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Abstract— In a recent research program, we have undertaken
the investigation of robotic traffic management problems arising
when a fleet of networked mobile robots is employed in the
support of certain coverage tasks that take place in physically
constricted environments. But our past investigation of these
problems is restricted to the case where the guidepath networks
supporting the robot traffic have a dendritic topology. In the
current work, we extend the investigation of the considered
problems to the case where the underlying guidepath networks
have an arbitrary topology. We provide (i) detailed descriptions
of the considered problems in this new operational setting, (ii)
analytical characterizations of these problems that take the
form of integer programming formulations, and (iii) strong
combinatorial relaxations for the derived formulations that are
applicable to larger problem instances. A numerical experiment
presented in the last part of the manuscript demonstrates
and assesses the efficacy and the tractability of the analytical
developments. We also notice that the undertaken extension of
the past results is a nontrivial task, for the reasons that are
explained in the manuscript1

Keywords: Networked mobile robotic systems; multi-
robot coordination; combinatorial scheduling; coverage prob-
lems

I. INTRODUCTION

A research topic of increasing interest and importance
within the robotics & automation community concerns the
employment of networked multiple mobile robot systems
(MMRS) [1] for the support of operations taking place
in physically constricted environments. Some characteristic
examples of such environments are the subterranean water
supply, sewage and other similar utility networks, mines,
and the extensive pipeline networks that are used for the
transport of oil, gas and other similar commodities [2],
[3], [4], [5], [6], [7]. In fact, the aforementioned research
topic has also been the focus of a major DARPA challenge
known as the “Subterranean – or SubT – Challenge” [8].
The corresponding research activity has enabled (i) stable
and safe navigation of the deployed robots in the spatially
constricted – and maybe otherwise challenging – corridors
(i.e., tunnels, pipes, etc.) that support the robotic traffic,
and (ii) reliable communication among the robots and the
command-&-control (C-&-C) center that manages the overall
operation. Also, the deployed testbeds have allowed the

1This work was partially supported by NSF grant ECCS-1707695.

extensive testing and significant enhancements of the explo-
ration and the mapping strategies for unknown environments
that have been pursued, for many years, by the robotics
community [8].

But as the aforementioned technologies and capabilities
get more proven and more robust, there is an increasing
interest to employ networked MMRS-based solutions for the
support of more routine tasks in the considered environments,
like the continuous inspection and monitoring of various
locations in them for security or maintenance purposes [9].
In this new operational regime, the operational environment
of the robots is well structured and known a priori, and the
emphasis in the management of the corresponding operations
shifts away from the need for mapping and exploration to
issues like operational correctness and expediency.

A first attempt to address the planning and control prob-
lems that arise in this new class of MMRS applications, has
been undertaken in an ongoing research program of ours.
This program addresses the expedient visitation of a set of
target locations in a subterranean or pipeline network by
a fleet of robots that are initially concentrated at a C&C
center that constitutes the entry point of this network. The
problems of robot safety and collision avoidance that arise
due to the constricted nature of the considered networks,
are addressed through the imposition of a zoning scheme
that splits the various aisles of the underlying guidepath
network in a number of zones of unit buffering capacity, and
requires the robots to negotiate their advancement through
the established zones with a traffic coordinator. From a more
methodological standpoint, the imposition of this zoning
scheme embeds the robot traffic in a graph that is defined
by the established zones and their neighboring relationship,
and brings the corresponding traffic management problems
to the class of problems concerning the optimal multi-robot
path planning on graphs (OMRP2G) [10], [11], [12], [13],
[14].

Furthermore, the remote nature of the considered guide-
path networks necessitates the proactive preservation by the
operating robots of an ad hoc multi-hop wireless commu-
nication network that ensures continuous connectivity of
the robots with the C&C center and with each other. This
additional requirement differentiates very substantially the
traffic dynamics, and the corresponding traffic management
problems for the operating robots, from the past problems



investigated in the OMRP2G literature.
A detailed characterization of this new class of problems,

and a thorough positioning of them in the corresponding
literatures concerning (i) the deployment and the operation
of networked MMRS and (ii) the optimal multi-robot path
planning on graphs, have been provided in [15]. That work
also provided analytical problem formulations in the form
of mixed integer programs (MIPs), and proved that, in the
general case, the considered problems are NP-hard combi-
natorial optimization problems [16]. Furthermore, in some
sequel works, we have established some additional properties
for the optimal solution space of these problems [17], and
we have developed (i) a strong combinatorial relaxation for
their MIP formulations [18] and (ii) a heuristic algorithm
that can be used for larger problem instances that cannot be
addressed effectively by the MIP-based methods [19].

On the other hand, all this earlier work has assumed
a dendritic topology for the guidepath network; i.e., the
guidepath network is a rooted tree with its root representing
the C&C center and its leaves being the locations to be
visited by the robots. The focus on this particular structure
was partly motivated by the practical observation that, in a
large subset of the targeted operations, the corresponding
guidepath networks possess, indeed, a tree structure [3].
But also it simplified the modeling and the analysis of the
considered problems thanks to the resulting lack of routing
flexibility for the traveling robots as they try to reach their
various destinations.

The work presented in this paper extends our past research
to instantiations of the considered OMRP2G problems where
the underlying guidepath network has an arbitrary topology
and the locations to be visited by the robots are an arbitrary
subset of nodes in this network. The pursued extension is
nontrivial since the routing flexibility that is present in this
new case (i) introduces additional choice in the robot effort
to access simultaneously the various target locations, and
(ii) complicates significanty the enforcement of the com-
munication connectivity requirement during the analytical
formulation of the new problem versions.

A more detailed enumeration of the intended contributions
of the current manuscript, in the context of the aforemen-
tioned past developments, is as follows:

1) We provide a detailed characterization of the consid-
ered MMRS operations and the ensuing traffic manage-
ment problem in the new setting of guidepath networks
with arbitrary topology.

2) We also develop integer programming (IP) formula-
tions for the new problem versions that retain the
desirable property of employing sets of variables and
constraints which are polynomially sized with respect
to the size of the underlying guidepath network. The
preservation of this property is a challenging problem
since we need to express the requirement for the
preservation of the communication connectivity among
the robots and the C&C center while accounting for
the routing flexibility that is enabled by the arbitrary
topology of the guidepath network.

3) We further establish that it is possible to relax the inte-
grality requirement for a very large subset of variables
of the derived IPs without compromising the feasibility
and the optimality of the obtained solutions. This result
is similar in spirit to the corresponding result of [18],
but the subsets of the relaxed variables for each case
are different, and furthermore, the analytical develop-
ments and arguments that enable the corresponding
relaxations are different, as well.

4) Finally, we present the results of a numerical exper-
iment that (i) demonstrates and assesses the capabil-
ity of the developed formulations to provide optimal
or near-optimal solutions to the considered traffic-
management problems within some reasonable com-
putational times, and also (ii) reveals some interesting
dependencies of this capability on certain parameters
of the underlying operational environment.

The rest of the paper is organized as follows: Section II
introduces the new coverage problem versions for the consid-
ered MMRS, and Section III provides analytical formulations
of these new problems as IPs. Section IV presents the
strong combinatorial relaxations of these IPs, and Section V
presents the numerical experiment regarding their computa-
tional efficacy. Finally, Section VI concludes the paper and
outlines some directions for future work.

II. THE CONSIDERED MMRS AND THE CORRESPONDING
COVERAGE PROBLEMS

A detailed description of the considered MMRS op-
erations: Consider a network of underground tunnels that
is managed by a C&C center located at an entry point of
this network. The facility employs a fleet of mobile robots
for performing certain inspection and monitoring tasks in the
network. Idling robots are stationed at the C&C center, and
any of these robots can carry out any inspection task that
might arise at any location of the network (i.e., the robots
are interchangeable in the execution of the various inspection
tasks).

The tunnels are narrow, and since the robots have limited
sensing and maneuvering capability, the robot traffic in the
considered network must be controlled for ensuring the robot
safety and collision avoidance. As pointed out in the intro-
ductory section, a typical way for meeting this requirement is
by splitting each tunnel and their intersections into a number
of zones, and stipulating that each zone can be occupied by
at most one robot at any point in time. The imposition of
such a zoning scheme embeds the robot traffic in a guidepath
network where the nodes of this network correspond to the
zones defined in the underlying tunnel system, and the edges
represent the neighboring relationship of these zones. Also,
in this abstracted representation, the C&C center constitutes a
special node of the guidepath network with infinite buffering
capacity. Each robot must negotiate its advancement from its
current zone to a neighboring zone with a traffic coordinator,
and the corresponding zone allocation protocol turns the
advancement of the deployed robots towards their corre-
sponding destinations, into a “sequential resource allocation



process” [20] where the contested resources are the zones of
the guidepath network.

But in the considered MMRS applications, the imposed
zoning scheme and the corresponding zone allocation pro-
tocol are further employed for ensuring the necessary com-
munication connectivity among the deployed robots and the
C&C center. More specifically, in the considered MMRS, the
robots possess wireless communication capability that can be
used for communicating with each other and with the C&C
center, a feature that places the considered MMRS in the
class of networked MMRS [1], [21]. However, in the context
of the targeted applications, the communication capability of
the deployed robots is severely limited by the nature and the
geometry of the surrounding environment. This problem is
addressed through the following additional stipulations:

1) The specification of the imposed zones must also
ensure that robots located in neighboring zones can
communicate easily and reliably with each other.

2) At every time point, the subgraph of the guidepath
network that is induced by the nodes occupied by
robots, must be connected and it must contain the node
corresponding to the C&C center.

Clearly, the satisfaction of these two requirements enables
the relay of messages between any deployed robot and the
C&C center. But it turns the inspection of a location in
any zone of the guidepath network into a task requiring
an entire team of robots that must be deployed on a path
of the underlying guidepath network leading from the node
corresponding to the C&C center to the node corresponding
to the zone containing the targeted location. On the other
hand, robotic teams that pursue the inspection of different
locations, can share the robots that are located in a com-
mon subpath towards their destinations. In other words, the
support of an inspection task in the considered MMRS appli-
cation requires the deployment of an entire team of robots,
but also every deployed robot may support the execution of
more than one task. MMRS applications with such multi-
robot multi-tasking assignments are acknowledged as some
of the hardest classes of such applications with respect to the
effective and the efficient management of the corresponding
workflows [22]. In the considered case, things are further
complicated by (i) the limited buffering capacity of the
various zones of the imposed zoning scheme, that can turn
these zones into “bottlenecks” for the robotic flows towards
the various destinations, and (ii) the potential availability
of alternate routes towards the different target zones of the
guidepath network.

A formal modeling of the considered coverage prob-
lems: Next, we provide a formal definition of the coverage
tasks for the aforementioned environments, and the corre-
sponding traffic-management problems, that are addressed
in this work. These problems are defined on the guidepath
network that models the imposed zoning scheme. Hence,
let us denote this guidepath network by the graph G =
(V,E), where the node set V models the zones of the

underlying tunnel system,2 and the edge set E models the
neighboring relationship of these zones. Naturally, graph G is
undirected and connected. A particular node o ∈ V models
the C&C center of the underlying facility, and a subset L
of V \ {o} represents the set of zones that must be visited
for inspecting some location in them. Also, let R denote the
set of (identical) robots possessed by this facility, and further
assume that at the beginning of the considered operations, all
these robots are located at node o. Then, the tuple ⟨G, L,R⟩
defines an instantiation of the considered MMRS operations.

It is evident from the above description that the robot-
accommodating – or buffering – capacity of node o is
|R| (essentially, arbitrarily large). On the other hand, the
above definition of graph G and the assumed zone allocation
protocol imply a unit buffering capacity for every node
v ∈ V \ {o}.

Following standard practice, we further assume that zone
traversal times are uniform for all (zone, robot) pairs, and
we use this property in order to discretize time.3 In the
following, we shall use t to denote the various periods – or
epochs – in the resulting operational regime. Furthermore,
we assume that the requested inspections can be carried out
during a single epoch, while the inspecting robot is visiting
the corresponding zone.

The set of neighbors of a zone v ∈ V is denoted by
N (v). Let z(r, t) denote the zone v ∈ V occupied by robot
r at period t. Then, z(r, t + 1) ∈ {z(r, t)} ∪ N (z(r, t));
i.e., robot r can either remain in the same zone at period
t + 1, or advance to a neighboring zone v′ ∈ N (v). As
already noticed, at any period t, zones v ̸= o cannot
contain more than one robot. On the other hand, a group
of robots can coordinate their advancement over a path of
neighboring zones; i.e., for a group of robots r1, r2, . . . , rn
with z(ri, t) ∈ N (z(ri−1, t)), for i = 2, . . . , n, we allow
z(ri, t + 1) = z(ri+1, t), i = 1, . . . , n − 1, provided that
robot rn moves itself to a free zone or to zone o at period
t+1. We characterize a maximal string of such robot moves
as a robot flow occurring at time t. The net effect of this
flow is the transfer of a robot from zone z(r1, t) to zone
z(rn, t + 1). Also, the unit buffering capacity of the zones
v ̸= o imply that two simultaneously occurring flows are
conflicting if the supporting paths of these two flows have a
common internal node v ̸= o.

Robots can reverse the direction of their motion within
their zone. This assumption is reasonable in the context of
the considered MMRS applications, and furthermore, it is
necessary if the underlying graph G possesses leaf nodes.

At any epoch t, let V̂ (t) denote the set of zones of G that
are occupied by robots. Then, as discussed in the previous
part of this section, the necessary communication connectiv-
ity among the robots and the C&C center is established by

2In the following, we shall refer to the elements of V either as “nodes”
or as “zones”.

3This assumption can always be satisfied by an appropriate refinement of
the zones. Furthermore, the assumption can be relaxed, but treating this more
general case in the context of this document would overload the employed
notation and complicate the details of the presented analysis, without adding
anything substantial to the main points of this discussion.



stipulating that (i) o ∈ V̂ (t) and (ii) the subgraph Ĝ(t) of G
that is induced by the node subset V̂ (t), is connected. We
also notice that such connectivity is possible for an arbitrary
zone v ∈ V only if |R| > maxv∈V {d(o, v)}, where d(o, v)
denotes the distance of node v from node o in G; this distance
is defined by the number of edges on any shortest path
connecting node o with node v in G.

The planning and control problems addressed in this work
seek to determine an expedient plan that will advance the
robots r ∈ R in a way that is consistent with the aforestated
assumptions regarding the robot capabilities and the zone
allocation protocol, and at the end of its execution, each
target zone v ∈ L will have been visited by some robot. In
more technical terms, a plan – or, alternatively, a (traffic)
schedule – is a sequence of distributions, Dt, t = 0, 1 . . .,
of the system robots to the various zones of the guidepath
network G, with the initial distribution D0 having all the
robots located at node o. Also, distribution Dt+1, for period
t + 1, is obtained from the distribution Dt by relocating a
number of robots from their zones at period t to some neigh-
boring zone, while abiding to the introduced assumptions
about the maneuvering capabilities of the robots and the zone
allocation protocol. We specify further the “plan” concept
in the next section, where we discuss the computation of
an optimal plan through some mathematical programming
formulations of the addressed problems.

Let P denote the set of feasible plans, and for every P ∈ P
and v ∈ L, let C(v;P ) denote the first period that plan P
places a robot in zone v. In the considered research program,
we are especially interested in plans P ∗ such that

P ∗ = arg min
P∈P

max
v∈L

C(v;P ) (1)

or
P ∗ = arg min

P∈P

∑
v∈L

C(v;P ) (2)

As in [15], we characterize the combinatorial optimiza-
tion problem that is induced by Eq. 1 as the Makespan-
Minimization problem, or the M-problem, and the combina-
torial optimization problem that is induced by Eq. 2 as the
Total Visitation Time problem, or the TVT-problem.

In [15] it has been shown that the M- and TVT-problems
are in a Pareto optimal relationship [10], and therefore, they
require separate treatments. Also, in the same work it was
established that the restrictions of the M- and TVT-problems
on guidepath networks with a dendritic topology are NP-
Hard, and therefore, this is also the case for the more general
problems versions that are considered in this work.

III. IP FORMULATION OF THE CONSIDERED
COVERAGE PROBLEMS

Next we provide analytical characterizations for the M-
and TVT-problems that were defined in the previous section,
in the form of IP formulations. In the subsequent discussion,
we employ the notation introduced in Section II. We also
let T̄ denote an upper bound for the completion time of an
optimal plan P ∗ for each problem. One way to obtain such

an upper bound is by considering the completion time of the
plan P that tries to reach one target zone v ∈ L at a time,
while using a shortest path from node o to node v.

As in [15], the decision variables employed by the pre-
sented formulations can be classified into:

• State variables
– xv,t, v ∈ V, t ∈ {0, 1, . . . , T̄}: a nonnegative

integer variable indicating the number of robots in
zone v at period t.

• Control variables
– uv,v′,t, v ∈ V, v′ ∈ N (v), t ∈ {1, . . . , T̄}: a non-

negative integer variable representing the number
of robots moving from zone v to neighboring zone
v′ at period t.

• Auxiliary variables
– yv,t, v ∈ L, t ∈ {1, . . . , T̄}: a binary variable for

testing whether target zone v has been visited by
period t.

– st, t ∈ {1, . . . , T̄}: a binary variable for testing
whether all target zones have been visited by period
t.

We also carry over, to this new setting, the following tech-
nological constraints from the corresponding IP formulations
of the M- and TVT-problems on dendritic topologies that
were investigated in [15]:

xo,0 = |R| (3)

∀v ∈ V \ {o}, xv,0 = 0 (4)

∀v ∈ V, ∀t ∈ {1, . . . , T̄},
xv,t = xv,t−1 +

∑
v′∈N (v)

(
uv′,v,t − uv,v′,t

)
(5)

∀v ∈ V, ∀t ∈ {1, . . . , T̄},
∑

v′∈N (v)

uv,v′,t ≤ xv,t−1 (6)

∀v ∈ V \ {o}, ∀t ∈ {1, . . . , T̄}, xv,t ≤ 1 (7)

∀v ∈ L, ∀t ∈ {1, . . . , T̄}, yv,t ≤
∑

q∈{1,...,t}

xv,q (8)

∀v ∈ L, ∀t ∈ {1, . . . , T̄}, st ≤ yv,t (9)

Constraints 3 and 4 define the initial distribution of the
robots by means of the state variables xv,0, v ∈ V .
Constraint 5 expresses the evolution of the robot distribution
to the system zones at period t based on the control decisions
that are expressed by the variables uv,v′t. Constraint 6
stipulates that the control decisions at period t must be
feasible with respect to the robot distribution over the system
zones at period t−1. Constraint 7 enforces the unit buffering
capacity of the zones v ̸= o. Constraint 8 forces the binary



variable yv,t to zero if target zone v ∈ L has not been visited
by period t. Finally, Constraint 9 forces the binary variable
st to zero if there is a target zone v ∈ L that has not been
visited by period t.

On the other hand, the constraint that ensures the com-
munication connectivity of the robots and the C&C center
at any period t ∈ T̄ in the IP formulations of the M- and
TVT-problems presented in [15], relies substantially on the
dendritic topology of the underlying guidepath network that
was presumed in that work, and therefore, it is not applicable
to the more general versions of the M- and TVT-problems
that are addressed in the current manuscript. We remind the
reader that in the new operational regime, the communication
connectivity requirement for the robots and the C&C center
can be ensured, for every period t ∈ T̄ , by enforcing the
requirement that the subgraph Ĝ(t) of the guidepath network
G, that is induced by the zones occupied by robots in period
t, is connected and contains node o.

Next, we present a new constraint set that will introduce
in the developed IPs the connectivity requirement that was
stated in the previous paragraph. For this, we need the notion
of the eccentricity Θ of node o in the guidepath network G,
which is defined by Θ = maxv∈V {d(o, v)}. We also define
the binary variables ψv,t,θ, for all v ∈ V, t ∈ {0, . . . , T̄}, and
θ ∈ {0, . . . ,Θ}. Then, the sought constraints are as follows:

∀t ∈ {0, . . . , T̄}, ψo,t,0 = 1 (10)

∀v ∈ V \ {o}, ∀t ∈ {0, . . . , T̄}, ψv,t,0 = 0 (11)

∀v ∈ V, ∀t ∈ {0, . . . , T̄}, ∀θ ∈ {0, . . . ,Θ},
ψv,t,θ ≤ xv,t (12)

∀v ∈ V, ∀t ∈ {0, . . . , T̄}, ∀θ ∈ {1, . . . ,Θ},
ψv,t,θ ≤ ψv,t,θ−1 +

∑
v′∈N (v)

ψv′,t,θ−1 (13)

∀v ∈ V \ {o}, ∀t ∈ {0, . . . , T̄}, xv,t ≤ ψv,t,Θ (14)

For each epoch t ∈ {0, . . . , T̄}, Constraints 10 and 12
imply that xo,t = 1. Then, Constraints 10–13 essentially
implement a forward-reaching scheme that, starting from
node o, iteratively marks every other node v ̸= o of the
guidepath network G that is reachable from node o through
a path occupied by robots in period t, by allowing the
corresponding variables ψv,t,Θ to take the value of 1 and
forcing to zero the variable ψv′,t,Θ for every node v′ that
does not possess this property. Furthermore, Constraint 14
stipulates that every deployed robot must be reachable from
node o through a path occupied by robots. Finally, we also
notice that the sets of variables and constraints involved in
Equations 10–14 are polynomially sized with respect to the
size of the guidepath network G.

With the availability of the new Constraints 10–14, the M-
problem can be expressed by the following IP formulation:

max
∑

t∈{1,...,T̄}

st (15)

s.t. Constraints 3 – 14 plus the sign restrictions for the em-
ployed variables that were specified during the introduction
of these variables.

Similarly, the TVT-problem can be expressed by the
following IP formulation:

max
∑
v∈L

∑
t∈{1,...,T̄}

yv,t (16)

s.t. Constraints 3 – 8, 10–14 plus the sign restrictions for the
employed variables.

Finally, an optimal solution of each of these two formula-
tions determines an optimal plan P ∗ for the corresponding
scheduling problem through the quantities [uv,v′,t−uv′,v,t]

+

for every pair (v, v′) of neighboring zones and period t.4

IV. STRONG COMBINATORIAL RELAXATIONS FOR THE IP
FORMULATIONS OF SECTION III

In this section we consider the combinatorial relaxations
[23] of the IP formulations for the M- and the TVT-problems
of Section III that are obtained by relaxing the integrality
requirements of the variables uv,v′,t, yv,t, st, and ψv,t,θ to
the following constraints for these variables:

∀v ∈ V, ∀v′ ∈ N (v), ∀t ∈ {1, . . . , T̄}, uv,v′,t ≥ 0 (17)

∀v ∈ L, ∀t ∈ {1, . . . , T̄}, 0 ≤ yv,t ≤ 1.0 (18)

∀t ∈ {1, . . . , T̄}, 0 ≤ st ≤ 1.0 (19)

∀v ∈ V, ∀t ∈ {0, . . . , T̄}, ∀θ ∈ {0, . . . ,Θ}, ψv,t,θ ≥ 0
(20)

Hence, the considered relaxations are MIPs with the only
integer variables being the xv,t variables. The significance
of these MIPs is revealed by the following theorem.

Theorem 4.1: The combinatorial relaxations of the IP
formulations of Section III that are obtained by replacing the
integrality requirements of the variables uv,v′,t, yv,t, st, and
ψv,t,θ with Constraints 17–20, are strong; i.e., the optimal
objective values of these relaxations are equal to the optimal
objective values of the corresponding IPs.

Furthermore, if the MIPs that correspond to these relax-
ations are solved by a Branch-&-Bound (B&B) method [23]
where the generated linear programming (LP) formulations
are solved by a method that provides extreme-point solutions
to these LPs,5 any obtained optimal solution for these MIPs
is also a feasible optimal solution for the corresponding IP.

Proof: First we notice that even though the variables
xv,t, v ̸= o, are defined as nonnegative integer variables in
Section III, they act as binary variables in the IP formulations
that are developed in that section and in the relaxations that
are considered in Theorem 4.1, because of Constraint 7. This
result, when combined with Constraints 6 and 17, further
implies that the variables uv,v′,t are upper-bounded by 1.0.

Constraints 10–14, 18–20 when combined with the struc-
ture of the objective functions of Equations 15 and 16, also
imply that for any valid pricing of the variables xv,t, v ∈

4We remind the reader that [x]+ = max{x, 0}.
5e.g., the Simplex algorithm [16] is such a method.



V, t ∈ {0, . . . , T̄}, all variables ψv,t,θ, yv,t and st will
take binary values that evaluate correctly the solution that is
implied by the considered pricing of the variables xv,t, with
respect to the objective functions of Equations 15 and 16.

Next we show that for any valid pricing of the variables
xv,t, v ∈ V, t ∈ {0, . . . , T̄}, we have a valid pricing of
the variables uv,v′,t, v ∈ V, v′ ∈ N (v), t ∈ {1, . . . , T̄}
that is integer. Hence, consider such a valid pricing of xv,t
and some given period t̂ ∈ {1, . . . , T̄}. Constraints 5 and 6
imply that the variables uv,v′,t̂, v ∈ V, v′ ∈ N (v), constitute
a static flow F(t̂), supported by the guidepath network G.
The demand and the supply of this static flow are defined by
the differences xv,t̂−xv,t̂−1, v ∈ V , and the edge capacities
for this flow are defined by the variables xv,t̂−1, v ∈ V , via
Constraint 6. Hence, all the defining parameters for static
flow F(t̂) are integer (actually, binary). But then, according
the corresponding theory of network flows [16], the flows
F̂(t̂) that constitute extreme points of the feasibility space
for the variables uv,v′,t̂, v ∈ V, v′ ∈ N (v) that is defined
by the considered pricing of the variables xv,t, v ∈ V, t ∈
{0, . . . , T̄} and the Constraints 5 and 6 corresponding to
period t̂, are integer. Since the considered period t̂ was
chosen arbitrarily, it follows that there exists an integer flow
F̂(t) for every period t ∈ {1, . . . , T̄}, and our claim has
been proven.

From the above developments it follows that (i) for any
valid pricing of the variables xv,t, v ∈ V, t ∈ {0, . . . , T̄},
there is an integral sequence of flows F̂(t), t ∈ {1, . . . , T̄},
that supports this pricing of xv,t by pricing the variables
uv,v′t as discussed in the previous paragraph, and (ii) the
plan P that is defined by the variables xv,t and uv,v′,t, is
assessed correctly regarding its feasibility with respect to the
imposed connectivity constraints 10–14 and the employed
objective function 15 or 16, via the resulting pricing of
the variables ψv,t,θ, yv,t and st. The results of Theorem 4.1
follow immediately from this remark. □

The practical implication of Theorem 4.1 is that we can
solve the IP formulations of Section III by solving their
combinatorial relaxations that were defined at the beginning
of this section. This capability can be very significant from
a computational standpoint, since the number of integer
variables in the IP formulations of Section III is of the
order O(|V |2 · T̄ ) = O(|V |3), while the number of integer
variables involved in the considered relaxations is only |V | ·
T̄ , which is O(|V |2). Furthermore, it is worth-mentioning
that the most extensively used MIP solvers, like CPLEX©,
satisfy the conditions that are posed in the second part of
Theorem 4.1. Finally, we also notice, for completeness, that
the strong combinatorial relaxations developed in [18] for the
IP formulations of the M- and TVT-problems on dendritic
topologies involve only |L| · T̄ binary variables, instead of
|V | · T̄ , but the derivation of these relaxations relies strongly
on the tree structure of the underlying guidepath network G.

V. SOME EXPERIMENTAL RESULTS

In this section, we report the results of a numerical ex-
periment that analyzes the efficacy and the tractability of the

relaxed MIP formulations of Section IV. More specifically,
we have generated a number of instances of the M-problem
by varying a set of parameters that affect the difficulty of this
problem, and we consider the quality of the solutions that
are provided by the corresponding combinatorial relaxations
of Section IV under a fixed computational time budget.

The complete experimental design and the obtained results
are tabulated in Table I. More specifically, in Table I, column
|V | reports the number of nodes of the guidepath network
G of the generated problem instances. For each |V | value,
we consider three levels of |R|: (a) low (L), where |R| is
set equal to the eccentricity Θ of node o in the guidepath
network G, (b) moderate M, where |R| is set equal to the
average of Θ and |V |, and (c) high (H), where |R| is set
equal to |V |. Also, for each pair of |V | and |R|, we define
three levels for the number of target nodes, |L|: (a) 10%,
(b) 30%, and (c) 50%, where |L| is respectively set equal
to 10%, 30%, and 50% of |V |. Furthermore, we consider
some structural elements which may affect the difficulty of
the problem by defining the following three types of planar
graphs: Type-I graphs are connected planar graphs where, for
any pair of nodes, there exists at least one cycle containing
these nodes; Type-II graphs are planar graphs consisting of
a type-I subgraph and a set of subtrees rooted at some nodes
of the type-I subgraph; Type-III graphs are planar graphs
consisting of a set of type-II subgraphs which are connected
to each other through unique paths (also known as bridges).
In order to check the impact of the additional structural
elements of type-II and type-III graphs on the difficulty of
the problem, we ensure that some target nodes are located
in the subtrees that are contained in these graphs. Columns
“Type-I”, “Type-II”, and “Type-III” report the corresponding
experimental results for problem instances, respectively, with
type-I, type-II, and type-III guidepath networks, obtained by
the relaxed MIP formulations.

For each triplet (|V |, |R|-level, |L|-level), we randomly
generated five instances for each type of guidepath network
and, for each generated problem instance, we tried to solve
the MIP formulation of Section IV for the M-problem with
a time budget of one hour (3600 seconds). Furthermore, in
order to interpret the results more easily, we redefined the
objective function of these MIP formulations as follows:

min
(
T̄ + 1−

∑
t∈{1,...,T̄}

st

)

We solved the resulting MIPs using CPLEX© in Python,
on a Mac OS-laptop with i7-8850H 2.6GHz CPU, and 16 GB
RAM. Columns entitled “Computation time”, for each of the
three guidepath-network types, in Table I reports the average
computational time for the corresponding five replications,
to obtain an optimal solution or to reach the specified time
limit of 3600 secs. In the latter case, CPLEX© also returned
a suboptimal solution together with a suboptimality (MIP)
gap which is defined by the following equation:



TABLE I: Some experimental results for the solution of the M-problem through the corresponding combinatorial relaxation
of Section IV.

|V | |R| |L|
Type-I Type-II Type-III

Computation Inflation Computation Inflation Computation Inflation
time (sec) ratio time (sec) ratio time (sec) ratio

20

L
10% 0.83 1.00 2.00 1.00 1.37 1.00
30% 2.09 1.00 9.24 1.00 723.62 1.02
50% 6.74 1.00 31.96 1.00 2163.35 1.16

M
10% 0.49 1.00 1.25 1.00 2.04 1.00
30% 2.33 1.00 7.40 1.00 2.08 1.00
50% 1.07 1.00 15.86 1.00 2.61 1.00

H
10% 0.36 1.00 0.76 1.00 0.60 1.00
30% 0.71 1.00 14.67 1.00 1.19 1.00
50% 1.03 1.00 3.40 1.00 3.10 1.00

40

L
10% 669.53 1.00 1211.51 1.16 779.08 1.18
30% 2063.78 1.17 3600 1.44 3280.21 1.61
50% 3134.02 2.13 3600 2.25 3600 4.47

M
10% 350.35 1.00 673.96 1.00 796.33 1.03
30% 742.58 1.08 1955.19 1.16 1435.84 1.17
50% 882.38 1.06 2671.91 1.16 1632.57 1.18

H
10% 22.63 1.00 418.63 1.00 734.35 1.02
30% 423.44 1.00 1444.03 1.10 1202.87 1.06
50% 783.49 1.05 2883.10 1.19 1207.22 1.16

60

L
10% 2964.76 1.15 2277.31 1.38 3600 4.17
30% 3600 3.36 3600 5.64 3600 9.04
50% 3600 5.30 3600 5.59 3600 8.80

M
10% 762.53 1.00 777.20 1.20 2170.12 1.94
30% 2884.00 1.17 2542.03 1.37 3600 7.80
50% 2885.22 2.21 3600 3.10 3600 7.02

H
10% 287.44 1.00 1482.23 1.00 1986.57 1.07
30% 2965.50 1.43 3600 1.57 2760.85 1.46
50% 2620.86 1.64 3600 2.03 3600 2.39

80

L
10% 2629.96 1.14 2973.27 2.17 3600 2.46
30% 3017.39 2.56 3600 6.75 3600 7.15
50% 3600 3.73 3600 6.78 3600 6.48

M
10% 921.36 1.21 1531.72 1.29 2688.14 1.40
30% 2707.56 2.01 3600 4.62 3600 6.84
50% 3600 2.60 3600 6.58 3600 6.77

H
10% 1877.20 1.24 2251.87 1.19 1733.37 1.50
30% 3424.37 1.46 2888.28 2.35 3515.64 2.37
50% 3600 2.41 3436.78 3.23 3600 6.70

100

L
10% 3600 3.19 3600 7.24 3600 9.57
30% 3600 9.45 3600 7.83 3600 16.09
50% 3600 9.34 3600 8.28 3600 13.82

M
10% 1684.63 1.29 2488.93 1.61 3600 2.91
30% 3187.38 2.44 3600 3.89 3600 7.53
50% 3419.69 2.43 3600 4.10 3600 7.43

H
10% 1907.28 1.31 2609.79 1.68 3600 3.61
30% 3491.24 2.46 3286.87 3.42 3600 4.72
50% 3380.24 2.23 3600 3.90 3600 7.33

MIP gap = 100×(
1.0− best lower bound obtained by CPLEX

best objective value obtained by CPLEX

)
(21)

But for an easier understanding of the solution subopti-
mality that is implied by the MIP-gap values, in Table I,
we translate these values into an “inflation ratio” which is
obtained from the corresponding MIP gaps by rearranging
Equation 21 as follows:

1

1−
(

MIP gap
100

) =

(
best objective value obtained by CPLEX

best lower bound obtained by CPLEX

)
(22)

The right-hand-side of Equation 22 is the “inflation ratio”
of the attained objective value with respect to the best lower
bound attained by CPLEX© within the provided time budget.
For instance, the inflation ratio of a returned solution with a
MIP gap of 50% is 2.00; i.e., the attained objective value is at
most two times higher than the optimal value. Similarly, the
inflation ratio of a solution with a MIP gap of 90% is 10.00.
Obviously, the inflation ratio for a solution with a MIP gap
of 0% – i.e., an optimal solution – is 1.00, while a high value
of the inflation ratio implies that CPLEX© could not return
a certified good-quality solution within the provided time
budget. In Table I, column “Inflation ratio” for each type of
graph reports the average inflation ratio for the corresponding
five repetitions.

We can see in Table I that, as |V | increases, the difficulty
of solving the corresponding MIPs increases significantly.



Hence, for many problem instances with the larger values
of |V |, CPLEX© can generate only a suboptimal solution
within the provided time budget. Furthermore, we notice
that the levels of |R| and |L|, and the type of instances, can
affect significantly the difficulty of the formulated MIPs. For
some pairs (|R|, |L|-level) and types of instances, CPLEX©

can attain an optimal solution even for a large value of |V |
in a reasonable computation time, but for some other pairs
of those parameters and types, it cannot attain an optimal
solution in the specified time budget, even for moderate
levels of |V |.

More specifically, for each pair (|V |, |R|-level) with some
type of graph, a higher portion of the target zones relative to
|V | increases the difficulty of the M-problem. The intuitive
explanation for this fact is that, as the number of target zones
increases, the number of the permutations that characterize
the visitation sequence of the target nodes increases as well,
and therefore, the difficulty of the problem increases.

Furthermore, for each pair (|V |, |L|-level) with some type
of graph, a low level of |R| also increases the difficulty of the
M-problem significantly, especially when |V | obtains some
larger values. This result is consistent with the experimental
results of [18], and it is intuitively explained by the fact
that the scarcity of available robots requires a more careful
allocation of this resource in each period.

Also, for each triplet (|V |, |R|-level, |L|-level), the type of
graphs significantly affects the difficulty of the M-problem,
with guidepath networks of types-II and -III corresponding
to harder problem instances. This fact is due to the limited
concurrency and routing flexibility that are enabled by the
additional structural elements of these guidepath networks,
even in the presence of a very large number of robots, |R|.

Finally, we note that the aforementioned remarks also
apply to the TVT-problem instances that are defined by con-
figurations considered in Table I. But we have not included
explicitly the corresponding results in this section due to the
page limit that is imposed for this paper.

VI. CONCLUSIONS

In this paper, we have extended the investigation of the
M- and TVT-problems on dendritic topologies, originally
introduced in [15], by considering a more arbitrary topology
of the underlying guidepath network. Our developments
parallel, in spirit, the corresponding developments of [15],
[18] for the more restricted case of dendritic topologies, but
the analytical details of the derived results are substantially
different.

A juxtaposition of the numerical results that are reported
in those previous works with the corresponding results that
are reported in this paper, reveals that the routing flexibility
that is inherent in the new problem instances, can ease
up considerably the computational effort and time that is
required for the solution of these problems through their
(relaxed) MIP formulations.

On the other hand, the new problem versions remain NP-
hard, and the overall tractability of the corresponding MIPs
eventually is limited by this fact. Hence, in our future work,

we shall also seek the development of pertinent heuristics
that can provide good suboptimal solutions for harder prob-
lem instances within (more) reasonable computational times.
The corresponding developments of [19] can be a good
starting point in this endeavor.
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