . . , N}.
For a matrix M , |M | denotes its cardinality and when M is
partitioned into blocks, M(i,j) denotes the block in the i-th
row and the j-th column.
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Fig. 1. CDF of latency for flexible construction and EP code in Example
1 of Section III. N = R1 = 5, R2 = R = 3. We assume λ = κ =
µ = 6U , for some integer U , and the computation delay for multiplication
of two U × U matrices in each server satisfy the exponential distribution
with parameter 0.1. The latency of the EP code is the delay of the 3rd
quickest server, and the slowest 2 servers are viewed as stragglers. For the
flexible construction, the computation is completed in the cases of 5 servers
complete 1 task (no straggler), or 4 servers complete 2 tasks (1 straggler),
or of 3 servers complete 3 tasks (2 stragglers). The overall latency is the
smallest latency of these 3 cases. The expected latency is 10.79 for EP
code, and 8.20 for the flexible construction, hence we save 24%.

II. PROBLEM STATEMENT

We consider a problem of matrix multiplication with two
input matrices A ∈ Fλ×κ and B ∈ Fκ×µ, for some integers
λ, κ, µ and a field F. We are interested in computing the
product S = AB in a distributed computing environment
with 2 sources, a master, and N servers. Sources 1 and
2 hold matrices A and B, respectively. It is assumed that
there are up to N − R stragglers among the servers. In
non-flexible distributed matrix multiplication, R is called the
recovery threshold. Given the flexibility parameters R1, R2,
where N ≥ R1 > R2 = R, the shares (coded matrix sets)
Ãi and B̃i are generated by sources for Server i, i ∈ [N ].
Each share has R1 − R2 + 1 coded matrices, which are
divided into 2 layers. The first layer contains the first coded
matrix, denoted by Ãi,1 or B̃i,1, and the second layer
contains the remaining R1−R2 coded matrices, denoted by

{Ãi,2, · · · , Ãi,R1−R2+1}, or {B̃i,2, · · · , B̃i,R1−R2+1}. For
i ∈ [N ], the shares and the encoding functions are

Ãi = {Ãi,j | j ∈ [R1 −R2 + 1]} = fi(A), (1)

B̃i = {B̃i,j | j ∈ [R1 −R2 + 1]} = gi(B). (2)

Then Ãi and B̃i are sent to Server i from the sources before
the computation starts. Each server is with a storage capacity
C 1. To satisfy the storage constraint, for each Server i, i ∈
[N ],

∑
M∈Ãi∪B̃i

|M | ≤ C.
Server i computes R1 −R2 + 1 tasks in order:

S̃i,j = h
(
Ãi,j , B̃i,j

)
= Ãi,j · B̃i,j , j ∈ [R1 −R2 + 1],

and sends S̃i,j to the master once its computation is finished.
Since the results are computed in order, the master receives
S̃i,j1 before S̃i,j2 for ∀i ∈ [N ], j1 < j2. Denote S̃i,[j] ={
S̃i,t | t ∈ [j]

}
and S̃K,[j] =

{
S̃i,[j] | i ∈ K

}
,∀K ⊂ [N ].

The decoding function dK,[j] of the master for recovering
S satisfies

S = dK,[j]

(
S̃K,[j]

)
,

∀R2 ≤ |K| = R∗ ≤ R1, j = R1 −R∗ + 1. (3)

The function set {fi, gi, h, dK,[j] | 1 ≤ i ≤ N,R2 ≤
|K| = R∗ ≤ R1, j = R1 − R∗ + 1} is called the flexible
constructions for distributed matrix multiplication.

In other words, the sources send all R1 − R2 + 1 coded
matrices to each server. Then, each server keeps calculating
and sending results to the master until the master obtains
enough results – either when the quickest R1 servers com-
plete the first task, or when the quickest R∗ servers complete
the first R1−R∗+1 tasks, R2 ≤ R∗ < R1. The remaining
servers are viewed as stragglers. The latency is defined as the
time required for the master to collect enough results from
the start of the computation. For simplicity, in the analysis
of this paper, we assume a small failure probability at each
server and a constant time for a unit computation at each
server if it is not a straggler.

We want to find flexible constructions with the storage
capacity C and the computation load (i.e., the number of
multiplications) at each server as small as possible.

III. CONSTRUCTION

In this section, we present our flexible constructions. We
start from a motivating example.

Example 1. Consider the matrix multiplication of A and
B, for A ∈ Fλ×κ, B ∈ Fκ×µ, using N = 5 servers with at
most N−R = 2 stragglers. Assume A is partitioned column-
wisely and B is partitioned row-wisely: A = [A1, A2], B =[
B1

B2

]
, and the master requires AB = A1B1 + A2B2.

1The maximum storage size C is usually smaller than |A| + |B|,
otherwise the sources can send A and B to the servers.



Applying the EP code [5], server i, i ∈ [5] receives coded
matrices A1 + αiA2 and αiB1 +B2, and calculates

(A1 + αiA2) · (αiB1 +B2) (4)

=A1B2 + αi(A1B1 +A2B2) + α2
iA2B1,

which is a degree 2 polynomial with respect to αi. Thus
A1B1 + A2B2 can be calculated by 3 distinct evaluations
from {αi | i ∈ [5]} using Lagrange interpolation. The total
computation load of directly multiplying A and B is L =
λκµ, and with EP code the computation load of each server
is L/2. However, when there is no straggler, the computation
of 2 servers are wasted.

Alternatively, we can use a flexible scheme to calculate
AB, such that any R∗ available servers can complete the
computation, 3 = R2 ≤ R∗ ≤ R1 = 5. First, we
partition the matrices and get A = [A1, A2, A3], B =
[BT1 , B

T
2 , B

T
3 ]
T , and thus the master requires AB = A1B1+

A2B2 + A3B3. Let {αi|i ∈ [7]} be distinct elements in F.
The calculation will be divided into 2 layers.

Layer 1: server i, i ∈ [5], calculates

(A1 + αiA2 + α2
iA3) · (α2

iB1 + αiB2 +B3)

=A1B3 + αi(A2B3 +A1B2)

+α2
i (A1B1 +A2B2 +A3B3)

+α3
i (A2B1 +A3B2) + α4

iA3B1. (5)

It is a degree 4 polynomial with respect to αi, and the
final product can be obtained from all 5 servers. If there
is no straggler, we stop here. In this layer, matrices A,B
are divided into smaller pieces compared to fixed EP code
and the computation load of each server is L/3. If there are
stragglers, the servers continue the calculation in Layer 2.

Layer 2: We set Aαi
= (A1 + αiA2 + α2

iA3), Bαi
=

(α2
iB1 + αiB2 + B3) and we further partition them into 2

parts,

Aαi
= [Aαi,1, Aαi,2], Bαi

=

[
Bαi,1

Bαi,2

]
. (6)

The calculation of each server is shown in Table I.
Since Layer 2 has a similar structure as (4), from any 3

of the servers, we can get Aα6 · Bα6 and/or Aα7 · Bα7 . If
there is one straggler, the master obtains Aα6 · Bα6 from
Layer 2, which causes the additional computation load of
L/6 in a server. If there are 2 stragglers, the master obtains
both Aα6

·Bα6
and Aα7

·Bα7
, which causes the computation

load of L/3 in Layer 2 for each server.
Note that in this example, there are R1−R2+1 = 3 coded

matrices in a share. That is, Ãi,1 = Aαi
, Ãi,2 = Aα6,1 +

αiAα6,2, Ãi,3 = Aα7,1 + αiAα7,2, B̃i,1 = Bαi
, B̃i,2 =

Bα6,1 + αiBα6,2, B̃i,3 = Bα7,1 + αiBα7,2, for i ∈ [N ].
Server i needs to store Ãi and B̃i before the computation
steps. Each server computes the R1 − R2 + 1 = 3 tasks in
order independent of the progress of the other servers.

From Example 1, when there is no straggler (which is
more likely in most practical systems), we can reduce the
computation load of each server from L/2 to L/3. In the
worst case, we can tolerate 2 stragglers and get the desired
results. The resulting latency under an exponential model is
plotted in Fig. 1.

In this example, the storage size required for each server
is 2λκ

3 + 2κµ
3 for our flexible construction, and λκ

2 + κµ
2 for

the EP code. We will discuss how to partition the matrices
to obtain a good performance on storage size in Section IV.

Next, we present the general construction of our flexible
schemes.

Construction 1. Assume we have N ≥ R1 > R2 = R,
Rj = pjmjnj + pj − 1, j ∈ [2], and distinct elements {αi |
i ∈ [N+R1−R2]} from the finite field F. With p1,m1, n1,
matrices A,B are partitioned as

A(1,1) · · · A(1,p1)

A(2,1) · · · A(2,p1)

...
...

...
A(m1,1) · · · A(m1,p1)

 ,


B(1,1) · · · B(1,n1)

B(2,1) · · · B(2,n1)

...
...

...
B(p1,1) · · · B(p1,n1)

 .
(7)

In Layer 1, set A(1) = A,B(1) = B, we calculate
f1,A(1)(αi) · f1,B(1)(αi) in server i, where

f1,A(1)(αi) =

m1∑
u=1

p1∑
v=1

A
(1)
(u,v)α

v−1+p1(u−1)
i , (8)

f1,B(1)(αi) =

p1∑
u=1

n1∑
v=1

B
(1)
(u,v)α

p1−u+p1m1(v−1)
i , (9)

are shares based on EP codes [5]. Here, for Server i, Ãi,1 =

f1,A(1)(αi), B̃i,1 = f1,B(1)(αi).
In Layer 2, we partition matrices f1,A(1)(αN+t),

f1,B(1)(αN+t), t ∈ [R1 − R2], with parameters
p2,m2, n2. Server i calculates f2,A(2)(αi) · f2,B(2)(αi),
where

(
A(2), B(2)

)
∈ {
(
f1,A(1)(αN+t), f1,B(1)(αN+t

)
| t ∈

[R1 −R2]} and

f2,A(2)(αi) =

m2∑
u=1

p2∑
v=1

A
(2)
(u,v)α

v−1+p2(u−1)
i , (10)

f2,B(2)(αi) =

p2∑
u=1

n2∑
v=1

B
(2)
(u,v)α

p2−u+p2m2(v−1)
i . (11)

In Layer 2, for Server i ∈ [N ], index t ∈ [R1 − R2],
A(2) = f1,A(1)(αN+t), and B(2) = f1,B(1)(αN+t), the
corresponding coded matrices are

Ãi,t+1 = f2,A(2)(αi),

B̃i,t+1 = f2,B(2)(αi).

The calculation tasks in both layers are shown in Table
II. Since we only use N +R1 −R2 distinct αi values, the
required field size is |F| ≥ N +R1 −R2.



TABLE I
CALCULATION TASKS IN EACH SERVER FOR EXAMPLE 1.

Server 1 Server 2 Server 3 Server 4 Server 5
Layer 1 Aα1 ·Bα1 Aα2 ·Bα2 Aα3 ·Bα3 Aα4 ·Bα4 Aα5 ·Bα5

Layer 2

(Aα6,1 + α1Aα6,2)
·(α1Bα6,1 +Bα6,2),
(Aα7,1 + α1Aα7,2)
·(α1Bα7,1 +Bα7,2)

(Aα6,1 + α2Aα6,2)
·(α2Bα6,1 +Bα6,2),
(Aα7,1 + α2Aα7,2)
·(α2Bα7,1 +Bα7,2)

(Aα6,1 + α3Aα6,2)
·(α3Bα6,1 +Bα6,2),
(Aα7,1 + α3Aα7,2)
·(α3Bα7,1 +Bα7,2)

(Aα6,1 + α4Aα6,2)
·(α4Bα6,1 +Bα6,2),
(Aα7,1 + α4Aα7,2)
·(α4Bα7,1 +Bα7,2)

(Aα6,1 + α5Aα6,2)
·(α5Bα6,1 +Bα6,2),
(Aα7,1 + α5Aα7,2)
·(α5Bα7,1 +Bα7,2)

TABLE II
CALCULATION TASKS IN EACH SERVER FOR THE GENERAL CONSTRUCTION. IN LAYER 1, A(1) = A,B(1) = B. LAYER 2 CALCULATES FOR ALL

PAIRS OF
(
A(2), B(2)

)
∈ {

(
f1,A(1) (αN+t), f1,B(1) (αN+t

)
| t ∈ [R1 −R2]}.

Server 1 Server 2 . . . Server N
Layer 1 f1,A(1) (α1) · f1,B(1) (α1) f1,A(1) (α2) · f1,B(1) (α2) . . . f1,A(1) (αN ) · f1,B(1) (αN )

Layer 2 f2,A(2) (α1) · f2,B(2) (α1) f2,A(2) (α2) · f2,B(2) (α2) . . . f2,A(2) (αN ) · f2,B(2) (αN )

Theorem 1. In Construction 1, assume we have R∗ avail-
able servers and R2 ≤ R∗ ≤ N , we only need

Lflex =

{
λκµ

m1p1n1
, R∗ ≥ R1,

λκµ
m1p1n1

+ λκµ(R1−R∗)
m1m2p1p2n1n2

, R2 ≤ R∗ < R1.

(12)

computation load in each server to obtain the final product,
and the storage capacity required is

Cflex =
1

p1

(
λκ

m1
+
κµ

n1

)
+
R1 −R2

p1p2

(
λκ

m1m2
+

κµ

n1n2

)
.

(13)

Proof: We first look at the computation load.
In the case that the number of available servers R∗ ≥ R1,

according to the correctness of EP codes [5], the required
results A× B can be obtained by collecting R1 evaluation
points of f1,A(1)(αi)× f1,B(1)(αi). Thus, we only need the
computation in Layer 1. In Layer 1, we calculate f1,A(1)(αi)·
f1,B(1)(αi). From (7), (8) and (9) we know that f1,A(1)(αi)
has size λ

m1
· κp1 and f1,B(1)(αi) has size κ

p1
· µn1

. Thus,
normalized by the cost of a single multiplication operation,
the computation in Layer 1 is

L1 =
λκµ

m1p1n1
. (14)

When R2 ≤ R∗ < R1, we only have R∗ evaluation
points of f1,A(1)(αi) · f1,B(1)(αi) calculated in Layer 1.
Then, we need to obtain additional R1 − R∗ evaluation
points. In Layer 2, f2,A(2)(αi) · f2,B(2)(αi), i ∈ [N ], are
calculated at the servers with (A(2), B(2)) chosen from
{
(
f1,A(1)(αN+t), f1,B(1)(αN+t)

)
}, t ∈ [R1 − R2]}. With

each pair of (A(2), B(2)), the master can calculate one
evaluation point of f1,A(1)(αN+t) ·f1,B(1)(αN+t) since (10)
and (11) are exactly the EP code [5]. From (10) and (11), we
know that f2,A(2)(αi) has size λ

m1m2
· κ
p1p2

and f2,B(2)(αi)
has size κ

p1p2
· µ
n1n2

. Thus, the total computation in Layer 2
is

L2 =
(R1 −R∗)L1

p2m2n2
. (15)

Combining (14) and (15), the computation load is given
as (12).

For the storage, we first look at the storage size re-
quired for each layer. In Layer 1, we need to store
f1,A(1)(αi), f1,B(1)(αi), then

C1 =
1

p1

(
λκ

m1
+
κµ

n1

)
. (16)

In Layer 2, we need to store all pairs of
f2,A(2)(αi), f2,B(2)(αi), for R1−R2 choices of (A(2), B(2)).
The required storage size is

C2 =
(R1 −R2)

p1p2

(
λκ

m1m2
+

κµ

n1n2

)
. (17)

Thus, we obtain the total required storage size as (13).
Remark. Cross Subspace Alignment codes and General-
ized Cross Subspace Alignment codes [30] are designed
to handle batch processing of matrix multiplication. Our
construction can also be easily modified to handle batch
processing based on these two codes.

IV. OPTIMIZATION

In this section, we discuss how to pick partitioning pa-
rameters p,m, n, to improve the system performance, i.e., to
minimize the computation load given the storage constraint
C in each server.

We first discuss fixed EP code with a fixed recovery
threshold R, which satisfies R = m0p0n0+p0−1 according
to [5], for some undetermined p0,m0, n0. The computation
load and the storage size required are shown in [5] as

LEP =
λκµ

m0p0n0
, CEP =

1

p0

(
λκ

m0
+
κµ

n0

)
. (18)

Thus, the optimization problem can be formulated as

min
p0,m0,n0

LEP =
λκµ

m0p0n0
,

s.t. R = p0m0n0 + p0 − 1,

λκ

p0m0
+

κµ

p0n0
≤ C,

p0,m0, n0 are integers.

(19)



Theorem 2. The optimization in (19) without the integer
constraint has solution

p∗0 =
1

2
(R+ 1)− 1

2

√
(R+ 1)2 − 16

λκ2µ

C2
, (20)

and m∗0, n
∗
0 are given by m0n0 = R+1

p0
− 1 and λκn0 =

κµm0.

Proof: Using the threshold constraint

p0m0n0 = R+ 1− p0, (21)

we have LEP = λκµ
R+1−p0 , which is an increasing function of

p0. So, we minimize p0 under the constraint that
(λκn0 + κµm0)

R+ 1− p0
≤ C. (22)

Also, we have

λκn0 + κµm0 ≥ 2
√
λκ2µm0n0 = 2

√
λκ2µ

(
R+ 1

p0
− 1

)
(23)

and it holds with equality if and only if λκn0 = κµm0.
Thus, we have (22) as

2

√
λκ2µ

(R+ 1− p0)p0
≤ C, (24)

which decreases with p0 since the derivative satisfies
d (R+ 1− p0)p0

d p0
= R+ 1− 2p0 = p0m0n0 − p0 ≥ 0. (25)

Thus, LEP reaches its optimal value when (24) holds with
equality and λκn0 = κµm0. Combining (21), the optimal
p∗0 is given by (20), and then m∗0, n

∗
0 can be obtained

accordingly.
Notice that p0,m0, n0 are integers, we pick these 3

parameters close to the optimal values that satisfy all the
constraints in (19).

Next, we consider the flexible constructions with prede-
termined R1, R2 = R. Assume that the probability that each
server is a straggler is ε. The average computation load is

E[Lflex] =

N∑
R∗=R1

(
N

R∗

)
(1− ε)R

∗
εN−R∗ λκµ

p1m1n1

+

R1−1∑
R∗=R2

(
N

R∗

)
(1− ε)R

∗
εN−R∗ λκµ(R1 −R∗)

m1m2p1p2n1n2
. (26)

In practical systems, ε is small (e.g., less than 110
failures over 3000-node production clusters of Facebook
per day [42]), so we ignore the second term in (26) and
use the approximation Lflex = λκµ

p1m1n1
in our optimization

problem. Combined with (13), the optimization problem can
be formulated as

min
p1,m1,n1,p2,m2,n2

Lflex =
λκµ

p1m1n1
,

s.t. Rj = pjmjnj + pj − 1, j ∈ [2],

1

p1

(
λκ

m1
+
κµ

n1

)
+

(R1 −R2)

p1p2

(
λκ

m1m2
+

κµ

n1n2

)
≤ C,

p1,m1, n1, p2,m2, n2 are integers. (27)

Theorem 3. The solution to (27) without the integer con-
straint for p1,m1, n1, p2 is

p∗1 =
R1 + 1

2
−

√
(R1 + 1)2

4
− 4λκ2µ(2R1 −R2 + 1)2

C2(R2 + 1)2
,

(28)

m∗1, n
∗
1 are given by m1n1 = R1+1

p1
−1 and λκn1 = κµm1,

and p∗2 = R2+1
2 ,m∗2 = 1, n∗2 = 1.

Proof: Using p1m1n1 = R + 1 − p1, we have Lflex =
λκµ

R1+1−p1 , which is an increasing function of p1, so we need
to minimize p1.

Using mjnj =
Rj+1
pj
− 1, similar to (23), we have:

1

p1
(
λκ

m1
+
κµ

n1
) ≥ 2

√
λκ2µ

(R1 + 1− p1)p1
, (29)

(R1 −R2)

p1p2

(
λκ

m1m2
+

κµ

n1n2

)
≥2(R1 −R2)

√
λκ2µ

(R1 + 1− p1)(R2 + 1− p2)p1p2
. (30)

Similar to (25), we know that (30) is a decreasing function
of p1 and p2. Thus, when p2 reaches its maximum, p1 is
minimized. Noticing that p2 = R2+1

m2n2+1 and m2, n2 are
integers, we set p∗2 = R2+1

2 ,m∗2 = 1, n∗2 = 1. The optimal
p∗1 is obtained from (29) and (30).

Again, we pick p1,m1, n1, p2,m2, n2 as integers around
the optimal value satisfying (27) as our final choice.

Example 2. Assume we have N = 8 servers and we need
to tolerate N −R = 1 straggler. λ = κ = µ and the storage
size of each server is limited by C = 8

7λκ. Using the EP
code, the optimal choice of {p0,m0, n0} is {1, 1, 7}, which
results in a storage size of 8

7λκ and a computation load
per server of 1

7λκµ = 0.143λκµ. Using the 2-layer flexible
codes with R1 = 8 and R2 = 7, the optimal parameters are
chosen as p1 = 1,m1 = 2, n1 = 4, p2 = 4,m2 = 1, n2 = 1,
which cost a storage size of 15

16λκ and a computation load
of 1

8λκµ when there is no straggler, with an additional
computation load of 1

32λκµ when there is one straggler.
Assuming the probability of one straggler to be 10%, the
average computation load is 0.128λκµ. In this example, we
save both storage size and average computation load while
maintaining one straggler tolerance.

V. CONCLUSION

In this paper, a flexible construction for distributed matrix
multiplication is proposed and the optimal parameters are
discussed. The construction can also be generalized to batch
processing of matrix multiplication.
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