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Abstract. Entropy inequalities are crucial to the well-posedness of hyperbolic con-
servation laws, which help to select the physically meaningful one among the infinite
many weak solutions. Recently, several high order discontinuous Galerkin (DG) meth-
ods satisfying entropy inequalities were proposed, see [7, 5, 8] and the references therein.
However, high order numerical methods typically generate spurious oscillations in the
presence of shock discontinuities. In this paper, we construct a high order entropy
stable oscillation-free DG (ESOFDG) method for hyperbolic conservation laws. With
some suitable modification on the high order damping term introduced in [27, 26], we
are able to construct an OFDG scheme with dissipative entropy. It is challenging to
make the damping term compatible with the current entropy stable DG framework,
that is, the damping term should be dissipative for any given entropy function without
compromising high order accuracy. The key ingredient is to utilize the convexity of the
entropy function and the orthogonality of the projection. Then the proposed method
maintains the same properties of conservation, error estimates and entropy dissipation
as the original entropy stable DG method. Extensive numerical experiments are pre-
sented to validate the theoretical findings and the capability of controlling spurious
oscillations of the proposed algorithm.

1. Introduction

Hyperbolic conservation laws have been studied over the centuries in the realm of gas

dynamics of continuum physics. The general form of systems of conservation laws is
∂u

∂t
+

d∑
m=1

∂fm(u)

∂xm
= 0, (x, t) ∈ Rd × (0,+∞),

u = g, on Rd × {t = 0}

(1.1)

where u = [u1, . . . , un]
T is a vector of functions denoting the conservative variables, fm =

[f 1
m, . . . , f

n
m]

T is the vector flux function, and g : Rd → Rn is the given initial condition. It is

widely known that shock waves or contact discontinuities might be developed at finite time,

regardless of the smoothness of the initial or boundary conditions. Therefore it is reasonable

to seek for weak solutions and interpret (1.1) in the sense of distribution.
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Definition 1.1. A function u ∈ L∞(Rd× (0,+∞);Rn) is called a weak solution of (1.1)

if it satisfies (1.1) in the sense of distributions:∫ +∞

0

∫
Rd

(
u · ∂φ

∂t
+

d∑
m=1

fm(u) ·
∂φ

∂xm

)
dxdt+

∫
Rd

φ · g dx
∣∣∣
t=0

= 0(1.2)

for all smooth test functions φ : Rd × [0,+∞) → Rn with compact support.

Unfortunately, the weak solution in Definition 1.1 turns out to be inadequate, as such weak

solution would not be unique in general. In order to select the “physical relevant” solution

among all weak solutions, it requires the weak solution to satisfy certain entropy criterion. To

this end, we first introduce the entropy pairs.

Definition 1.2. A pair of functions
[
U(u),F(u)

]
with U : Rn → R, F = [F1, . . . , Fd]

T :

Rn → Rd is called an entropy pair for (1.1) if U(u) is convex and {Fm(u)}dm=1 satisfy

F ′
m(u) = U ′(u)f ′m(u), m = 1, . . . , d,(1.3)

where U ′(u) and F ′
m(u) are viewed as row vectors and f ′m(u) is the n×n Jacobian matrix.

With the setup of entropy pairs, we now specify the additional admissibility condition in

order to select the physically meaningful weak solution.

Definition 1.3. A weak solution u of (1.1) is an entropy solution if the following in-

equality holds:

∂U(u)

∂t
+

d∑
m=1

∂Fm(u)

∂xm
≤ 0(1.4)

for all entropy pairs
[
U(u),F(u)

]
in the weak sense, that is,∫ +∞

0

∫
Rd

(
U(u)

∂ϕ

∂t
+

d∑
m=1

Fm(u)
∂ϕ

∂xm

)
dxdt+

∫
Rd

U(g)ϕ(x, 0) dx ≥ 0(1.5)

for any ϕ ∈ C∞
c

(
Rd × [0,+∞)

)
, ϕ ≥ 0.

The existence and uniqueness of the entropy solution of (1.1) can be established for scalar

conservation law (n = 1), and for one-dimensional systems (d = 1) with small initial variation.

However, the global existence and uniqueness of the entropy solutions for general hyperbolic

conservation laws remain open and a good mathematical understanding of (1.1) is largely

unavailable at present. For more details on the theory of hyperbolic conservation laws, we

refer the readers to [28, 12] and the references therein.

Despite that uniqueness might not be guaranteed under the entropy conditions given in

Definition 1.4, in the numerical approximation of (1.1) one would still like to seek numerical

schemes which satisfy the entropy condition on the discrete level. Such a property is referred

as entropy stability. For the first order (finite volume) method, entropy stability analysis

is well-developed based on Tadmor’s entropy conservative fluxes and entropy stable fluxes

[35, 36]. For the high order entropy stable finite volume methods, a notable result is the

TeCNO scheme proposed by Fjordholm, Mishra and Tadmor [16], with the use of high order
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entropy conservative fluxes [29] and the sign property of the essentially non-oscillatory (ENO)

reconstruction [17]. In recent years, there have been rapid developments on the entropy stable

quadrature-based discontinuous Galerkin (DG) methods. In [7], Chen and Shu proposed an

entropy stable DG scheme on unstructured simplex meshes, in which they introduced special

Gauss-Lobatto type quadrature rules with collocated surface quadrature points and discrete

operators with the multidimensional summation-by-parts (SBP) property [20, 15]. There are

a few different entropy stable DG methods in the SBP framework, see e.g. [10, 11, 5, 6]. A

comprehensive review of entropy stable DG methods for systems of conservation laws can be

found in [8].

For hyperbolic conservation laws, high order linear numerical schemes often generate spu-

rious oscillations near the discontinuities (the Gibbs phenomenon), which may cause accu-

racy contaminated in the smooth regions and less robustness of the schemes, and even worse

blowups of the code. The entropy stable quadrature-based DG methods are not exempt from

it either. Generally, there are two kinds of treatments to overcome such a difficulty. One is

to apply slope limiters on the DG solutions, such as the total variation diminishing (TVD)

limiters, total variation bounded (TVB) limiters [9], and weighted ENO (WENO) limiters

[40], etc. The limiters work quite effectively for their simplicity, low computational cost and

with little modification required on the original codes, thus favored by many researchers and

engineers. Another treatment is to add artificial diffusion in the weak formulations, which

is more convenient to perform theoretical analysis. However, it needs a subtle analysis to

determine how much diffusion needs to be added [21]. With suitable artificial diffusion, the

effect to suppress spurious oscillations is obvious.

The objective of this paper is to design a DG scheme with both entropy stability and

oscillation-free properties. It seems quite challenging to obtain these two properties simulta-

neously. In fact, [7, Remark 4.4] states that it is hard to design entropy stable TVD/TVB lim-

iters for hyperbolic systems. Very recently, we developed an approach to control the spurious

oscillations by introducing damping in the DG formulations artificially [27, 26]. As demon-

strated in [27], the proposed DG methods can not only control the spurious oscillations, but

also preserve some basic properties of the standard DG methods such as conservation, optimal

a priori error estimates and superconvergence, etc. In this paper, we are trying to accommo-

date the damping technique to the entropy stable quadrature-based DG methods. The newly

added damping should also be entropy dissipative without comprising high order accuracy.

To this end, we make use of the convexity of the entropy functions and take only one part of

the local projections in [27]. In fact, we only take the projection orthogonal to the constant

states so as to achieve the entropy stability. Compared with the damping terms in [27], the

one proposed here abandons the original hierarchical structure and the damping coefficients

are also adjusted. By a careful theoretical analysis, the proposed algorithm still maintains

the properties of the standard entropy stable quadrature-based DG methods. Finally, we

make investigations on a variety of numerical examples to show the good performance of the

constructed schemes.

The rest of the paper is organized as follows. In Section 2, we briefly present some pre-

liminary results, including continuous entropy analysis, quadrature rules on simplex elements
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and the corresponding SBP operators. In Section 3, we first review the matrix-vector form

of the nodal DG method, and the entropy stable DG method with quadrature rules of collo-

cated surface nodes, and then we propose the entropy stable oscillation-free DG (ESOFDG)

method. Theoretical analysis of accuracy, conservation and entropy stability are also given.

In Section 4, we conduct extensive numerical experiments such as accuracy tests, convex and

nonconvex conservation laws, and several benchmark problems associated with compressible

Euler equations. Concluding remarks are given in Section 5.

2. Preliminaries

In this section, we first present the derivation of the entropy inequality for (1.1) in the PDE

level. Then we introduce the quadrature rules and the SBP operators [13, 14, 34], which mimic

integration by parts at the discrete level. Next, we give a brief description of the nodal DG

method. As we shall see later, the nodal DG method in the matrix-vector form is well suited

in the SBP framework.

2.1. Continuous entropy analysis. As mentioned before, the functions
[
U(u),F(u)

]
sat-

isfying U(u) is convex and (1.3) is called an entropy pair. Given a strictly convex entropy

function U , let v = U ′(u)T be the entropy variables. Then v′(u) = U ′′(u) is symmetric

positive-definite, and the mapping u → v is invertible. Now let us define the potential fluxes

in the following:

ψm(v) = vT fm(u(v))− Fm(u(v)), m = 1, . . . , d.(2.1)

One can easily verify that

ψ′
m(v) = fm(u(v))

T .(2.2)

If the solutions to conservation laws (1.1) are smooth, then they should satisfy an additional

entropy conservation law as below

0 = U ′(u)
∂u

∂t
+

d∑
m=1

U ′(u)f ′m(u)
∂u

∂xm
=
∂U

∂t
+
∂Fm

∂xm
.(2.3)

When the solutions have discontinuities, it is natural to require the entropy to be dissipative.

This is how the definition of entropy condition in (1.4) comes from. Integrate (1.4) in space

and assume u is compactly supported, we obtain the following inequality:

d

dt

∫
Ω

U(u) dx ≤ 0.(2.4)

This means that the total amount of entropy is non-increasing with respect to time. The

existence of entropy function is not that trivial to obtain. For scalar conservation laws (n =

1), any convex function U can be taken as an entropy function, with the entropy fluxes

Fm(u) =
∫
U ′(u)f ′

m(u) du. However, for general systems, the existence of entropy function

is no longer guaranteed, and both existence and uniqueness of entropy solutions are much

more challenging. Fortunately, for most systems we are interested in, such as shallow water

equations, compressible Euler equations, magnetohydrodynamic (MHD) equations, we are
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able to find the entropy functions with physical meaning. For more details readers can refer

to [28] on entropy analysis of systems of conservation laws.

2.2. Quadrature rules and SBP operators. In this subsection, We briefly review the

quadrature rules and SBP operators in order to rewrite the DG method under the SBP frame-

work. To obtain SBP operators, the volume and surface quadrature rules should be carefully

constructed. Suppose Ω ∈ Rd is some polygonal computational domain, and Th = {Tκ}Nh
κ=1 is

some conforming partition of Ω, with h being the characteristic length of Th. We assume that

each element Tκ is a simplex, so that ∂Tκ consists of (d − 1)-dimensional simplex faces. We

also assume the simplex meshes Th are shape regular and quasi-uniform. The set of simplex

faces is denoted by

Γh = {e : e = ∂Tκ ∩ ∂Tι, 1 ≤ κ, ι ≤ Nh, κ ̸= ι}(2.5)

Given Tκ ∈ Th and e ∈ Γh such that e ∈ ∂Tκ, we use the notation neκ = [neκ
1 , . . . , n

eκ
d ]T to

represent the unit outward normal vector at e.

The SBP operators of degree k requires at least degree (2k − 1) volume quadrature rules

and at least degree 2k surface quadrature rules. For each simplex Tκ, 1 ≤ κ ≤ Nh, suppose

that there is an at least degree (2k − 1) quadrature rule on Tκ, associated with NQ,k nodes

{xκ
j }

NQ,k

j=1 and positive weights {ωκ
j }

NQ,k

j=1 , NQ,k ≥ NP,k with

NP,k = dimPk(Rd) =

(
k + d
d

)
.(2.6)

For each e ∈ Γh, we also choose some at least degree 2k (surface) quadrature rule on e,

associated with NB,k nodes {xe
s}

NB,k

s=1 , and positive weights {τ es }
NB,k

s=1 . For a scalar function u

on Ω, we introduce the vector notation of nodal functions as follows:

−→
uκ = [u(xκ

1), . . . , u(x
κ
NQ,k

)]T ,
−→
ue = [u(xe

1), . . . , u(x
e
NB,k

)]T .(2.7)

Then we can define the continuous and discrete inner products on Tκ and e that

(u, v)Tκ =

∫
Tκ

uv dx, (u, v)Tκ,ω =

NQ,k∑
j=1

ωκ
j u(x

κ
j )v(x

κ
j ) =

(−→
uκ

)T
Mκ

−→
vκ,(2.8)

⟨u, v⟩e =
∫
e

uv dS, ⟨u, v⟩e,τ =

NB,k∑
s=1

τ esu(x
e
s)v(x

e
s) =

(−→
ue
)T
Be−→ve ,(2.9)

where the volume mass matrix Mκ and the surfaces mass matrix Be are diagonal matrices of

quadrature weights:

Mκ = diag{ωκ
1 , . . . , ω

κ
NQ,k

}, Be = diag{τ e1 , . . . , τ eNB,k
}.(2.10)

Now let {φℓ(x)}
NP,k

ℓ=1 be a set of basis functions of Pk(Rd). Then we define the Vandermonde

matrices, whose columns are nodal values of {φℓ(x)}
NP,r

ℓ=1 :

V κ
r =

[−→
φκ
1 , . . . ,

−−−→
φκ
NP,r

]
, V e

r =
[−→
φe
1, . . . ,

−−−→
φe
NP,r

]
, 0 ≤ r ≤ k.(2.11)
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We also define NP,k ×NP,k polynomial differential matrices D̂m such that

∂φℓ

∂xm
(x) =

NP,k∑
r=1

D̂m,rℓφr(x), 1 ≤ m ≤ d .

Then V κ
k D̂m is the Vandermonde matrix of {∂xmφℓ(x)}

NP,k

ℓ=1 on Tκ. According to integration

by parts and algebraic accuracy of (·, ·)Tκ,ω and ⟨·, ·⟩e,τ , we can obtain the summation by parts

property of modal matrices [8] and present it in the following:

M̂κD̂m + D̂T
mM̂κ =

∑
e∈∂Tκ

neκ
m B̂

e,(2.12)

where M̂κ and B̂e are given as

M̂κ = (V κ
k )

TMκV
κ
k , B̂e = (V e

k )
TBeV e

k .(2.13)

To obtain nodal SBP property, we recall the definitions in [8] of degree k difference matrix

Dκ
m (of the size NQ,k ×NQ,k) and extrapolation matrices {Reκ}e∈∂Tκ (of the size NB,k ×NQ,k),

for which the following two conditions hold:

(i) Exactness: both Dκ
m and Reκ are exact for polynomials of degree ≤ k, i.e.

Dκ
mV

κ
k = V κ

k D̂m, ReκV κ
k = V e

k .(2.14)

(ii) Summation-by-parts: let Sκ
m =MκDκ

m and Eeκ = (Reκ)TBeReκ, we have

Sκ
m + (Sκ

m)
T =MκD

κ
m + (Dκ

m)
TMκ =

∑
e∈∂Tκ

neκ
mE

eκ =
∑
e∈∂Tκ

neκ
m (Reκ)TBeReκ.(2.15)

With the help of the discrete inner product (·, ·)Tκ,ω, we can also define the L2 projection

matrix [5] :

P κ
r = (M̂ r

κ)
−1(V κ

r )
TMκ, 0 ≤ r ≤ k.(2.16)

In particular, for r = 0, we have

−→c TMκ(
−→
uκ − V κ

0 P
κ
0

−→
uκ) = 0, ∀

−→
uκ ∈ RNQ,k ,(2.17)

where −→c = [c, c, . . . , c]T ∈ RNQ,k is a constant vector. The existence of SBP difference matrices

is ensured by the following theorem [7, 15, 20, 8]:

Theorem 2.1. Assume that we have extrapolation matrices Reκ satisfying the exactness

property. Then the difference matrices, given by the formula

Dκ
m =

1

2
(Mκ)

−1
∑
e∈∂Tκ

neκ
m (Reκ + V e

k P
κ
k )

TBe(Reκ − V e
k P

κ
k ) + V κ

k D̂mP
κ
k(2.18)

also satisfy the exactness property and the SBP property.

For the choice of the extrapolation matrices Reκ, we refer to Remark 3.2 in [8]. Now we

also define the extended vector of nodal values to incorporate vector-valued functions u:
−→
uκ =

[
u(xκ

1), . . . ,u(x
κ
NQ,k

)
]T
,

−→
ue =

[
u(xe

1), . . . ,u(x
e
NB,k

)
]T
,(2.19)
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as well as the Kronecker products

Mκ =Mκ ⊗ In, Be = Be ⊗ In, Dκ
m = Dκ

m ⊗ In, Reκ = Reκ ⊗ In,

M̂κ = M̂κ ⊗ In, D̂m = D̂m ⊗ In, Vκ
r = V κ

r ⊗ In, Ve
r = V e

r ⊗ In.

We still have the following SBP properties

Sκ
m = MκD

κ
m, Eeκ = (Reκ)TBeReκ, Sκ

m + (Sκ
m)

T =
∑
e∈∂Tκ

neκ
mEeκ.(2.20)

3. High order entropy stable oscillation-free DG schemes

In this section, we proceed to construct the entropy stable OFDG schemes for (1.1). We

first review the classic nodal DG methods and quadrature-based entropy stable DG methods

with collocated surface nodes [7, 8]. The method successfully achieves entropy stability thanks

to the SBP property of the corresponding discrete operators [13, 14, 34] and the flux differ-

encing technique with entropy conservative fluxes [3, 7]. These two treatments are extremely

important for they can recover the integration by parts and chain rule at the discrete level

respectively. Now let us introduce the classic nodal DG method.

3.1. Nodal DG schemes. In this subsection, we recall the classic nodal DG schemes. Given

polynomial degree k ≥ 0, we define the DG finite element space:

Wk
h := {wh : wκ

h = wh|Tκ ∈ [Pk(Tκ)]
n, 1 ≤ κ ≤ Nh}.(3.1)

We seek uh ∈ Wk
h such that for each wh ∈ Wk

h and 1 ≤ κ ≤ Nh, we have(∂uκ
h

∂t
,wκ

h

)
Tκ

−
d∑

m=1

(
fm(u

κ
h),

dwκ
h

dxm

)
Tκ

= −
∑
e∈∂Tκ

⟨
f̂n(u

κ
h,u

κ̃
h),w

κ
h

⟩
e
,(3.2)

where f̂n is the interface numerical flux function, and e = ∂Tκ ∩ ∂Tκ̃ is the interface of the

elements Tκ and Tκ̃. Since {φℓ(x)}
NP,k

ℓ=1 are basis functions of Pk(Rd), we can expand uκ
h and

wκ
h under {φℓ(x)}

NP,k

ℓ=1 :

uκ
h(x, t) =

NP,k∑
ℓ=1

ûκ
ℓ (t)φℓ(x), wκ

h(x, t) =

NP,k∑
ℓ=1

ŵκ
ℓ (t)φℓ(x).

We now replace the continuous inner products by the volume quadrature rule and the surface

quadrature rule and rewrite (3.2) as follows:

(−→
ŵκ

)T
M̂κ

d
−→
ûκ

dt
−

d∑
m=1

(
Vκ

kD̂m

−→
ŵκ

)T
Mκ

−→
fκm = −

∑
e∈∂Tκ

(
Ve

k

−→
ŵκ

)T
Be−−→f eκ,∗n ,(3.3)

where
−→
ûκ =

[
ûκ
1 , . . . , û

κ
NP,k

]T
,

−→
ŵκ =

[
ŵκ

1 , . . . , ŵ
κ
NP,k

]T
,

−→
fκm =

[
fm(u

κ
1), . . . , fm(uNκ

Q,k
)
]T
,

−−→
f eκ,∗n =

[
f̂n(u

eκ
1 ,u

eκ̃
1 ), . . . , f̂n(u

eκ
NB,k

,ueκ̃
NB,k

)
]T
.
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Multiplying (3.3) by the matrix Vκ
k from the left, with the relation Vκ

k(M̂κ)
−1 = (Mκ)

−1(Pκ
k)

T

we obtain the nodal formulation:

d
−→
uκ

dt
− (Mκ)

−1

d∑
m=1

(Dκ
m)

T Mκ

−→
fκm = −(Mκ)

−1
∑
e∈∂Tκ

(Reκ)T Be−−→f eκ,∗n ,(3.4)

by choosing Dκ
m = Vκ

kD̂mP
κ
k and Reκ = Ve

kP
κ
k and

−→
uκ is given in (2.19). According to the

SBP property (2.20), we have the equivalent strong nodal DG formulation:

d
−→
uκ

dt
+

d∑
m=1

Dκ
m

−→
fκm = (Mκ)

−1
∑
e∈∂Tκ

(
Reκ

)T
Be

(−→
f eκn −

−−→
f eκ,∗n

)
,(3.5)

where
−→
f eκm and

−→
f eκn are the vectors of extrapolated nodal values on each face e ∈ ∂Tκ that

−→
f eκm = Reκ−→fκm,

−→
f eκn =

d∑
m=1

neκ
m

−→
f eκm .(3.6)

An interpretation of the link between the modal and nodal DG formulations was given in [8,

Remark 3.4].

3.2. Entropy stable DG schemes with collocated surface nodes. Now we continue to

introduce the entropy stable nodal DG formulation based on (3.4). The nodal DG formulation

(3.4) does not satisfy any entropy inequality because the second term on the left hand side does

not satisfy the discrete chain rule. To recover the chain rule on the discrete level, we replace

the difference term in (3.5) with high order difference operation of entropy conservative fluxes.

This technique is termed by flux differencing which is crucial to the entropy balance within

an element. A deeper look into the flux differencing technique was given in [8, Appendix A].

The modified DG formulation with collocated surface nodes [7] reads

d
−→
uκ

dt
+ 2

d∑
m=1

Dκ
m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ = (Mκ)

−1
∑
e∈∂Tκ

(Reκ)TBe
(−→
f eκn −

−−→
f eκ,∗n

)
(3.7)

where ◦ denotes the Hadamard (pointwise) product of vectors and matrices, and Fm,S(·, ·) is
the matrix of pairwise combinations of entropy conservative fluxes [22, 4, 10, 11]:

Fm,S(
−→uL,

−→uR) =

 diag
(
fm,S(uL,1,uR,1)

)
· · · diag

(
fm,S(uL,1,uR,NR

)
)

...
. . .

...
diag

(
fm,S(uL,NL

,uR,1)
)

· · · diag
(
fm,S(uL,NL

,uR,NR
)
)
 ,(3.8)

for −→uL ∈ RnNL and −→uR ∈ RnNR . Note that this method requires the collocated surface quadra-

ture nodes ({xe
x}

NB,k

s=1 is a subset of {xκ
j }

NQ,k

j=1 for e ∈ ∂Tκ), thus R
eκ is a simple restriction onto

e and diagonal. In [7], the authors proved the nodal DG scheme (3.7) is conservative, entropy

stable and high order accurate, under the assumptions that fm,S is entropy conservative, and

f̂n is entropy stable for any given entropy function.
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3.3. Entropy stable oscillation-free DG schemes. Despite the fact that DG scheme (3.7)

possesses so many good properties, it cannot eliminate numerical oscillations near the discon-

tinuities. To control the non-physical oscillations, we adopt the recent developed damping

technique in [27, 26] and construct a suitable damping term for (3.7). Note that the added

damping term should not destroy the good properties of the entropy stable DG schemes, such

as conservation, entropy stability, and high order accuracy. By a careful construction, we

obtain the following nodal DG schemes:

d
−→
uκ

dt
+ 2

d∑
m=1

Dκ
m ◦ Fm,S

(−→
uκ,

−→
uκ

)−→
1κ

= (Mκ)
−1

∑
e∈∂Tκ

(Reκ)TBe
(−→
f eκn −

−−→
f eκ,∗n

)
− σκ(u)

(−→
uκ −Vκ

0P
κ
0

−→
uκ

)
.

(3.9)

The damping coefficient σκ(u) is defined as follows

σκ(u) = max
1≤s≤n

( 1∑
ℓ=0

h2ℓTκ

ℓ+ 1

∑
|α|=ℓ

1

Ne

∑
υ∈∂Tκ

[[
(
L∂αu

)
s
|υ]]2

) 1
2

,(3.10)

where the vector α is the multiindex of order |α| = α1 + . . . + αd, and ∂αω = ∂α1
x1

· · · ∂αd
xd
ω.

The matrix L comes from the characteristic decomposition such that

d∑
i=1

nif
′
i(ū) = L−1ΛL

with n = [n1, . . . , nd]
T is the unit outward normal and ū is some average of u on the point

υ ∈ ∂Tκ. For more details, we refer the readers to [26]. Since we only have the values of

the entropy variables on nodal points, we first project the u into the finite element space to

obtain the coefficients of polynomials,
−→
ûκ = Pκ

k

−→
uκ, then we can obtain the derivatives of u.

For the jump of the function ω on the vertex υ ∈ Tκ, we only consider the adjacent neighbors

of element Tκ. For example, see Fig. 1, the adjacent neighbors of element K are K1, K2, K3,

thus Ne = 3. Under the same assumptions of entropy stable nodal DG methods in [7, 8], we

v

K6

K1

K

K3
K4

K5

K2
Figure 1. Illustrating graph for
the jumps in the damping coeffi-
cient σκ defined in (3.10).

have our main theorem as follows:

Theorem 3.1. The scheme (3.9) is consistent in the sense that for a smooth solution u

of (1.1) and a smooth entropy variable v with respect to U , the local truncation error is
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of high order:

duκ
j

dt
+ 2

d∑
m=1

NQ,k∑
i=1

Dκ
m,jifm,S(u

κ
j ,u

κ
i )−

∑
e∈∂Tκ

NB,k∑
s=1

Reκ
sj

τ es
ωκ
j

(
f eκn − f̂n(u

eκ
s ,u

eκ̃
s )

)
+ σκ(u)

(
uκ
j −

NQ,k∑
i=1

(V κ
0 P

κ
0 )jiu

κ
i

)
= O(hk), j = 1, . . . ,NQ,k.

(3.11)

It is also conservative and entropy stable with respect to U in that

d

dt

( Nh∑
κ=1

(−→
1κ

)T

Mκ

−→
uκ

)
= 0,

d

dt

( Nh∑
κ=1

(−→
1κ
)T

Mκ

−→
Uκ

)
≤ 0 .(3.12)

Proof. Since u is a smooth function, we have σℓ
κ(u) = 0, then from the proof in [8,

Theorem 4.1], we obtain (3.11). By (2.17), we have

Nh∑
κ=1

(−→
1κ

)T

Mκσκ(u)
(−→
uκ −Vκ

0P
κ
0

−→
uκ

)
=

Nh∑
κ=1

σκ(u)
(−→
1κ

)T
Mκ

(−→
uκ −Vκ

0P
κ
0

−→
uκ

)
= 0 .

(3.13)

Note thatVκ
0 =

−→
1κ, together with the conservative form of (3.7), implies the conservative

property of (3.9). For the entropy stable property, we have

d

dt

( Nh∑
κ=1

(−→
1κ
)T

Mκ

−→
Uκ

)
=

Nh∑
κ=1

(
−→
vκ)TMκ

d

dt

−→
uκ.(3.14)

Since
−→
U ′(Vκ

0P
κ
0

−→
uκ

)
is a constant vector for each entropy variable, by (2.17), we have

−
Nh∑
κ=1

(−→
vκ

)T
Mκσκ(u)

(−→
uκ −Vκ

0P
κ
0

−→
uκ

)
= −

Nh∑
κ=1

σℓ
κ(u)

(−→
U ′(−→uκ

)
−
−→
U ′(Vκ

0P
κ
0

−→
uκ

))T

Mκ

(−→
uκ −Vκ

0P
κ
0

−→
uκ

)
(by (3.13))

(3.15)

By using the following facts of entropy U ′′(u) ≥ 0, we have(
U ′(u1)− U ′(u2)

)
· (u1 − u2) ≥ 0 ∀u1, u2.(3.16)

Since ωκ
j ≥ 0, we obtain(
U ′(u(xκ

j ))− U ′((Vκ
0P

κ
0

−→
uκ)j)

)T (
u(xκ

j )− (Vκ
0P

κ
0

−→
uκ)j

)
ωκ
j ≥ 0, ∀ 1 ≤ j ≤ NQ,k.(3.17)

Finally, by above inequality together with the entropy stable property of (3.7) in [7], we

obtain (3.12). □

Remark 3.1. From the proof of Theorem 3.1, we can see that a more natural idea is

to construct the damping term with the entropy variables, that is σκ(u)
(−→
vκ −Vκ

0P
κ
0

−→
vκ

)
.

We can still have the conservative and entropy dissipative property, however numerical
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investigations indicate this choice does not control the spurious oscillations well, thus it

is not adopted.

Remark 3.2. We note that the damping term in (3.9) is different from [26]. We only

used the projection Pκ
0 . Since the U

′(u) is not a linear function with respect to u for most

entropy functions (except the square entropy), the U ′(Vκ
rP

κ
r

−→
uκ

)
, r ≥ 1, can not be values

of some polynomial at nodes. Thus, we can not use the L2 projection property to obtain

the entropy stability. The damping coefficient (3.10) is also reconstructed accordingly.

Remark 3.3. Since the damping term in (3.9) does not take effect on the evolution

scheme of the cell average, the positive preserving limiter, which was developed by Zhang

and Shu in [38, 39] and does not increase entropy [7, Theorem 3.7], can also be applied to

ESOFDG scheme (3.9). It is worth noting that we do not use any limiters to demonstrate

the robustness of the ESOFDG method in the numerical experiments.

3.4. Entropy stable OFDG method on general set of nodes. Next we introduce three

approaches to obtain the entropy stable DG methodology for arbitrary volume and surface

quadrature rules. The first one is called the hybridized SBP operators approach in [5, 6] by

Chan. The key idea is to combine volume nodes and surface nodes together to obtain the

hybridized SBP operators. The second approach is called the global SBP operators approach,

which was found by Crean et al. in [10, 11]. The key idea is to view the nodal values on different

elements as a whole, grouping them into a single global vector. Then the global SBP operators

should be constructed and the entropy dissipation function with respect to U can ensure the

entropy stable property. The third approach is to enforce the entropy balance directly [1], in

which the method was written in the more general residual distribution framework. A simple

linear correction term would be added in the original nodal DG scheme to obtain the entropy

stable property. For the general cases, we present these schemes as follows:

d
−→
uκ

dt
= rκ

(−→
ug

)
,(3.18)

such that
Nh∑
κ=1

(−→
1κ

)T
Mκr

κ
(−→
ug

)
= 0,

Nh∑
κ=1

(−→
vκ

)T
Mκr

κ
(−→
ug

)
≤ 0.(3.19)

The corresponding entropy stable OFDG scheme is written as

d
−→
uκ

dt
= rκ

(−→
ug

)
− σκ(u)

(−→
uκ −Vκ

0P
κ
0

−→
uκ

)
.(3.20)

Theorem 3.2. Under the same assumption in the entropy stable nodal DG scheme

(3.18), the scheme (3.20) is conservative and entropy stable.

Proof. The proof is similar to Theorem 3.1 and thus omitted. □

4. Numerical experiments

In this section we show some numerical results to justify the good performance of the

proposed algorithm. In one-dimensional problems, we use the three-point Gauss-Lobatto
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quadrature for k = 1, and four-point Gauss-Lobatto quadrature for k = 2 and five-point

Gauss-Lobatto quadrature for k = 3. We also use its tensor-product for two-dimensional

problems. In the figures below, for simplicity we only plot the cell averages within each cell

instead of showing the full polynomial. We also use the classic fourth order Runge-Kutta

method as our time-stepping method. In several numerical examples we plot the total entropy

against time by the formulation

total entropy =
∑
κ

NQ,k∑
j=1

ωκ
j U

(
uκ
h(x

κ
j , tn)

)
at time level t = tn. The entropy stable fluxes are chosen as the local Lax-Friedrichs fluxes

throughout this paper. Specifically, for one-dimensional compressible Euler equations with

u = [ρ, ρu, E]T , f(u) = [ρu, ρu2 + p, u(E + p)]T , we use the entropy function and entropy

variables as

U = − ρs

γ − 1
, v =

[
γ − s

γ − 1
− ρu2

2p
, ρu/p, −ρ/p

]T
,(4.1)

where s = log(pρ−γ) is the physical specific entropy, and the entropy conservative flux is

fS(
−→uL,

−→uR) =
[
(ρ̄)logū, (ρ̄)logū2 + p̃, ū

( (p̃)log

γ−1
+ ˜̃E

)]T
(4.2)

where z̄ =
1

2
(zL + zR), (z̄)

log =
zR − zL

log zR − log zL
and

β =
ρ

2p
, p̃ =

ρ̄

2β̄
, (p̃)log =

(ρ̄)log

2(β̄)log
, ˜̃E =

1

2
(ρ̄)log(2ū2 − u2) + p̃.

For two-dimensional compressible Euler equations with u = [ρ, ρu, ρv, E]T , f1(u) = [ρu, ρu2 +

p, ρuv, u(E+p)]T , f2(u) = [ρv, ρuv, ρv2+p, v(E+p)]T , we use the entropy function and entropy

variables as

U = − ρs

γ − 1
, v =

[
γ − s

γ − 1
− ρ(u2 + v2)

2p
, ρu/p, ρv/p, −ρ/p

]T
,(4.3)

and the entropy conservative fluxes are given as

f1,S(
−→uL,

−→uR) =


(ρ̄)logū

(ρ̄)logū2 + p̃
(ρ̄)logūv̄

ū
( (p̃)log

γ−1
+ ˜̃E

)
 , f2,S(

−→uL,
−→uR) =


(ρ̄)logv̄
(ρ̄)logūv̄

(ρ̄)logv̄2 + p̃

v̄
( (p̃)log

γ−1
+ ˜̃E

)
 ,(4.4)

where the notations are the same as in one-dimensional case except

˜̃E =
1

2
(ρ̄)log

(
2(ū2 + v̄2)− u2 + v2)

)
+ p̃.

For more details we refer the readers to [4, 7, 5]. The ratio of the specific heat γ is taken to

be 1.4 for air unless specified otherwise.



ENTROPY STABLE OFDG FOR HCL 13

4.1. One-dimensional problems.

Example 1. We firstly consider the linear scalar conservation laws that ut + ux = 0

with periodic boundary condition. Two initial conditions are taken as follows:

(a) The smooth case: u0(x) = sin(πx)2 + 1, x ∈ (−1, 1).

(b) The non-smooth case:

u0(x) =

{
sin(πx), − 0.5 ≤ x ≤ 0.5,

0, otherwise.

The computational domain is (−1, 1) and the final time is taken as T = 1.2 and T = 5.0

for case (a) and (b) respectively. Both of these two cases are using the square entropy

function U(u) = u2/2.

From Table 1, we observe the optimal convergence rate for the smooth solution in Example

1. Throughout this paper, we just use the high order numerical quadrature rule to approximate

the errors in L2 norm instead of integrating them exactly. In Fig. 2(a), we can clearly see the

spurious oscillation is controlled well and we also plot the discrete entropy against time in Fig.

2(b). Although we have not proved the entropy stability of the fully discrete schemes with the

explicit Runge-Kutta time discretization method, we are still able to observe the phenomenon

of dissipative entropy.

Table 1. Errors and orders of the case (a) in Example 1 with the final
time T = 1.2.

k = 1 k = 2 k = 3
N ∥u− uh∥L2 order ∥u− uh∥L2 order ∥u− uh∥L2 order

16 1.819E-02 – 1.148E-03 – 2.545E-04 –
32 3.277E-03 2.473 8.899E-05 3.690 9.937E-06 4.679
64 6.291E-04 2.381 9.234E-06 3.269 3.605E-07 4.785
128 1.363E-04 2.207 1.081E-06 3.095 1.315E-08 4.777
256 3.238E-05 2.073 1.326E-07 3.027 5.482E-10 4.584
512 7.978E-06 2.021 1.649E-08 3.007 2.799E-11 4.292

Example 2. In this example, we consider the Burgers’ equation that ut+
(u2
2

)
x
= 0 with

periodic boundary condition. The initial condition is u0(x) = 2 sin(x) + 1, x ∈ (0, 2π).

We adopt U(u) = 0.1eu + 0.45u2 as our entropy function and compute the solution at

different final time T = 0.3 and T = 5. Note that the exact solution u(x, t) stays smooth

when T = 0.3 so we can test the accuracy of the ESOFDG scheme. When T = 5, the

exact solution develops an discontinuity and spurious oscillations may occur for classic

high order DG schemes.

For nonlinear scalar equations, we also observe optimal convergence for k = 1, 2, 3 in Table

2. When T = 5, a shock has appeared due to the nonlinearity, and we observe the ESOFDG

scheme captures the shock well without visible oscillations in Fig. 3.
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Figure 2. The numerical solution and entropy of the case (b) in Example
1 with final time T = 5.0, k = 2, N = 128.
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(b) Entropy against time.

Table 2. Errors and orders in Example 2 with the final time T = 0.3.

k = 1 k = 2 k = 3
N ∥u− uh∥L2 order ∥u− uh∥L2 order ∥u− uh∥L2 order

16 1.852E-02 – 3.125E-03 – 6.374E-04 –
32 4.631E-03 1.999 3.381E-04 3.028 5.770E-05 3.466
64 1.163E-03 1.993 4.326E-05 3.147 3.899E-06 3.888
128 2.901E-04 2.003 5.258E-06 3.040 2.033E-07 4.261
256 7.244E-05 2.002 6.504E-07 3.015 1.010E-08 4.331
512 1.810E-05 2.001 8.102E-08 3.005 5.488E-10 4.202

Example 3. In the following we consider the Riemann problem [24] for the one-dimensional

nonconvex scalar hyperbolic conservation law ut + f(u)x = 0 with

f(u) =


u(1− u)

4
, u <

1

2
,

u2

2
− u

2
+

3

16
, u ≥ 1

2
.

(4.5)

And the initial condition is

u(x, 0) =


ul, u <

1

4
,

ur, u ≥ 1

4
.

We test two cases in the following:

(i) ul = 0, ur = 1, and the final time is T = 1;

(ii) ul = 1, ur = 0, and the final time is T = 2.
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Figure 3. The numerical solution and entropy in Example 2 with the
final time T = 5, k = 2, N = 128.

x

u

0 2 4 6

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

exac

N=128

(a) Numerical solution.

x

e
n

tr
o

p
y

0 1 2 3 4 5

10

15

20

25

30

N=128

(b) Entropy against time.

The computational domain is Ω = (0, 1). We take three kinds of entropy functions as

follows:

(a) U(u) =
1

2
u2;

(b) U(u) = 0.1eu + 0.45u2;

(c) U(u) = u arctan(20u)− 1

40
log(1 + 400u2).

Nonconvex hyperbolic conservation laws are very challenging in computation, because if

their numerical schemes are not carefully constructed, they may fail to converge to the unique

entropy solution or may be too slow to converge that would require impractically fine meshes

[24]. In Fig. 4 and 5, we observe the ESOFDG scheme works well for all three kinds of entropy

functions. The discrete entropy against time is also plotted for different initial conditions. In

Fig. 5, the entropy increases for the reason that the boundary terms do not vanish and we

can only obtain entropy stability instead of entropy dissipation that

d

dt

( Nh∑
κ=1

(−→
1κ
)T

Mκ

−→
Uκ

)
≤ C

where C is some positive constant.

Example 4. Consider a Riemann problem for one-dimensional Buckley-Leverett equa-

tion with the flux function defined as

f(u) =
4u2

4u2 + (1− u)2
,(4.6)

and the initial condition is given as

u(x, 0) =

{
ul, x ≤ 0,

ur, x > 0.
(4.7)
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Figure 4. The numerical solution and entropy in Example 3 with I.C.
(i), k = 2, N = 128.
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Figure 5. The numerical solution and entropy in Example 3 with I.C.
(ii), k = 2, N = 128.
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(b) Entropy against time.

We consider two kinds of initial conditions as follows:

(i) ul = 2, ur = −2;

(ii) ul = −3, ur = 3.

We take the computational domain Ω = (−4, 4), and the final time T = 10. We take

three kinds of entropy functions as follows:

(a) U(u) =
1

2
u2;

(b) U(u) = u arctan(20u)− 1

40
log(1 + 400u2);
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(c) U(u) = (u− 1) arctan(u− 1)− 1

2
log(u2 − 2u+ 2) .

In Fig. 6, we observe that numerical solutions of entropies (a) and (b) do not agree with

the entropy solution. But the numerical solution of entropy (c) has satisfactory results thanks

to the carefully chosen entropy function. For the initial condition (ii), the numerical solution

obtained by using entropy (b) is better than the other two, see Fig. 7. The similar observations

are also mentioned in [7].

Figure 6. The numerical solution and entropy in Example 4 with I.C.
(i), k = 2, N = 128.
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Figure 7. The numerical solution and entropy in Example 4 with I.C.
(ii), k = 2, N = 128.
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Example 5. Now, we consider one-dimensional hyperbolic systems. As an example, we

consider two well-known Riemann problems for one-dimensional Euler equations. Both

of them have the following Riemann type initial conditions:

U(x, 0) =

{
UL, x < 0,

UR, x > 0.

The first test case is Sod’s problem [33]. The initial conditions are

[ρL, uL, pL]
T = [1, 0, 1]T , [ρR, uR, pR]

T = [0.125, 0, 0.1]T .

The second one is Lax’s problem [25]. The initial conditions are

[ρL, uL, pL]
T = [0.445, 0.698, 3.528]T , [ρR, uR, pR]

T = [0.5, 0, 0.571]T .

The computational domain Ω = (−5, 5) and the terminal time T = 1.3.

Next, we consider the compressible Euler systems in one dimension. The density of the

numerical solutions are shown in Fig. 8 and 9. The numerical solutions of both Sod’s problem

and Lax’ problem have good performances without obvious oscillations.

Figure 8. The density profile and entropy for Sod’s problem in Example
5 with the final time T = 1.3, k = 2, N = 128.
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(b) Entropy against time.

Example 6. Now we consider the Shu-Osher’s problem [32]. This example describes the

interaction between a right-moving Mach = 3 shock and sine waves in density. It is often

used to test high order numerical schemes because both shocks and complicated smooth

flow structures co-exist. The initial conditions are given as

ρ(x, 0) = 3.857143, u(x, 0) = 2.629369, p(x, 0) = 10.33333, x < −4,

ρ(x, 0) = 1 + 0.2 sin(5x), u(x, 0) = 0, p(x, 0) = 1, x > −4.

The computational domain is Ω = (−5, 5) and the final time is T = 1.8.
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Figure 9. The density profile and entropy for Lax’s problem in Example
5 with the final time T = 1.3, k = 2, N = 128.
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(b) Entropy against time.

The plots of density with 128 cells are displayed in Fig. 10(a) and the discrete entropy

is also plotted in Fig. 10(b). We again observe the entropy decreases as time evolves. The

ESOFDG scheme has good performances in this example compared with [32] .

Figure 10. The density profile and entropy for Shu-Osher’s problem in
Example 6 with the final time T = 1.8, k = 2, N = 128.
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(b) Entropy against time.

Example 7. We consider here the interaction of two blast waves [37]. This problem

involves multiple reflections of shocks and rarefaction waves off the walls. The initial
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conditions are given as

ρ(x, 0) = 1, u(x, 0) = 1, p(x, 0) =


103, 0 < x < 0.1,

10−2, 0.1 < x < 0.9,

102, 0.9 < x < 1.

The computational domain is Ω = (0, 1) and the reflective boundary conditions are im-

posed on both left and right boundaries. The final time is T = 0.038.

This example easily generates negative density and negative pressure numerically if no

oscillation control procedure is used. The classic DG scheme tends to blow up due to the

occurrence of the negative density and negative pressure. The ESOFDG scheme, on the other

hand, could proceed without using any limiters. Fig. 11 shows the profile of density at

T = 0.038 with 800 cells. All shocks and structures are resolved correctly without obvious

oscillations.

Figure 11. The density profile and entropy for two blast waves problem
in Example 7 with the final time T = 0.038, k = 2, N = 800.
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(b) Entropy against time.

Example 8. We consider the one-dimensional Sedov point blast problem [39] which

models the expanding wave by an intense explosion in the perfect gas. The authors

successfully computed this problem by using both the positivity preserving limiter and TVB

limiter in [39]. The initial conditions are ρ(x, 0) = 1, u(x, 0) = 0 and E(x, 0) = 10−12

everywhere except E(x, 0) = E0/h0, E0 = 3, 200, 000 in the center cell, h0 is the length of

the center cell. The computational domain is Ω = (−2, 2) and the final time is T = 10−3.

The formula of the exact solution can be found in [31].

In Fig. 12, we show the profile of density with 128 cells at time T = 10−3 for the one-

dimensional Sedov point blast problem in Example 8. The ESOFDG scheme gives satisfactory

numerical results and we again observe that the discrete entropy decreases with time during

the simulation, which indicates the fully discrete scheme is also entropy stable.
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Figure 12. The density profile and entropy for Sedov point blast problem
in Example 8 with the final time T = 10−3, k = 2, N = 128.
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(b) Entropy against time.

4.2. Two-dimensional problems.

Example 9. Consider the two-dimensional linear scalar conservation law

ut + ux + uy = 0, (x, y) ∈ Ω

with periodic boundary condition. We consider two initial conditions in the following.

(a) The smooth case: u0(x, y) = sin(2x) cos(2y)+0.5, Ω = (0, π)× (0, π). The final time

T = 1.2.

(b) The non-smooth case:

u0(x, y) =

 1, r ≤ 1

8

(
3 + 3sin 5θ

)
,

0, elsewhere,

where (r, θ) are the polar coordinates. The computational domain Ω = (−1, 1) ×
(−1, 1). The final time is T = 1.8.

We use the entropy function U(u) = 0.1eu + 0.45u2 for both cases.

In Table 3, we report the errors and convergence orders of the numerical solution in L2 norm

for k = 1, 2, 3 in Example 9. We observe the (k + 1)th order of convergence for all k, which is

better than the prediction of truncation error analysis. For non-smooth solutions, we observe

the ESOFDG scheme sharply captures the interfaces of the shock in Fig. 13.

Example 10. Consider the following two-dimensional Burgers’ equation

ut +
(u2
2

)
x
+
(u2
2

)
y
= 0, (x, y) ∈ Ω.

with the two cases in the following:
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Table 3. Errors and orders of the case (a) in Example 9 with the final
time T = 1.2.

k = 1 k = 2 k = 3
N ∥u− uh∥L2 order ∥u− uh∥L2 order ∥u− uh∥L2 order

16× 16 1.903E-02 – 1.177E-03 – 8.232E-05 –
32× 32 4.065E-03 2.227 9.589E-05 3.618 3.106E-06 4.728
64× 64 9.671E-04 2.072 9.579E-06 3.323 1.402E-07 4.469
128× 128 2.386E-04 2.019 1.108E-06 3.112 7.651E-09 4.196
256× 256 5.946E-05 2.005 1.355E-07 3.031 4.589E-10 4.059
512× 512 1.485E-05 2.001 1.685E-08 3.008 2.841E-11 4.014

Figure 13. The numerical solution and entropy of the case (b) in Ex-
ample 9 with final time T = 1.8, k = 2, Nx ×Ny = 128× 128.

(a) Numerical solution. (b) Entropy against time.

(a) The initial condition is u0(x, y) = sin(π(x + y)) and periodic boundary condition.

The computational domain is Ω = (0, 2) × (0, 2), and we take the final time that

T = 0.2.

(b) Riemann problem [18] The initial condition is

u0(x, y) =



−1

5
, if x <

1

2
, y >

1

2
,

−1, if x ≥ 1

2
, y >

1

2
,

1

2
, if x <

1

2
, y ≤ 1

2
,

4

5
, if x ≥ 1

2
, y ≤ 1

2
.

The exact solution for t > 0 can be found in [18]. The computational domain is

Ω = (0, 1)× (0, 1) and the final time is T = 0.5.

We take U(u) = cosh(u) as the entropy function for both cases.
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For the case (a) in Example 10, the errors and orders are shown in Table 4 and the conver-

gence rates are optimal at least for k = 1, 2. The numerical solution of case (b) in Example

10 is displayed in the left panel of Fig. 14, and the absolute value error is plotted in the right

panel where it uses logarithmic scale. We can see the numerical error is small away from the

shock waves.

Table 4. Errors and orders of the case (a) in Example 10 with the final
time T = 0.2.

k = 1 k = 2 k = 3
N ∥u− uh∥L2 order ∥u− uh∥L2 order ∥u− uh∥L2 order

16× 16 1.462E-02 – 2.319E-03 – 4.225E-04 –
32× 32 3.723E-03 1.973 3.161E-04 2.875 3.199E-05 3.723
64× 64 9.336E-04 1.996 4.090E-05 2.950 2.568E-06 3.639
128× 128 2.341E-04 1.996 5.305E-06 2.947 2.347E-07 3.452
256× 256 5.900E-05 1.988 7.063E-07 2.909 2.229E-08 3.397
512× 512 1.500E-05 1.975 9.575E-08 2.883 2.092E-09 3.413

Figure 14. The numerical solution and entropy of the case (b) in Ex-
ample 10 with final time T = 0.5, k = 2, Nx ×Ny = 256× 256.

(a) Numerical solution. (b) Absolute value of error

Example 11. We now test the Riemann problem proposed in [30] which is very chal-

lenging to many high-order numerical schemes for the reason that the solution has a

two-dimensional composite wave structure. We have the flux functions as

f(u) = [sinu, cosu]T ,(4.8)

and the initial condition is given as

u(x, y, 0) =


7π

2
, x2 + y2 <

1

2
,

π

4
, otherwise.

(4.9)
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The computational domain is Ω = (−2, 2)× (−2.5, 1.5), and the final time is T = 1. The

entropy function is U(u) = cosh(u).

The numerical result of Example 11 is shown in Fig. 15. With this suitable entropy function,

the ESOFDG scheme provides satisfactory results. We again observe that the discrete entropy

monotonically decays which indicates the fully discrete scheme is entropy stable.

Figure 15. The numerical solution and entropy in Example 11 with
final time T = 1, k = 2, Nx ×Ny = 128× 128.

(a) Numerical solution. (b) Entropy against time.

Example 12. In this example, we consider the shock vortex interactions in two dimen-

sions [2, 23]. A stationary Mach 1.1 shock is positioned at x = 0.5, perpendicular to the

x-axis. Its left state is [ρ, u, v, p]T = [1, 1.1
√
γ, 0, 1]T . An isentropic vortex perturbation

centered at (xc, yc) is added to the velocity (u, v), temperature (T = p/ρ) and entropy

(S = ln(p/ργ)) of the flow, given in the following:

[δu, δv]T =
ε

rc
eα(1−τ2)[−ȳ, x̄]T , δT = −(γ − 1)ε2

4αγ
e2α(1−τ2), δS = 0,(4.10)

where [x̄, ȳ]T = [x − xc, y − yc]
T , r = (x̄2 + ȳ2)1/2 and τ = r/rc. The parameters are

taken in the same way as in [23] that [xc, yc]
T = [0.25, 0.5]T , ε = 0.3, rc = 0.05 and

α = 0.204. The computational domain is taken as (0, 2) × (0, 1) and the final time is

T = 0.8. The left and right boundary conditions are inflow and outflow respectively, and

reflecting boundary conditions are imposed on the upper and lower boundaries.

In Fig. 16, we plot the vortex interacting with the stationary shock wave at different time.

Since we change the direction of the perturbation of the velocity compared with that in [23],

we can see the solution at t = 0.8 in which one branch of the shock bifurcations has reached

the bottom boundary and has been reflected. The ESOFDG scheme captures the reflection

well and the results are comparable to those in [23].
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Figure 16. Pressure contours of the two-dimensional shock vortex inter-
action problem in Example 12, k = 2, Nx ×Ny = 256× 128. 30 contours:
(a) t = 0.078; (b) t = 0.231; (c) t = 0.386. 90 contours from 1.19 to 1.37:
(d) t = 0.544; (e) t = 0.701; (f) t = 0.8.

(a) t = 0.078. (b) t = 0.231. (c) t = 0.386.

(d) t = 0.544. (e) t = 0.701. (f) t = 0.8.

Example 13. Now let us consider the two-dimensional Sedov point blast problem [39].

The initial states are ρ(x, y, 0) = 1, u(x, y, 0) = v(x, y, 0) = 0 and E(x, y, 0) = 10−12

everywhere except E(x, 0) = E0/S0 in the lower left corner cell, where E0 = 0.244816

and S0 is the area of the lower left corner cell. The computational domain is Ω =

(0, 1.1) × (0, 1.1) and the final time is T = 1. The numerical boundary treatment is

to extend the DG solutions of ρ, v, E as even functions and u as an odd function with

respect to the left boundary, and extend the DG solutions of ρ, u, E as even functions

and v as an odd function with respect to the bottom boundary. The formula of the exact

solution can also be found in [31].

In Fig. 17, we show the density profiles of the two-dimensional Sedov point blast problem

in Example 13. Same as in the one-dimensional problem, a typical low density would appear

along with shock discontinuities. We can see the ESOFDG scheme works well without using

any limiters.

Example 14. Now let us consider the double Mach reflection problem [37]. Initially, a

Mach 10 shock attacks the horizontal wall with a 60◦ angle. The reflecting wall lies at
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Figure 17. Density contour of the two-dimensional Sedov point blast
problem and entropy against time in Example 13 with final time T = 1,
k = 2, Nx ×Ny = 256× 256.

(a) Numerical solution. (b) Entropy against time.

the bottom of domain starting from x = 1/6. The initial conditions are given as follows.

[ρ, u, v, p]T =


[
8, 8.25 cos

(π
6

)
,−8.25 sin

(π
6

)
, 116.5

]T
, x <

1

6
+

y√
3
,

[1.4, 0, 0, 1]T , x >
1

6
+

y√
3
.

The computational domain is (0, 4)×(0, 1) and the final time is taken to be 0.2. We have

inflow boundary conditions for the left boundary and outflow boundary condition at the

right boundary. For the bottom boundary, the exact post-shock condition is imposed for

the part from x = 0 to x = 1/6 and a reflective boundary condition is used for the rest.

For the upper boundary, the post-shock condition is imposed for the part from x = 0 to

x = 1/6 + (1 + 20t)/
√
3 and the pre-shock condition is used for the rest.

In Fig. 18, we plot the density contours of the double Mach reflection problem in Example

14 with k = 2 on a grid with hx = hy = 1/256. We can see the flow structure are resolved

very clearly, and no instability occurs for our proposed algorithm.

Example 15. In the last example, we test the high Mach number astrophysical jets

problem [19, 39]. The code could easily blow up since the negative pressure and density

could easily appear during numerical computation. Conventionally, a positivity preserv-

ing limiter was developed to preserve the positivity of the relevant physical quantities in

[38, 39]. Now we compute the high Mach number astrophysical jets without using any

positivity preserving limiter. We consider two cases: Mach = 80 and Mach = 2000 in

the following. Note that the heat capacity ratio γ = 5/3 in this example.

(a) For the Mach 80 problem, the jet initially locates at y ∈ (−0.05, 0.05), x = 0, with the

physical values [ρ, u, v, p]T = [5, 30, 0, 0.4127]T and the ambient gas is [ρ, u, v, p]T =
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Figure 18. Density contours of double Mach reflection at t = 0.2 in
Example 14, 30 contour lines from 1.731 to 20.92, k = 2, hx = hy = 1/256.

(a) Density profile. (b) Mach stem in (a).

[0.5, 0, 0, 0.4127]T . The computational domain is (0, 2)× (−0.5, 0.5) and the terminal

time is 0.07. The boundary conditions of the rest boundaries are outflow.

(b) For the Mach 2000 problem, the jet initially locates at y ∈ (−0.05, 0.05), x = 0. The

physical values of the jet are [ρ, u, v, p]T = [5, 800, 0, 0.4127]T and the ambient gas is

[ρ, u, v, p]T = [0.5, 0, 0, 0.4127]T . The computational domain is (0, 1)× (−0.25, 0.25)

and the terminal time is 0.001. The boundary conditions of the rest boundaries are

outflow.

In Fig. 19 and 20, we show the density, pressure and temperature contours of Mach 80 and

Mach 2000 astrophysical jets in Example 15, k = 2, Nx × Ny = 320 × 160. The ESOFDG

scheme successfully obtain satisfactory results compared to the results in [39] without any

occurrence of instability.

Figure 19. High Mach astrophysical jets in Example 15, Mach = 80,
k = 2, Nx ×Ny = 320× 160. Scales are logarithmic.

(a) Density contour. (b) Pressure contour. (c) Temperature contour.

5. Concluding remarks

In this paper, we propose an entropy stable oscillation-free discontinuous Galerkin method

for hyperbolic conservation laws. The entropy stable DG method [7, 8] has attracted much

attention from the date of its birth. Several key ingredients like summation-by-parts opera-

tors, flux differencing technique and entropy conservative fluxes and entropy stable fluxes are

incorporated in the nodal DG formulation. This also brings challenges if one wants to apply

the damping technique [27, 26] to the current entropy stable DG framework. Thanks to the
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Figure 20. High Mach astrophysical jets in Example 15, Mach = 2000,
k = 2, Nx ×Ny = 320× 160. Scales are logarithmic.

(a) Density contour. (b) Pressure contour. (c) Temperature contour.

convexity of the entropy functions and the orthogonality of the projection, we are able to

construct a damping term similar to the original ones. This indicates the constructed scheme

would preserve several properties such as conservation, entropy stability and high order ac-

curacy of the entropy stable DG method, in the meantime it can also suppress the spurious

oscillations as demonstrated in the numerical tests. We are aware that currently there is no

theoretical analysis of the oscillation control mechanism with the damping term, and this is a

possible investigation direction of our future study.
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