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A Heuristic Approach to the Problem of
Min-Time Coverage in Constricted Environments

Young-In Kim and Spyros Reveliotis

Abstract—The problem of min-time coverage in constricted
environments concerns the employment of networked robotic
fleets for the support of routine inspection and service operations
taking place in well-structured but constricted environments. In a
series of previous works, we have provided a detailed definition of
this problem, a Mixed Integer Programming (MIP) formulation
for it, a formal analysis of its worst-case computational com-
plexity, and additional structural results for its optimal solutions
that also enable the solution of the problem through a partial
relaxation of the original MIP formulation. The current work
employs those past developments towards the development of a
heuristic algorithm able to address larger problem instances that
are not amenable to the previous methods. An accompanying
set of numerical experiments demonstrates and assesses the
computational advantages of this new method. Furthermore,
the presented developments can function as building blocks for
additional heuristic approaches to the considered problem; this
potential is highlighted in the concluding part of the paper.

Index Terms—Networked mobile robotic systems; multi-robot
coordination; coverage problems; combinatorial scheduling;
heuristic methods

I. INTRODUCTION

In recent years, multiple mobile robot systems (MMRS) have
been promoted as a very promising solution for the execution
of various tasks that are deemed to be too dangerous or
physically challenging for the human element [1]. Among
the most celebrated examples of such MMRS applications
are some search-end-rescue operations where teams of robots
have performed successfully various reconnaissance tasks in
environments that are too hazardous for the human respondents
[2], [3]. But currently, there is also extensive interest in
the employment of MMRS for the support of more routine
functions evolving in operational environments that are quite
stable and well-managed. Some characteristic examples of
such applications are: (i) the employment of fleets of mobile
robots as the primary material handling devices in many
industrial and warehousing facilities [4], [5]; (ii) the delivery
by drones or mobile robots of groceries and take-out orders
in some residential or rural areas [6], [7]; (iii) the surveillance
of public spaces, like public squares and commercial malls,
with strategically (re-)positioned cameras that are mounted on
mobile robots [8]; and (iv) various other patrolling and data-
gathering functions where the robots must re-visit and monitor
persistently a specified set of critical locations [9], [10], [11].

In this work, we focus on a class of MMRS applications
that concern the employment of mobile robotic teams for the
support of routine monitoring and inspection operations in
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subterranean or other physically constricted structures that are
not easily or safely accessible by the human element. Some ex-
amples of such environments are (a) the water supply, sewage
and other underground utility networks in modern urban areas,
(b) mines and other (e.g., archeological) excavation sites, and
also (c) the pipeline networks that are used for the transport
of oil, gas and other similar commodities over long distances.

During the past decade, these MMRS applications have
received extensive attention by the robotics community [12],
[13], [14], [15], [16], [17]. Furthermore, these applications
have been the focus of a major DARPA challenge known as
the “Subterranean – or SubT – Challenge” [18]. This research
activity has provided primarily the technological capability
that enables (i) stable, flexible and safe motion of the deployed
robots in the spatially constricted, and potentially adversarial,
corridors (i.e., tunnels, pipes, etc.) that support the robotic
traffic, and (ii) reliable communication mechanisms among
the robots and the command-&-control (C-&-C) center that
manages the overall operation.

But the corresponding literature has also recognized that the
effective use of this emerging technological capability in the
targeted MMRS applications requires the development of a
methodological base that will model, analyze and control the
execution of the involved tasks for logical correctness and op-
erational expediency. A first set of results in this direction has
been provided in our recent work of [19]. More specifically,
in [19], we have provided: (i) a systematic introduction of
the operational requirements of the considered MMRS; (ii) a
formal characterization of the traffic management problem that
is induced by these requirements, and the detailed positioning
of this problem in the existing MMRS literature; (iii) a
complete analytical representation of this problem in the form
of some mixed integer programming (MIP) formulations [20];
and (iv) a worst-case complexity analysis of the decision
problems that underlie these formulations.

It turns out that the considered optimization problems are
strongly NP-Hard [21]. Hence, in an effort to cope with this
issue, in [22], [23] we have pursued some further structural
analysis aiming at alleviating the computational effort for
addressing these problems through their MIP formulations. In
particular, the work of [23] has leveraged the structural proper-
ties identified for these problems in order to develop a strong
combinatorial relaxation of their original MIP formulations
that employs a much smaller number of integer variables and
provides an optimal solution for the original MIPs.

However, the aforementioned relaxations remain MIP for-
mulations themselves, a fact that limits their applicability to
larger and/or harder problems instances. Hence, there is a
remaining need for pertinent heuristic methods able to provide



2

good solutions for these harder cases. The work presented in
this paper leverages the structural results of [23] in order to
provide such a heuristic approach. The presented algorithm is
of the “construction”-type; i.e., it builds the sought solution
for the input problem instance incrementally, through a se-
quence of decisions that are of a myopic, greedy character. In
this sense, our work aligns with similar past developments that
have been pursued for other hard combinatorial optimization
problems, like the Traveling Salesman Problem (TSP) [24]
and various machine scheduling problems [25]. A set of
experimental results reported in the last part of the paper (i)
demonstrate the ability of the presented algorithm to enhance
our computational capability for the considered problem, (ii)
enable a direct assessment of the practical applicability and
scalability of the algorithm, and (iii)) highlight some factors
that define the empirical complexity of the algorithm on
various problem instances. Finally, the insights and the com-
putational techniques developed in this work also enable the
adaptation to the considered problem of other generic heuristic
methods for hard combinatorial optimization problems, like
those based on local search [26]; we highlight this possibility
in the concluding part of the paper.

The rest of the paper is organized as follows: Section II
provides a detailed positioning of the considered problem, and
overviews the results of [19], [22], and [23] that are necessary
for the algorithm developed in this work. The algorithm itself
is presented in Section III. This section also provides some
analysis of the computational complexity and the worst-case
performance of the presented algorithm. Section IV provides
the experimental results that demonstrate and evaluate the
developments of Section III, and Section V concludes the
paper and suggests some directions for future work.

II. THE CONSIDERED COVERAGE PROBLEMS AND THEIR
SOLUTIONS

In this section we overview (i) the formal definition of the
coverage problems considered in this work, (ii) a representa-
tion of their solutions as dynamic integral flows generated by
the robotic fleet, and (iii) a set of properties of these flows and
their optimal subset that enable a more efficient solution of the
considered problems by relaxing the integrality requirement.
The relaxed representation of the problem solution space and
its properties play a central role in the main developments of
this work that are presented in the next section. On the other
hand, due to space considerations, the coverage of the material
that is presented in this section, is the minimal necessary for a
thorough treatment of the new developments of Section III; a
more expansive and more thorough coverage of this material
can be found in the references that are provided within the
subsequent discussion.

A. The considered coverage problems

A fleet of mobile robots must be used to inspect a set of
locations of an underground guidepath network that constitutes
a tree. The robots are initially located at a C&C-center of
the entire facility, which defines the root of the tree, and the
targeted locations are its leaves. Furthermore, the tunnels are
narrow and the robots have limited sensing and maneuvering

capability.1 Therefore, for safety reasons, the robots must be
separated through the imposition of a zoning scheme that splits
the underlying guidepath network into zones of unit buffering
capacity, and grants access to these zones to the contesting
robots through a traffic coordinator. Similar zoning schemes
have been used extensively in automated unit-load industrial
material handling systems [4], and more recently they have
provided a safety control mechanism in other mobile robotic
applications, as well [27], [1].

The robots possess wireless communication capability, but
their communication range is severely limited by their op-
erational environment. Since these wireless communication
links are the only way for each robot to communicate with its
operational environment, the robot motion must be coordinated
in a way that, at any time point, the active links among the
robots define a multi-hop communication network connecting
the robots to each other and to the C&C-center. A convenient
way to ensure this connectivity is by defining the imposed
zones so that neighboring zones guarantee robust connectivity
between the robots that occupy these zones, and further
stipulating that, at any time point, a zone cannot be occupied
unless its parent zone in the underlying tree is also occupied.

Finally, following standard practice in the formal study of
the traffic dynamics that are generated by zoning schemes
similar to those considered in this work, we further assume
that zones are defined in a way that they have uniform traversal
time. Then, picking this traversal time as the time unit, we can
study the resulting traffic dynamics in discrete time.2

In view of the above description, the considered MMRS can
be formally represented by a tuple M = ⟨R, T ⟩, where R is
the set of the robots and T is a rooted tree representing the
tunnel system. The node set V of T represents the zones of the
tunnel system, and the edge set E represents the neighboring
relation among the zones.

The root node of T – i.e., the initial location of all robots
and the point of command and control for the entire system
– is denoted by o. The set of the leaf nodes of T is denoted
by L. As already stated, each zone v ∈ L must be visited by
some robot for inspection purposes, and the inspection of a
leaf zone can be carried out by the visiting robot in the time
interval corresponding to a discrete period.

The set of neighbors of a zone v ∈ V is denoted by N (v),
and for any zone v ̸= o, p(v) denotes the parent of v in T . Let
z(r, t) denote the zone v ∈ V occupied by robot r at period
t. Then, z(r, t+ 1) ∈ {z(r, t)} ∪ N (z(r, t)); i.e., robot r can
either remain in the same zone at period t+ 1, or advance to
a neighboring zone v′ ∈ N (v). Furthermore, at any period t,
a zone v ̸= o cannot contain more than one robot.

On the other hand, at any period t, a group of robots
can coordinate their advancement over a path of neighbor-
ing zones; i.e., for a group of robots r1, r2, . . . , rn with
z(ri, t) ∈ N (z(ri−1, t)), for i = 2, . . . , n, we allow z(ri, t+
1) = z(ri+1, t), i = 1, . . . , n − 1, provided that robot rn

1As discussed in the introductory section, some examples of such a
guidepath network might be a water supply network, a sewage network, or a
network of tunnels in an underground mine [12], [13].

2Nonuniform traversal times for the system zones can be easily introduced
into our model. But this feature would overload the employed notation and
complicate some details in the pursued analysis, without adding anything
substantial to the expository value of this discussion.
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moves itself to a free zone or to the root zone o at period
t + 1. We characterize such a string of robot moves as a
robot flow occurring at time t, and we shall denote it by
f(z(r1), z(rn); t). The net effect of this flow is the transfer of
a robot from zone z(r1, t) to zone z(rn, t+1). Also, the traffic
dynamics that were described in the previous paragraphs imply
that two flows f(vo, vd; t) and f(v′o, v

′
d; t) are conflicting if the

supporting paths of these two flows have a common internal
node v ̸= o.

Robots can reverse the direction of their motion within
their zone. This assumption is reasonable in the context of
the considered applications, and furthermore, it is necessary
due to the tree structure of the underlying tunnel system.

Finally, as observed in the opening part of this section, the
communication connectivity among the robots and the system
controller is established by stipulating that, for every zone
v ̸= o and every period t,

∃ r ∈ R : z(r, t) = v =⇒ ∃ r′ ∈ R : z(r′, t) = p(v) (1)

The above requirement implies that for every zone v occu-
pied by a robot in period t, all the zones in the path connecting
zone v to the root zone o in tree T are also occupied by a robot
in period t. Furthermore, the root zone o is always occupied
by at least one robot.

We want to determine a plan that will advance the robots
r ∈ R in a way that is consistent with the above assumptions
regarding the robot capabilities and the zone allocation pro-
tocol, and at the end of its execution, each leaf zone v ∈ L
will have been visited by some robot.3 Let P denote the set of
feasible plans, and for every plan P ∈ P and leaf node v ∈ L,
let C(v;P ) denote the first period that plan P places a robot
in zone v. We are especially interested in plans P ∗ such that

P ∗ = arg min
P∈P

max
v∈L

C(v;P ) (2)

or
P ∗ = arg min

P∈P

∑
v∈L

C(v;P ) (3)

Each of Eqs 2 and 3 defines a combinatorial optimiza-
tion – or traffic-scheduling – problem. The traffic-scheduling
problem defined by Eq. 2 is characterized as the Makespan-
minimization problem, or the M-problem, and the traffic-
scheduling problem defined by Eq. 3 is characterized as
the Total Visitation Time-minimization problem, or the TVT-
problem. Also, in [19] it is shown that these two problems
are in a Pareto optimal relationship [28], [29]; i.e., there are
MMRS where the sets of optimal plans for these two problems
have no common element. Hence, these two problems require
separate treatments.

B. Representing the solution space of the considered problems
Preliminaries: Consider an M- or TVT-problem instance

M = ⟨R, T ⟩. The unique path connecting any nodal pair
{v1, v2} of tree T is denoted by π(v1, v2), and the length
l(v1, v2) of path π(v1, v2) is defined by the number of edges
in it. Since tree T is undirected, π(v1, v2) ≡ π(v2, v1) and
l(v1, v2) = l(v2, v1). A single node is considered as a path of

3A technical definition of the “plan” concept, that must coordinate the robot
advancements through the system zones, is provided in the next subsection.

zero length. Furthermore, in the next section, we also use the
notation π(v1, v2) to denote the set of nodes of tree T that
belong on this path.

For a node v ∈ V , the length l(o, v) of the path π(o, v)
defines the depth of node v in tree T . In particular, node o
has zero depth. We also define the depth of tree T by

l(T ) ≡ max
v∈L

l(o, v) (4)

In view of the requirement of Equation 1, the considered
problem instance M is feasible if and only if

|R| ≥ l(T ) (5)

Next, consider a strict subset L̂ of L. The paths π(o, v), v ∈
L̂, induce a subtree T̂ of tree T . Also, let V̂ ⊂ V denote the
nodes of T̂ . Then, for a leaf node ṽ ∈ L \ L̂, we define

b(ṽ, T̂ ) ≡ arg max
v′∈π(o,ṽ)∩V̂

l(o, v′) (6)

and

d(ṽ, T̂ ) ≡ l
(
b(ṽ, T̂ ), ṽ

)
= l(o, ṽ)− l

(
o, b(ṽ, T̂ )

)
(7)

Equations 6 and 7 define the distance of the leaf node ṽ
from subtree T̂ , and the node b(ṽ, T̂ ) can be perceived as
the projection of the leaf node ṽ on the subtree T̂ .

An exact representation of the solution space of the
M- and TVT-problems: A plan P for the M- or the TVT-
problem can be considered as a sequence of distributions,
⟨Dt, t = 0, 1 . . . , T̄ ⟩, of the system robots to the various zones
of the underlying tunnel system. In the initial distribution D0,
all the robots are located in the root zone o of tree T . For
the periods t ≥ 1, the distribution Dt is obtained from the
distribution Dt−1 by relocating a number of robots from their
zones at period t−1 to some neighboring zone, while abiding
to the assumptions about the maneuvering capabilities of the
robots and the zone allocation protocol that were introduced in
Subsection II-A. Furthermore, all leaf nodes of T must have
been visited by some robot by period T̄ .

For a feasible M- or TVT-problem instance, there is always
a plan P where T̄ can be restricted to |V | (i.e., the number
of zones of tree T ); the plan that visits the zones of T in a
depth-first sense, one new zone at a time, is such a plan.

Also, for any given T̄ , the set of feasible plans with duration
no longer than T̄ , can be represented by the following set of
variables and constraints:

• State variables xv,t, v ∈ V, t ∈ {0, 1, . . . , T̄}, with
each variable xv,t being a nonnegative integer variable
indicating the number of robots in zone v at period t.

• Control variables uv,v′,t, v ∈ V, v′ ∈ N (v), t ∈
{1, . . . , T̄}, with each variable uv,v′,t being a nonnegative
integer variable representing the number of robots moving
from zone v to neighboring zone v′ at period t.

• Constraint set
xo,0 = |R| (8)

∀v ∈ V \ {o}, xv,0 = 0 (9)

∀v ∈ V, ∀t ∈ {1, . . . , T̄},
xv,t = xv,t−1 +

∑
v′∈N (v)

(
uv′,v,t − uv,v′,t

)
(10)
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∀v ∈ V, ∀t ∈ {1, . . . , T̄},
∑

v′∈N (v)

uv,v′,t ≤ xv,t−1 (11)

∀v ∈ V \ {o}, ∀t ∈ {1, . . . , T̄}, xv,t ≤ 1 (12)

∀v ∈ V \ {o}, ∀t ∈ {1, . . . , T̄}, xv,t ≤ xp(v),t (13)

∀v ∈ L,

T̄∑
t=0

xv,t ≥ 1 (14)

Constraints 8 and 9 define the initial distribution of the
robots by means of the state variables xv,0, v ∈ V . Con-
straint 10 expresses the evolution of the robot distribution
to the system zones at period t, based on the decisions that
are expressed by the control variables uv,v′,t. Constraint 11
stipulates that the control decisions at period t must be feasible
with respect to the robot distribution over the system zones at
period t−1. Constraint 12 enforces the unit buffering capacity
of the zones v ̸= o. Constraint 13 enforces the condition of
Eq. 1. Finally, Constraint 14 expresses the requirement that
every leaf node has been visited by period T̄ .

The unit capacity presumed for the zones of T implies that
all the state variables xv,t and the control variables uv,v′,t are
actually binary variables. Furthermore, it can be easily checked
that the explicit enforcement of the integrality of the control
variables uv,v′,t for any solution of the constraint set 8–14,
will also result in integral values for the state variables xv,t.

Finally, for any feasible plan P defined by the above
set of variables and constraints, the corresponding objective
values for the M- and the TVT-problem are, respectively,
maxv∈L C(v;P ) and

∑
v∈L C(v;P ), where, for every leaf

node v ∈ L, C(v;P ) is defined as in Subsection II-A.
A relaxed representation of the solution space of the

M- and TVT-problems: Next, consider the constraint set
that is obtained from Constraints 8–14 by (i) relaxing the
state variables xv,t and the control variables uv,v′,t to be
nonnegative reals taking values in the interval [0, 1], and (ii)
replacing Constraint 14 with the constraint

∀v ∈ L, ∃t ∈ {1, . . . , T̄} : xv,t = 1 (15)

In this new solution space, the values of the variables xv,t

are perceived as the corresponding amount of fluid located at
node v at period t. The pricing of the entire set of variables
{xv,t : v ∈ V }, at any period t ∈ {0, 1, . . . , T̄}, defines
a fluid distribution at period t. Also, the pricing of the set
of variables {uv,v′,t : v ∈ V, v′ ∈ N (v)}, at any period
t ∈ {0, 1, . . . , T̄}, defines a flow F (t) at period t, and a
sequence of flows F = ⟨F (1), F (2), . . . , F (T̄ )⟩ defines a flow
plan. The set of flow plans that constitute feasible solutions
in the new solution space, is denoted by F . In analogy to
the corresponding definitions for the original M- and TVT-
problems, for any feasible flow plan F and any leaf node
v ∈ L, we also set

C(v;F ) ≡ min
{
t ∈ {1, . . . , T̄} : xv,t = 1.0

}
and we consider the fluid amount of 1.0 as a “target” fluid
level that must be attained by any leaf node v ∈ L. Finally,
substituting the above C(v;F ) values in Equations 2 and 3,
we obtain variations of the M- and TVT-problems defined in
the new solution space.

Clearly, these new versions of the M- and TVT-problems
constitute relaxations of their counterparts that are defined
by Constraints 8–14 and the integrality requirement for the
variables xv,t and uv,v′,t. Yet, Theorem 1 in [23] establishes
that there exists a flow plan subset F̂ that (i) contains optimal
flow plans for the relaxed M- and TVT-problem versions and
(ii) each flow plan F ∈ F̂ can be converted to a plan P ∈ P
for the original M- or TVT-problem instance with an objective
value that is no worse than the objective value of flow plan
F . Furthermore, this conversion can be performed in time
polynomial with respect to |V |.

In more technical terms, flow plan subset F̂ is defined by
the following two requirements:

1) Each flow plan F ∈ F̂ must be structurally minimal,
i.e., it must minimize the quantity∑

v∈V

T̄∑
t=1

|xv,t − xv,t−1|

among all the flow plans that have the same value with
it for the primary objective functions of Equations 2
and 3.4

2) Each flow plan F ∈ F̂ must also satisfy the following
condition:

∀v ∈ V \ L,
T̄∑

t=1

∑
v′∈V :p(v′)=v

uv,v′,t ∈ Z+ (16)

where Z+ denotes the set of strictly positive integers;
i.e., the total flow conveyed from any internal node v of
tree T towards its children must be integral.

In addition, Proposition 3 of [23] establishes that any struc-
turally minimal flow plan F violating the integrality condition
of Eq. 16 can be converted to a structurally minimal flow plan
F̃ that satisfies this integrality condition and has the same
objective value with F , by formulating and solving a linear
program (LP).

In the next section, we leverage the above results of [23] in
order to develop the proposed heuristic algorithm for the M-
and TVT-problems.

III. THE NEW HEURISTIC ALGORITHM FOR THE M- AND
TVT-PROBLEMS

A. The defining logic of the presented algorithm
As remarked in the introductory section, the presented

algorithm is a “construction” heuristic for the considered
problems; i.e., it synthesizes a solution for the input M- or
TVT-problem instance in an incremental manner, through a
sequence of decisions of a myopic, greedy character.

More specifically, the algorithm perceives a feasible solution
for any given M- or TVT-problem instance as a permutation of
the leaf nodes v ∈ L of the underlying tree T that is specified
by the visitation times of these nodes in the corresponding
plan. In general, an efficient solution will tend to minimize
the elapsing time between the visitation of two consecutive
leaf nodes in the corresponding permutation; and this remark
is true for, both, the M- and the TVT-problem. Hence, the

4In more conceptual terms, a structurally minimal flow plan prevents the
unnecessary fluctuation of the nodal fluid levels from period to period.
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presented algorithm seeks to construct a permutation of the
leaf nodes v ∈ L, one leaf node at a time, by minimizing
the visitation time of the newly added node while observing
the predetermined visitation times for the previously entered
leaf nodes in the sequence. Similarly, the first node in the
constructed permutation is a leaf node that can be reached
from the root node o – which is the initial location of all robots
– as fast as possible. Finally, in the current implementation of
the algorithm, any arising ties are solved arbitrarily.

The problem of determining the minimal possible visitation
time of any candidate leaf node to enter the partially con-
structed plan at each iteration, while observing the visitation
times of the previously entered leaf nodes, is a complex combi-
natorial optimization problem. Fortunately, the complexity of
these (sub-)problems can be drastically reduced by formulating
and solving them in the relaxed representational space that was
introduced in Section II-B, while leveraging the corresponding
results of [23]. In addition, it is possible to thin out the set of
the candidate nodes at each major iteration of the algorithm,
without compromising its defining logic and the efficiency
of the derived solutions. We detail all these aspects of the
algorithm in the next subsection.

B. The algorithm

Some major data structures and operations of the pre-
sented algorithm: Two central data structures that are defined
and maintained by the presented algorithm, are the lists Ŝ and
Ĥ . At any time point during the execution of the algorithm,
list Ŝ contains the sequence of the leaf nodes v ∈ L that have
already entered the partially constructed plan P , according
to the logic that was outlined in the previous subsection.
Let Ŝ = ⟨v1, v2, . . . , vi⟩, for some i ∈ {1, . . . , |L|}. Then,
Ĥ = ⟨h1, h2, . . . , hi⟩, with hj , j = 1, . . . , i, reporting the
visitation time of node vj in list Ŝ by the specified (partial)
plan P . From the discussion of Subsection III-A, it is clear
that hj ≤ hj+1, for all j = 1, . . . , i − 1, and hi defines the
makespan of the corresponding partial plan. Both lists Ŝ and
Ĥ are initially empty, and they are augmented one element at
a time, as discussed in the later parts of this subsection.

Furthermore, the assessment of the various candidate leaf
nodes to enter the partially constructed plan at each iteration,
requires the feasibility assessment of a series of partial plans
represented by pairs (Ŝ, Ĥ), for some given lists Ŝ, Ĥ . From
the discussion on the relaxed representation of the M- and
TVT-problems that was provided in Section II-B, the feasi-
bility of these partial plans can be assessed by (i) defining
the subtree T̂ that is induced by the paths π(o, vj), vj ∈ Ŝ,
and (ii) testing on this subtree the feasibility of the constraint
set that is defined by Constraints 8–13 and the additional
constraints

∀v ∈ V, ∀v′ ∈ N (v), ∀t ∈ {1, . . . , T̄}, 0 ≤ uv,v′,t ≤ 1
(17)

∀vj ∈ Ŝ, xvj ,hj
= 1 (18)

This test can be performed very efficiently by solving an
LP that is defined by the aforementioned constraints and the
trivial objective function “min 0”. In the following, we shall
represent such a feasibility test by LP(⟨R, T̂ ⟩, Ŝ, Ĥ).

Algorithm 1 The main part of the presented algorithm

Input: An M- or TVT-problem instance ⟨R, T ⟩
Output: A feasible plan P

1: h1 := |V |+ 1
2: for v ∈ L do
3: if l(o, v) < h1 then
4: v1 := v;
5: h1 := l(o, v);
6: end if
7: end for
8: Ŝ := {v1};
9: Ĥ := {h1};

10: for i ∈ {2, . . . , |L|} do
11: T̂ := the subtree of T induced by

the paths π(o, vj), vj ∈ Ŝ;
12: C := ∅;
13: for v ∈ L \ {Ŝ} do
14: C := C ∪ {v};
15: for c ∈ C \ {v} do
16: if b(v, T̂ ) = b(c, T̂ ) then
17: if l(o, v) < l(o, c) then
18: C := C \ {c};
19: break;
20: else
21: C := C \ {v};
22: break
23: end if
24: end if
25: end for
26: end for
27: (Ŝ, Ĥ) := APPEND(⟨R, T ⟩, Ŝ, Ĥ, C);
28: end for

29: F := LP(⟨R, T ⟩, Ŝ, Ĥ);
30: if F violates the integrality condition of Eq. 16 then
31: F := F̃ , where F̃ is obtained from F via Proposition

3 of [23];
32: end if
33: Convert flow plan F to a plan P using the results of

Theorem 1 of [23];
34: return P .

The main algorithm: The pseudocode for the main part
of the presented algorithm is provided in Algorithm 1. The
algorithm receives as input an instance of the M- or the TVT-
problem and returns the generated plan P .

Lines 1–9 in Algorithm 1 select the first node, v1, to enter
the generated list Ŝ, and they also determine the corresponding
visitation time, h1, that enters the list Ĥ . The selected node v1

is the first encountered leaf node of T having minimal depth.
Lines 10–28 construct the remaining parts of lists Ŝ and Ĥ ,

selecting the elements to enter these lists one pair at a time.
More specifically, the algorithm goes through |L| − 1 primary
iterations (c.f. Line 10), and each such iteration consists of the
following two parts:
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I) In the first part, corresponding to Lines 11–26, the
algorithm determines the set C of the candidate nodes to enter
the list Ŝ at the current iteration. In principle, C = L \ {Ŝ},
where {Ŝ} is the current nodal content of Ŝ. However, it
is easy to see that in an optimized plan that respects the
visitation requirements specified by the current lists Ŝ and
Ĥ , for any two nodes v1, v2 in C with b(v1, T̂ ) = b(v2, T̂ )
and d(v1, T̂ ) < d(v2, T̂ ), the required time to reach node v2
is longer than the required time to reach node v1. Hence, the
algorithm removes from set C any such noncompetitive nodes
during the construction of this set. Furthermore, for any subset
of leaf nodes in L \ {Ŝ} that have the same distance and the
same projection with respect to tree T̂ , the algorithm enters
in C only the first such encountered element of this subset.
This “thinning” of the candidate sets C is very significant for
controlling the execution time of the algorithm.5

II) The nodal candidates that remain in the thinned set
C are evaluated in Line 27 of Algorithm 1, by calling the
procedure APPEND, that is described in a subsequent part of
this subsection. This procedure returns a leaf node from the set
C and the corresponding visitation time that are respectively
appended to the current lists Ŝ and Ĥ .

The last part of Algorithm 1, corresponding to Lines 29–34,
constructs the plan P for the input M- or TVT-problem from
the flow plan F that corresponds to the computed lists Ŝ and
Ĥ . This conversion is based on the developments of [23] that
were discussed in the closing part of Section II-B.

The procedure APPEND: The pseudocode for procedure
APPEND appears in Algorithm 2. This procedure takes as
input (i) an instance ⟨R, T ⟩ of the M- or the TVT-problem,
(ii) two lists Ŝ and Ĥ defining a feasible partial visitation
plan for the leaf node subset contained in list Ŝ, and (iii) a set
C ⊆ L \ {Ŝ} collecting all the leaf nodes that are competitive
candidates for extending the current partial plan by one node.
The procedure returns a new list pair (Ŝ, Ĥ) that consists of
the corresponding input lists augmented, respectively, with the
selected candidate and the corresponding visitation time.

As indicated in the presented pseudocode, this procedure
consists of three major parts. In the first part, consisting of
Lines 1–11, the input candidate set C is scanned in order to
detect a leaf node in it that can be appended to the current
partial plan without increasing its makespan hi−1. For each
leaf node c ∈ C, the aforementioned test is performed by
formulating and solving the corresponding testing LP along
the lines that were discussed in the first part of this subsection
(c.f. Lines 3–6). As soon as such a node is detected, the
procedure picks this node as the node to be returned to the
calling algorithm, and breaks out of the for-loop of Lines 2–11
(c.f. Lines 6–10). Furthermore, in this case, Lines 1 and 12
imply that the for-loop of Lines 13–36 will be skipped, and
the procedure proceeds to its last part, defined by Lines 37–
39, where it updates the input lists Ŝ and Ĥ with its selection
and returns the results to the calling algorithm.

The part of procedure APPEND that is defined by Lines
12–36, is executed when the first part discussed above fails to

5An alternative implementation may choose randomly among all the
candidate leaf nodes with the same distance and the same projection with
respect to tree T̂ . Such randomization enables the generation of many different
solutions through the repetitive execution of the algorithm.

Algorithm 2 Procedure APPEND

Input: An M- or TVT-problem instance ⟨R, T ⟩;
Ŝ := ⟨v1, . . . , vi−1⟩; Ĥ := ⟨h1, . . . , hi−1⟩;
C := {c1, . . . , c|C|};

Output: The updated Ŝ and Ĥ

1: hi := |V |+ 1;
2: for c ∈ C do
3: Ŝ′ := ⟨v1, . . . , vi−1, c⟩;
4: Ĥ ′ := ⟨h1, . . . , hi−1, hi−1⟩;
5: T̂ := the subtree of T induced by

the paths π(o, vj), vj ∈ Ŝ′;
6: if LP(⟨R, T̂ ⟩, Ŝ′, Ĥ ′) is feasible then
7: vi := c;
8: hi := hi−1;
9: break

10: end if
11: end for

12: if hi > hi−1 then
13: for c ∈ C do
14: LBc := hi−1 + 1;
15: UBc := hi−1 +min

v∈
{⋃

j:hj=hi−1
π(o,vj)

} l(v, c);

16: ĥc := UBc;
17: while LBc < UBc do
18: qc := ⌊LBc+UBc

2 ⌋;
19: Ŝ′ := ⟨v1, . . . , vi−1, c⟩;
20: Ĥ ′ := ⟨h1, . . . , hi−1, qc⟩;
21: T̂ := the subtree of T induced by

the paths π(o, vj), vj ∈ Ŝ′;
22: if LP(⟨R, T̂ ⟩, Ŝ′, Ĥ ′) is feasible then
23: ĥc := qc;
24: UBc := qc − 1;
25: else if qc ≥ hi then
26: break
27: else
28: LBc := qc + 1;
29: end if
30: end while
31: if ĥc < hi then
32: vi := c;
33: hi := ĥc;
34: end if
35: end for
36: end if

37: Ŝ := ⟨v1, . . . , vi−1, vi⟩;
38: Ĥ := ⟨h1, . . . , hi−1, hi⟩;
39: return Ŝ, Ĥ

detect a candidate node that can augment the current partial
plan without increasing its makespan. This part scans the
candidate nodes c ∈ C trying to determine, for each such
node, the earliest time, ĥc, that it can be visited, in view of
the visitation requirements that are posed by the partial plan
specified by the current lists Ŝ and Ĥ .
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Time ĥc is determined through a binary search where
the lower bound, LBc, is initially set to hi−1 + 1
and the upper bound, UBc, is initially set to hi−1 +
min

v∈
{⋃

j:hj=hi−1
π(o,vj)

} l(v, c). The specification of LBc

is an immediate consequence of the aforementioned negative
result of the first part of the procedure. The specification of
UBc recognizes the fact that, at time hi−1 (i.e., the visitation
time of the last visited node in the current partial plan, vi−1),
every node on a path π(o, vj), for a leaf node vj ∈ Ŝ with
hj = hi−1, must be occupied by a robot, and therefore, the
smallest additional time to reach the considered leaf node c
cannot be higher than the projection of node c on the subtree
that is induced by this set of paths. The feasibility of a tentative
visitation time for node c, in the interval [LBc, UBc], is tested
by formulating and solving the corresponding testing LP (c.f.
Lines 18–22).

The conducted binary search starts with testing the feasi-
bility of ⌊LBc+UBc

2 ⌋ as a visitation time for the considered
leaf node c, and if this time is feasible, the search restricts
itself in the lower subinterval of the current search interval
that is induced by the aforementioned value ⌊LBc+UBc

2 ⌋, in
an effort to find an even lower feasible time (c.f. Lines 22–
24); otherwise, it searches for a feasible visitation time for c in
the upper subinterval of the current interval that is induced by
⌊LBc+UBc

2 ⌋ (c.f. Lines 27–28). Furthermore, the evaluation of
the minimum possible visitation time of the candidate node c is
terminated prematurely, if it is detected that this time exceeds
the minimum visitation time that has been already computed
for some previously evaluated node of C (c.f. Lines 25–26).

Every time that the current node c is found to be more
competitive than the previously evaluated candidate nodes,
it is recorded as the current best choice in Lines 31–34 of
the procedure. Finally, upon completing the execution of its
second part, procedure APPEND proceeds to its third part for
reporting the results, along the lines that were described above,
in the discussion of the first part.

In the next subsection, we demonstrate the execution of the
presented algorithm by applying it on a small but elucidating
example.

C. Example
In this subsection, we detail the execution of Algorithm 1

on an instance of the M- or the TVT-problem that is defined
by the rooted tree T and a set of seven robots, R, that are
depicted in Figure 1(a).6 In Figure 1(a), the root node of tree
T is labeled by o, and the seven robots are depicted by the
small blue colored circles next to o. Also, the leaf nodes of T
are labeled from 1 to 5, and this labeling defines an ordering
for the scanning of the leaf node subsets that are processed at
the various steps of the algorithm. Finally, the lists Ŝ and Ĥ
employed by Algorithm 1 are initially empty.

For the selection of the first node to enter list Ŝ, the
algorithm first computes the depth of each leaf node of T
as presented in Figure 1(b), and picks leaf node 3 to enter Ŝ,
since this is the first encountered node of minimal depth in the

6It is clear from the developments of Sections III-A and III-B that the
considered algorithm will execute in the same manner, for, both, the M and
the TVT-problem instances that are defined by any tuple M = ⟨R, T ⟩ like
that provided in Figure 1(a).

running candidate set C. Also, h1 = l(o, 3) = 3 enters list Ĥ ,
and this value also defines the makespan tmax of the partial
schedule that is specified by the current list pair (Ŝ, Ĥ). In
addition, Figure 1(b) highlights in yellow the subtree T̂ that
is induced by the path π(o, 3) (i.e., the path leading to the
only leaf node currently in Ŝ), and the projections b(i, T̂ ) of
the remaining leaf nodes of T on T̂ . Finally, path π(o, 3) is
marked with robots in Figure 1(b), to indicate the fact that
at the corresponding period tmax = 3, all nodes of this path
must be occupied by a robot.

In order to select the next leaf node to enter list Ŝ from
the remaining leaf nodes {1, 2, 4, 5}, the algorithm first thins
out this candidate set by selecting for every maximal subset
of this set with a common projection b(i, T̂ ) in Figure 1(b), a
single representative of minimal depth; the resulting candidate
set is the set C = {1, 4} presented in the top-right part of
Figure 1(c). Subsequently, the algorithm scans this thinned
candidate set and detects that node 4 can be appended to Ŝ as
the next leaf node, v2, without an increase in the makespan
of the new partial schedule; i.e., tmax = 3 after this addition.
Thus, node 4 enters Ŝ and the corresponding visitation time,
h2 = 3, enters list Ĥ . Again, Figure 1(c) also depicts in yellow
the subtree T̂ that is induced by the paths π(o, 3) and π(o, 4),
which lead to the leaf nodes that belong in Ŝ, and annotates the
projections of the remaining leaf nodes of T on T̂ . Finally,
in this case, both paths π(o, 3) and π(o, 4) are indicated as
occupied by robots, since the corresponding leaf nodes 3 and
4 are reached simultaneously at period tmax = 3.

Using the nodal projections that are annotated in Fig-
ure 1(c), we can see that the thinned candidate set for the
next node to enter list Ŝ is the set C = {1, 5}, that is
presented at the top-right part of Figure 1(d). In this case,
there does not exist any candidate node in C that can be visited
concurrently with node 4 (i.e. without incurring an increment
of the current makespan tmax). Hence, the algorithm executes
binary searches to determine the earliest possible periods
ĥ1 and ĥ5 for visiting, respectively, nodes 1 and 5, while
observing the specified visitation times ĥ3 and ĥ4 (c.f. lines
12–36 in Algorithm 2). The lower bound LBc for these binary
searches is set to 4 (i.e., tmax + 1). On the other hand,
the upper bound UB1 is set to the summation of the tmax

value in Figure 1(c) and the minimum distance of node 1
from the subtree covered by robots in the same figure; hence
UB1 = 3 + 3 = 6. Similarly, the upper bound in the binary
search for node 5 is UB5 = 3 + 2 = 5. The results of these
two binary searches are ĥ5 = 5 < 6 = ĥ1; hence, node 5
and h3 = 5 enter, respectively, the lists Ŝ and Ĥ . Also, the
makespan of the resulting partial schedule is tmax = 5.

Figure 1(d) also indicates that (i) both nodes 1 and 2, that
remain outside list Ŝ, have the same projection on the subtree
T̂ of T that is induced by the nodal contents of Ŝ, and (ii)
among them, node 1 has the minimal depth. Hence, in the
top-right part of Figure 1(e) that concerns the selection of
the fourth node to enter list Ŝ, we have C = {1}. However,
node 1 cannot be added to the current partial schedule without
increasing the makespan, and therefore, in order to determine
the new makespan, we need to perform another binary search
with lower bound LB1 = 5+1 = 6 and upper bound UB1 =
5+4 = 9 (4 is the distance of node 1 from the robot-covered
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(a) initialization (b) iteration 1 (c) iteration 2

(d) iteration 3 (e) iteration 4 (f) iteration 5

Fig. 1: An example execution of Algorithm 1.

path in Figure 1(d), which constitutes the path leading to the
last visited node in the previous partial schedule). The earliest
visitation visitation time for node 1 is found to be ĥ1 = 7,
and the two lists Ŝ and Ĥ are updated accordingly.

Similarly, in the last iteration, the candidate set C contains
only leaf node 2, this node cannot be visited simultaneously
with node 1 (which is the last visited node in the current
partial schedule), and the distance of node 2 from the path
π(o, 1) that is known to be covered by robots as a result of
the construction of the previous iteration, is equal to 3. Hence,
the algorithm conducts a binary search with LB2 = 7+1 = 8
and UB2 = 7+3 = 10. This binary search returns the earliest
visitation time for node 2 as ĥ2 = 10, and the algorithm enters
node 2 and h5 = 10 in the lists Ŝ and Ĥ , respectively.

At this point, all leaf nodes i = 1, . . . , 5 have entered list
Ŝ, and they also have an assigned visitation time ĥi in list Ĥ .
The algorithm now obtains a feasible flow plan F by solving
the LP LP(⟨R, T ⟩, Ŝ, Ĥ) (c.f. line 29 in Algorithm 1). Next,
it converts flow plan F to an integral plan P for the original
problem instance presented in Figure 1 (c.f. lines 30–34 in
Algorithm 1), and it returns this plan P as its output.

The objective value of plan P for the M-problem instance
that is defined by the tuple M = ⟨R, T ⟩ depicted in
Figure 1(a), is h5 = 10, since node 2 was the last node
to enter list Ŝ. On the other hand, the objective value of
plan P for the TVT-problem instance that is defined by the
tuple M = ⟨R, T ⟩ depicted in Figure 1(a), is

∑5
i=1 hi =

3 + 3 + 5 + 7 + 10 = 28. Finally, it can be verified through
the MIP formulations of [23], that, in the considered case, the
performance of the obtained plan P is optimal for, both, the
M- and the TVT-problem instances.

D. Complexity considerations

In this subsection, we briefly discuss the worst-case compu-
tational complexity of the presented algorithm. The empirical
complexity of the algorithm, and some factors that impact this
complexity, are considered in the next section, that reports a
series of computational experiments with the algorithm.

We start by considering the complexity of procedure AP-
PEND. The first part of this procedure involves the formu-
lation and solution of O(|C|) LPs, with each LP involving
O(|V |3) variables and constraints. Similarly, the second part
of APPEND involves O(|C|) iterations, while each iteration
involves a binary search of O

(
log2(l(T ))

)
steps. Each step of

the binary search involves the solution of an LP with O(|V |3)
variables and constraints. Furthermore, |C| < |L| for every
call of APPEND. Hence, every call of APPEND executes in
polynomial time with respect to |V |.

The depths l(o, v) of the nodes v ∈ V of tree T that are
computed in the first part of Algorithm 1, can be obtained in
time O(|V |) by a forward-reaching process that starts from the
root node o. Subsequently, the selection of the first node, v1,
to enter the list Ŝ, and the determination of the corresponding
visitation time, can be performed in time O(|L|) (c.f. Lines
1–9 of Algorithm 1).

The second part of Algorithm 1, corresponding to Lines 10–
28, involves O(|L|) iterations, with each iteration consisting of
(i) the construction of the corresponding candidate set C, and
(ii) a call of procedure APPEND. The computation required
for the construction of the set C is O

(
|L| ·min

{
l(T ), |L|

})
=

O(|V |2). Hence, considering also the polynomial worst-case
complexity of APPEND with respect to |V |, it follows that the
second part of Algorithm 1 is also of polynomial worst-case
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Fig. 2: The tree T employed in the worst-case performance
analysis of Algorithm 1.

complexity with respect to |V |.
Finally, according to the developments of [23], the last part

of Algorithm 1 is also of polynomial worst-case complexity
with respect to |V |. Hence, the entire algorithm has polynomial
worst-case complexity with respect to |V |.

E. Some performance considerations
In this subsection, we analyze the worst-case performance

of Algorithm 1. Hence, let Ŝp := ⟨v1p, . . . , v
|L|
p ⟩ and Ĥp :=

⟨hp
1, . . . , h

p
|L|⟩ denote the lists of the visitation sequence of

the leaf nodes and the corresponding visitation times of the
solution attained by Algorithm 1. We can easily notice the
following relationships:

hp
1 ≤ l(T ) ≤ OM

opt (19)

and

∀i ∈ {2, . . . , |L|}, (hp
i − hp

i−1) ≤ l(T ) ≤ OM
opt (20)

where OM
opt denotes the optimal objective value for the M-

problem. The makespan of the solution attained by Algo-
rithm 1, OM

p , is upper-bounded by |L| ×OM
opt as follows:

OM
p = hp

|L| = hp
1 +

|L|∑
i=2

(hp
i −hp

i−1) ≤ |L| ×OM
opt (21)

Hence, the objective value attained by Algorithm 1 is at
most |L| times the optimal objective value of the M-problem
instance. Similarly, for the TVT-problem, we have

hp
1 ≤ l(T ) ≤ OTV T

opt (22)

and

∀i ∈ {2, . . . , |L|}, (hp
i − hp

i−1) ≤ l(T ) ≤ OTV T
opt (23)

where OTV T
opt denotes the optimal objective value for the TVT-

problem. Then, we can easily get an upper-bound for the
solution for the TVT-problem by Algorithm 1, OTV T

p , as
follows:

OTV T
p = hp

1 + . . . +hp
|L| ≤ |L| × (|L|+ 1)

2
×OTV T

opt (24)

Equations 21 and 24 bound the “inflation ratios” of the
objective values attained by Algorithm 1, for any given M-
and TVT-problem instance, in terms of the number of leaf
nodes, |L|, of these problem instances. The dependence of
these bounds on |L| pronounces the important role of the leaf
nodes in the specification of the pursued plans and of the logic
of the presented algorithm.

In the rest of this section we show, by means of some
specific instances of the M- and TVT-problems, that the
inflation ratios of Equations 21 and 24 can get arbitrarily
large. Figure 2 depicts a tree T that consists of m subtrees,
T1, . . . , Tm. Each subtree Ti, i ∈ {1, . . . ,m}, consists of
one root node and n leaf nodes. We assume that the number
of robots, |R|, is equal to 2m + 1. The optimal solution of
this problem instance, for both M- and TVT-problems, visits
the sets of leaf nodes of every subtree in the decreasing
order of the distances of the subtree’s root from node o in
Figure 2. In this way, while the set of leaf nodes of subtree
Ti, i ∈ {2, . . . ,m}, is visited, the set of leaf nodes of subtree
Tj , j ∈ {1, . . . , i − 1}, can be visited simultaneously. As
a result, the j-th visited leaf node among the leaf nodes of
subtree Ti is visited at period m+(m− i)+ j. Therefore, the
optimal objective value for the M-problem is

OM
opt = m+ (m− 1) + n = n+ 2m− 1

and for the TVT-problem is

OTV T
opt =

m∑
i=1

n∑
j=1

(m+ (m− i) + j) =
mn2

2
+

3m2n

2
.

On the other hand, the myopic nature of Algorithm 1 implies
that the set of leaf nodes of each subtree in Figure 2 is
visited in the increasing order of the distance of its root from
node o in Figure 2. Furthermore, the processing of subtree
Ti, i = 2, . . . ,m, cannot start until subtree Ti−1 has been
fully processed (i.e., all of its leaf nodes have been visited).
Hence, in this case, the visitation time of the j-th visited leaf
node among the leaf nodes of the subtree Ti is (i−1)n+i+j,
and therefore, the objective values for the M- and the TVT-
problems are, respectively,

OM
p = m(n+ 1)

and

OTV T
p =

m∑
i=1

n∑
j=1

((i− 1)n+ i+ j) =
m2n2

2
+

(m2 + 2m)n

2

As the number of the subtree leaf nodes, n, goes to infinity,

OM
p

OM
opt

=
m(n+ 1)

n+ 2m− 1
−→

(n→∞)
m

and
OTV T

p

OTV T
opt

=
m2n2

2 + (m2+2m)n
2

mn2

2 + 3m2n
2

−→
(n→∞)

m.

Hence, for the tree structure depicted in Figure 2, as n →
∞, the performance degradation of the solution attained by
Algorithm 1 grows with the depth of the specified tree T .
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IV. AN EXPERIMENTAL EVALUATION OF THE PRESENTED
ALGORITHM

In this section, we present an experiment that assesses the
computational time and the quality of the solutions for the
M- and TVT-problems generated by Algorithm 1, against the
corresponding performance attained by the algorithm for these
two problems that was developed in [23]. The considered
problem instances and the obtained results are tabulated in
Table I. In Table I, column |V | reports the number of nodes
of the corresponding tree T . For the selected values of |V |
up to 150, we randomly generated five instances, and for
each instance, we considered three levels for the number of
available robots, |R|: (i) low-level of |R|, where |R| is set
equal to the depth of the corresponding tree T plus 10% of
|V |, (ii) high-level of |R|, where |R| is set equal to the depth
of T plus 40% of |V |, and (iii) the case where |R|=|V |, and
therefore, there is an abundance of robots. For the considered
values of |V | higher than 150, only one replication with a
high-level of |R| was considered due to the very high cost of
the involved computations.

For each problem instance, we first obtained a plan P by
executing Algorithm 1, and subsequently, we ran the solution
algorithms that were presented in [23] for the corresponding
M- and TVT-problem instances. These algorithms first formu-
late and solve a MIP corresponding to the relaxed problem
version that was introduced in Section II-B, and subsequently
they convert the obtained solution to a feasible plan for the
original problem instance, respectively denoted by P̃M or
P̃TV T . As explained in Section II-B, if the formulated MIP
is solved to completion, then the obtained plan is optimal.
However, the time required for the complete solution of these
MIPs grows to prohibitively large values for larger problem
instances, and therefore, their solution is terminated when a
provided time budget is exhausted; in this case, the returned
plan P̃M or P̃TV T is the plan obtained from the best generated
solution for the MIP during the performed computation. In
this experiment, we set the time budget for the aforementioned
MIPs equal to the execution time of Algorithm 1 when applied
on the corresponding problem instances.

In order to evaluate the performance of the plan P obtained
through Algorithm 1 against the performance of the plans P̃M

or P̃TV T obtained through the solution method of [23], we
define “rM” and “rTV T ” as follows:

rM =
maxv∈L C(v;P )

maxv∈L C(v; P̃M )
(25)

rTV T =

∑
v∈L C(v;P )∑

v∈L C(v; P̃TV T )
(26)

Hence, a value for rM or rTV T less (resp., greater) than
1.0 implies that the plan P returned by Algorithm 1 has a
better (resp., worse) performance than the plan returned by
the algorithm of [23].

For each pair of |V | up to 150 and the selected levels of
|R|, we report in columns “Time limit”, “rM”, and “rTV T ”
of Table I the respective averages of the algorithm execution
times and the values for rM and rTV T that were obtained in
the five performed replications. In addition, Figure 3 presents
more detailed scatter plots of the performance ratios rM and

TABLE I: Comparing the performance of the plan obtained
through the heuristic algorithm of Section III to the perfor-
mance of the plans obtained through the corresponding MIP
formulation of [23] under a computational time budget equal
to the execution time of the heuristic algorithm.

|V | |R|-level Exec. time (sec) rM rTV T

10
low-level of |R| 0.2 1.0905 1.0577
high-level of |R| 0.0 1.0250 1.0000

|R| = |V | 0.0 1.0250 1.0000

20
low-level of |R| 4.6 1.0951 1.0411
high-level of |R| 4.2 1.0343 1.0250

|R| = |V | 3.8 1.0343 1.0250

30
low-level of |R| 17.8 0.8533 1.0671
high-level of |R| 16.8 1.0786 1.0454

|R| = |V | 14.4 1.0786 1.0454

40
low-level of |R| 93.6 0.9433 1.0652
high-level of |R| 65.8 1.0563 1.0485

|R| = |V | 53.8 1.1365 1.0728

50
low-level of |R| 195.4 0.8242 0.9492
high-level of |R| 169.2 0.9669 1.0092

|R| = |V | 135.4 1.1014 1.0642

75
low-level of |R| 628.0 0.7472 0.8452
high-level of |R| 619.2 1.0195 1.0149

|R| = |V | 497.0 1.1471 1.1115

100
low-level of |R| 3229.4 0.6363 0.6849
high-level of |R| 2545.6 0.8239 0.9929

|R| = |V | 1824.8 1.0604 1.0447

125
low-level of |R| 5822.2 0.5236 0.6458
high-level of |R| 5172.6 0.7156 0.8862

|R| = |V | 4572.6 1.0695 1.0560

150
low-level of |R| 11642.0 0.3080 0.5244
high-level of |R| 8915.0 0.6521 0.9951

|R| = |V | 7721.0 0.9107 1.0043
175 high-level of |R| 28924.0 0.5755 0.9092
200 high-level of |R| 118845.0 0.4179 0.2260
225 high-level of |R| 48808.0 0.1637 0.8497
250 high-level of |R| 261819.0 0.2560 0.1495
275 high-level of |R| 419513.0 0.2436 0.1563
300 high-level of |R| 351630.0 0.1600 0.0904

rTV T for each considered |V | value up to 150. Finally, Table I
also reports the obtained results for the instances with the
higher values of |V |.

The perusal of the values reported in Table I reveals that the
algorithm of [23] tends to outperform Algorithm 1 on problem
instances with smaller values of |V |. This is expectable since,
for those problem instances, it is possible to solve the involved
MIPs to completion or to near-optimal solutions within the
provided time budget. On the other hand, as |V | is increased
to higher values, the reported ratios rM and rTV T drop below
1.0, and for the highest values of |V | they get some very low
values.

Furthermore, the scatter plots of Figure 3 reveal that the
performance degradation brought about by the heuristic nature
of Algorithm 1 when applied on smaller problem instances,
is quite small (less than 30%). But the relative gains attained
by this heuristic algorithm on larger problem instances are
very substantial.7 In addition, Figure 3 suggests that these
gains are significantly amplified by the relative scarcity of the
robots with respect to the size of the underlying tree. Since
the algorithm of [23] defines the current state of art for our
solution capability for the M- and TVT-problems, it can be

7This statement can be seen more clearly when considering the inverses of
the min values for the rM and rTV T ratios reported in Table I.
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Fig. 3: Scatter plots for the performance ratios rM and rTV T for each |V | value up to 150 considered in the experiment
reported in Section IV; c.f. Equations 25 and 26 for the definition of these ratios.

safely concluded that Algorithm 1 constitutes an important
contribution in the corresponding literature.

In the remaining part of this section, we provide some
remarks regarding the empirical computational complexity of
Algorithm 1. Column “Time Limit” of Table I reveals that
the computational time required by Algorithm 1 can be very
substantial. This time is primarily expended on the formulation
and the solution of the testing LPs that are employed in
procedure APPEND. More specifically, while each of these
LPs requires no more than a few seconds for its solution even
for the largest problem instances, the number of such LPs
solved by the algorithm grows polynomially but super-linearly
with respect to |L|. Hence, the magnitude of |L| is a very
significant factor determining the required execution time of
Algorithm 1 on any given problem instance.

However, besides |L| itself, the actual number of the testing
LPs that are formulated and solved by Algorithm 1 on any
given problem instance, is significantly affected by other struc-
tural attributes that are possessed by the input process instance.
For example, for problem instances that allow the concurrent
visitation of a large part of their leaf nodes, the execution of
the calls of the procedure APPEND will be contained within
the first part (Lines 1–11) of its pseudocode, and the more
expensive binary search in the second part of the procedure
will be avoided. On the other hand, this concurrency can be
limited by (a) tree structures like those presented in Figure 4,
which tend to serialize the visitation of the corresponding leaf
nodes, and (b) a robot scarcity. Similarly, the distances of
the leaf nodes v ∈ L of the input tree T from the subtrees
of T that are induced by the remaining leaf nodes, can be
another important factor determining the execution time of
Algorithm 1, since these distances affect the complexity of
the binary searches that are performed by APPEND (c.f. Line
15 in Algorithm 2). All these remarks manifest the analytical
richness and the intricacies that are exhibited by the considered
class of the M- and TVT-problems.

Finally, we notice, for completeness, that the presented
experiment was programmed in Python, executed on a laptop
with i7-8850H 2.6GHz CPU and 16 GM RAM, and the
formulated MIPs and LPs were solved through CPLEX.

Fig. 4: A “bottleneck” structure encountered in the generated
problem instances that impacts considerably the execution time
of Algorithm 1.

V. CONCLUSIONS

This work has presented a new heuristic algorithm for the
M- and TVT-problems that were initially introduced in [19]
and further studied in [22] and [23]. The presented algorithm
represents compactly a plan for the input problem instance
as (i) a permutation of the leaf nodes of the underlying tree
T together with (ii) a sequence of visitation times for these
nodes that abides to the permutation. The algorithm is further
facilitated by the fact that the feasibility of any tentative plan
structured along the aforementioned lines can be assessed
through the formulation and solution of an LP with a number
of variables and constraints that are low-degree polynomials
with respect to the size of T . The numerical experimentation
with the algorithm that was reported in the last part of the
paper, reveals that, on larger and harder problem instances,
this new algorithm outperforms significantly the corresponding
algorithm in [23] and defines the current state of art regarding
the solution of the M- and TVT-problems.

On the other hand, the reported experimental results also
reveal that, even though the presented algorithm has polyno-
mial worst-case complexity with respect to the size of the
underlying guidepath network, the iterative solution of a large
number of the LP formulations that are necessary for the
evaluation of the candidate nodes considered at each iteration,
can be very costly in terms of the required computational time.
Hence, an important issue for future research is the substitution
of the current logic of the procedure APPEND, that performs
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this evaluation, with some more computationally efficient tests.
This issue is part of our current investigations.

The representation of the solution space and the LP-based
feasibility-assessment method of any tentative (partial) plan
that are employed by the presented algorithm, can also be
used in other search-based heuristic methods for the generation
of good solutions for the considered problems. For instance,
it is easy to envision local-search type of algorithms where
the current algorithm will provide the initial solution, while
the employed neighborhoods are defined by interchanges of a
number of leaf nodes in the current permutation. It is also
possible to devise algorithms that will employ the afore-
mentioned techniques towards the concurrent evaluation of
a number of neighboring permutations. But these algorithms
will still have to solve a large number of feasibility-assessing
LPs, and therefore, for larger problem instances, they will be
very costly. On the other hand, the development of a more
efficient version of the procedure APPEND, as suggested in
the previous paragraph, can have a very significant impact
in the practical implementation of such search-based heuristic
algorithms.

From a more application-oriented standpoint, we can extend
the applicability of the M- and TVT-problems considered in
this work by allowing for (i) a more general topology for
the underlying guidepath network, and (ii) the assignment of
distinct target nodes to particular robots. These issues are also
part of our ongoing investigations.
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