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Auto-Associative Memory with Two-Stage 
Dynamics of Nonmonotonic Neurons 

Hiro-Fumi Yanai, Member, IEEE, and Shun-ichi Amari, Fellow, IEEE 

Abstruct- Dyn amical properties of a neural auto-associative 
memory with tw o-stage neurons are investigated theoretically. 
The two-stage nc’uron is a model whose output is determined 
by a two-stage nonlinear function of the internal field of the 
neuron (internal tield is a weighted sum of outputs of the other 
neurons). The model is general, including nonmonotonic neurons 
as well as monotmic ones. Recent studies on associative mem- 
ory revealed sup€ riority of nonmonotonic neurons to monotonic 
ones. The presenit paper supplies theoretical verification on the 
high performance’ of nonmonotonic neurons and proves that the 
capacity of the auto-associative memory with two-stage neurons 
is O(n/+), in contrast to O(n/log n)  of simple threshold 
neurons. There is also a discussion of recall processes, where the 
radius of basin O F  attraction of memorized patterns is clarified. 
An intuitive explanation on why the performance is improved 
by nonmonotonic neurons is also provided by showing the cor- 
respondence of the recall processes of the two-stage-neuron net 
and orthogonal learning. 

I. INTRODUCTION 
HE auto-associative memory model of the correlation T type has been studied for many years [11, [31, [41, [81, 

[ 101, and its pe1,formances have been analyzed theoretically 
(see [7]), although its exact analysis is still difficult. Various 
modifications of the prototype model have been proposed to 
increase the mernory capacity. They are, for example, sparse 
encoding [2], [12], [17] and the introduction to hysteresis 
[22]-[24]. One interesting idea is an introduction of nonmono- 
tonic neurons [9], [13]-[15]. 

It was Morita et al. [14] and Morita [13] who pointed out, 
by deep insight and computer simulations, that the capacity 
and attractivity clf an analog model of neural auto-associative 
memory is enhanced by nonmonotonic neurons. They also 
discussed a discrete version of the model, the “partial reverse 
method,” a generalization of which is the two-stage neuron 
in this paper. (This model uses two-stage dynamics to realize 
the nonmonotonic behavior of a single neuron). Stimulated 
by their work, there appeared several theoretical papers on 
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nonmonotonic neural auto-associative memory. Yoshizawa et 
al. [26] showed by geometrical consideration on the equi- 
librium point that a piecewise linear version of an analog 
nonmonotonic neuron net has a memory capacity of 0.4n 
(memory capacity is the maximum number of memory patterns 
stored as fixed points), where n is the number of neurons. 
There is also an cquilibrium point analysis of an analog 
nonmonotonic neuron net from a physics background [20]. 
The capacity of a nonmonotonic neuron is calculated by 
Kobayashi [9], concluding with the capacity of over 10n (if 
the conventional neurons are used, the capacity is 2n [5]). 

The partial reverse method by Morita [13] uses two-stage 
dynamics to calculate the internal field, or stimulation poten- 
tial, of each neuron, realizing the effect of nonmonotonicity 
in the discrete time binary auto-associative model. It was 
pointed out that the autocorrelation matrix W itself includes 
much more information capacity than the absolute capacity 
of n/(2 log n )  in [11] or the relative capacity 0.14n in 
[3] or [4]. It was shown by computer simulation that the 
capacity becomes larger by changing the recall dynamics into 
the two-stage nonmonotonic one. The present paper uses the 
statistical neurodynamical method [31, [151, [161, [221, 1231, 
[25] to analyze the one-step recall dynamics of the two-stage 
dynamics model. We obtain the absolute capacity of one-step 
recall which is of the order of n/-, fairly larger than 
n/ log n of the conventional model. The basin of attraction is 
also analyzed which is drastically larger than the conventional 
model. 

11. DEFINITION OF THE MODEL 

A. Conventional Model of Associative Memory 

The conventional auto-associative memory model is a neural 
net with recurrent connections. Let W = (wV) be its synaptic 
connection matrix, we3 being the synaptic weight from the 
j t h  to the ith neuron, where wZ3 = w3, and wze = 0 are 
assumed. Let z = (zl, z2, . . . , zn)* be a column vector 
representing the state of the network, where 2, is the output 
of the ith neuron taking values on {-1, 1). The net operates 
synchronously at discrete times, and the updated state z’ is 
determined from x by 

(1) 
U = Wz,  

where the signum function sgn is operated componentwise, 
that is, xi = 1 when U, > 0 and x: = -1 otherwise. 
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Let &, c2, . . . , cp, . . . ,  6, be m state vectors which are 
to be memorized in the network as its equilibrium states 
and are to be recalled by the dynamics. The correlation- 
type auto-associative memory model uses a Hebb-type rule 
to determine the connection matrix W from the m patterns 
EL, ,  c1 = 1, 2, ’ ” ,  

l m  m 
n n 

w = -  C c J - - I  
p=l 

where T denotes the transposition and I is the unit matrix. In 
components, this is written as 

A m  

is too large (larger than h or smaller than -h), the effect of 
2,  is reversed. 

The Fundamental Lemma introduced in the next section 
is on the transformation of distance (i.e., noise reduction 
property) and is valid for any forms of the modification 
function f . However, we specifically calculate the capacity and 
the basin of attraction of memorized patterns for an interesting 
class of piecewise linear functions: f ( u )  = -au + c sgn ( U ) .  

The analytical results thus derived help us understand the 
importance of negatively sloped parts of the modification func- 
tion. The negatively sloped part is the source of nonmonotonic 
behavior of the two-stage neuron. 

1 
Wtg  = - 1 <;(; ( i  # j ) .  w,, = 0. C. Reference to Analog-Type Models 

There are papers which deal with dynamics of analog neural 
nets with nonmonotonic neurons [20], [26]. They study models 
of the following type: 

,=1 

It is expected that I L L ’ S  are the equilibria of the dynamics 

tu = sgn (WE,). p = 1, 2, . . . , m 

or there exists a <, in a small neighborhood of EP such that 

and further that given an initial state s(0) belonging to some 
neighborhood of E,, the memory pattern E, itself, or its 
neighbor Jp,  is recalled by the dynamics 

(2)  z(t + 1) = sgn [Wz(t)]. 

To analyze the characteristics of the model, it is assumed that 
patterns 5, are randomly generated subject to the probability 
distribution that all the (r are +1 or -1 independently with 
probability 0.5. There are several statistical or statistical- 
physical studies on this model. 

B. Two-Stage Recall Dynamics 

It is known that the capacity of the conventional model is 
limited. It was suggested by Morita [13] that the dynamics (1) 
or (2) is not effective for making full use of the information 
stored in the correlation matrix W. He proposed a nonmono- 
tonic dynamics or two-stage dynamics of state update to make 
efficient use of information in W. We generalize his idea in the 
following model. The updated state d is determined from z by 

where f is, in general, a nonlinear function operating on 
U = W s  componentwise. In the following analysis, we assume 
that: 

to keep the symmetry between +l and -1 of the components 
of z. The original model of Morita [13], partial reverse 
method, is recovered by setting 

C. u < - h  
f ( u )  = 0, -h 5 U 5 h (4) i -c, U >  h 

with c z 2.7 and h z 1.9. Equation (4) represents the 
nonmonotonic character of the dynamics such that when /u,l 

= -U+ Wg(w) 
IC = sgn(u) 

where g ( u )  is a nonmonotonic response function. By a suitable 
discretization of the variables, the analog model has some 
correspondence with our two-stage model. But note that there 
is a (possibly essential) difference that in our two-stage model, 
states of the net in phase space are discrete (combinations of 
fl and -1) so that there is no continuity of dynamical flows. 
On the other hand, in analog models, states are continuous 
so that they have continuous flows. Another difference is the 
manner of identifying the outputs. In our model, internal field 
is always calculated from the “outputs” of neurons. On the 
other hand, in the analog model, it is customary that a net 
evolves without using the formal outputs IC, of neurons. That 
is, the first equation of (5) is used during evolution of the net, 
and outputs are converted to 41 by some other observer based 
on the second equation of (5). 

D. Overlap, Distance, and Loading Rate 

Now let us define characteristic variables and parameters 
used in the analysis. The first one is the overlap of the state 
z( t )  at time t and the memorized pattern EP to be recalled 

l n  
= - [?Xi. 
n 

z = 1  

The overlap takes values between -1 and 1; in other words, 
it is the direction cosine between the state and the pattern. 
In the following we consider only positive overlaps. This is 
because by the symmetry of the dynamics, if s(0) evolves like 
s(1), s ( Z ) ,  e . . ,  then -z(O) does like -s(l), -s(Z) ,  .... As 
a measure of overlap we also use the (normalized Hamming) 
distance c i f .  The distance is related to the overlap by 1; = 
1 - ad:. If there is no ambiguity, we shall omit the superscript 
p and time t concerning the overlap or distance. 

Since we discuss statistical properties in the large n limit, 
the loading rate is used as a characteristic parameter which is 
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defined by the number of memorized patterns divided by the 
number of neurons 

m 
n. 

r = -  

E. The Memory Capacity and the Basin of Attraction 

We analyze the one-step recall dynamics. A memorized 
pattern c, is said to be correctly recalled from initial state 
x via one-step dynamics when the updated state x‘ of x is 
equal to E p ,  that is 

6, = sgn { W x  + W f ( W x ) }  

holds. The above defined distance d of two states x and 
written as 

is 

1 ”  
d ( x , t )  = - IZi - , $ I .  

i=l 
2n 

Let N o  be the D-neighborhood of cp, 

When is recalled correctly from any z E ND([,) via 
one-step dynamics, ND is said to be included in the basin 
of attraction of E,. Since e, are generated stochastically, we 
can study the lxobability of N o  belonging to the basin of 
attraction. 

Let D ( m )  be the largest value such that when n is suf- 
ficiently large, the probability of No(,, (e,) belonging to 
the basin of attraction of e, tends to one for any tP, p = 
1, 2, . . . , m. We call D ( m )  the radius of basin of attraction 
via one-step dynamics when the number of memorized patterns 
is m. The capacity m, is defined by the largest number of 
memorized patterns such that the net has a positive radius of 
attraction D ( m )  > 0. It should be noted that T,  = m,/n --+ 0 
as n tends to infinity so that we need to scale the quantity 
D ,  m,, or T, with n adequately to state our results in the 
rigorous sense. 

111. THEORY OF ONE-STEP UPDATE 
DYNAMICS: MAIN RESULTS 

Even in the case of the conventional monotonic neurons 
(simple threshold neurons or sigmoidal neurons), it is 
practically impossible to analyze the exact dynamics of a 
correlation-type auto-associative neural net. This is because 
the number of necessary variables explodes as time goes on 
[6].  Therefore, the analysis of the long-range behavior or 
equilibrium relies on some approximation schemes. A famous 
one is the replica symmetry approximation at the equilibrium 
state [4]. Another interesting scheme is a “self-consistent 
signal-to-noise analysis” developed by Shiino and Fukai [ 191. 
Unlike the replica method, this method is applicable to neural 
nets with asymmetric synapses or nonmonotonic neurons. 
Another way of tackling the complicated problem is to analyze 
the short-range transient dynamics, in particular, the analysis 
of one-step update [ll],  [12]. Actually, the optimal set of 
parameters in ihe one-step update is closely related to the 
multiple-step ones. To deal with long-range behaviors, Amari 
and Maginu [3] tried to renormalize infinite-range interactions 

into two macroscopic variables, that is, the overlap and the 
variance of interference noise, and succeeded in explaining the 
recall processes within a certain approximation. This scheme 
is further refined in [16]. 

Here we rely on the analysis of the one-step update. The 
one-step analysis here, however, involves essentially two steps 
since the neuron here is a two-stage one. We first show how 
a pattern approaches a memorized one by the one-step update 
under a general modification function. We then apply the result 
to the case of a piecewise linear function f to obtain the 
capacity and the radius of basin of attraction. The results show 
drastic improvements in both the capacity and the basin of 
attraction. 

Fundamental Lemma (One-Step Synchronous Update): 
When an initial state is apart from a memorized pattern by 
distance d, the digtance of the updated state is described by 

where r is the loading rate, and 

The functions are defined by 

We apply the Fundamental Lemma to the piecewise linear 
modification functions of the following form: 

f(u) = -au - (1 - 2a)  sgn ( U ) ;  a > 0. 

Main Theorem: In the case of the piecewise linear modifi- 
cation function, the absolute capacity scales with n, indepen- 
dently of a, as 

n 

When the loading rate is 100~1% (0 < p 5 1) of the capacity, 
that is, the number of memorized patterns is rri = pmc,  the 
radius of basin of attraction is asymptotically described by 

(1 - p2)aZ 1 
4p( l  - a)2 V‘- 

The capacity m, is uniformly larger than the capacity 
n 

2 log n 
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of the conventional model. It is also immediate to show that 
D(pm,) tends to zero with n tending to infinity for p > 0 in 
compensation with the increasing m,, unless we let p + 0. 
However, by letting p + 0, we can show that the radius D ( m )  
is much larger than that of the conventional model. 

This drastic increase takes place even when the modification 
function is linear. 

Corollary: For the linear modification function of the form 
f ( u )  = -au, the absolute capacity m, scales like 

I ' I1 
( U  = l / 2 )  

as n tends to infinity. For 0 < a < 2 / 3 ,  this is larger than 
the capacity m, = n/(2 log n)  of the conventional model 
(a  = 0). 

It is known that for the conventional model when the loading 
rate is 1006% (0 < n 5 1) of its capacity n / (2  log n), that 
is, m = nn/(2 log n) ,  the radius of basin of attraction is 

On the other hand, when the same number m is stored in the 
two-stage model, i.e., p 4 0, D ( m )  is larger than the above 
D.  In fact, in the extreme case of a = 1, the radius of basin of 
attraction is D ( m )  = l / 2  for any n, showing the superiority 
of the two-stage recall dynamics. 

The next section is devoted to the proof of the Fundamental 
Lemma by using the method of statistical neurodynamics. 

Iv. PROOF OF THE FUNDAMENTAL LEMMA 

where Zi is a unit Gaussian noise subject to N ( 0 ,  1). The 
updated state x' is given by 

where E; = <:E"i. 

Likewise, in the case of the two-stage model, we have 

.iL =u+ Wf(u) 
= w x  + W f ( W x )  

We can again decompose i& in the three terms 

by assuming that the crosstalk term is asymptotically subject to 
the Gaussian distribution. In general, the bias B is not equal to 
zero. Calculation of a is complicated because of the nonlinear 
correlation of W in the W f ( W z )  term. 

Once L,  B, and a are calculated, it is rather straightforward 
to obtain the overlap of the updated state 2' and a pattern t1 
to be recalled, or their distance d' 

. . n  

. n  

Here the last summation is equal to the overlap E' of 2' and 
El and is rewritten as A. Method of Calculation of the Distance After the Update 

Let 2 be a given initial state from which a memorized 
pattern, say El, is to be recalled by the one-step update of 1 "  1' = - E;.; the state. In the conventional model, internal field 

i=l 

u = w x  

= (f g C P C  - 21) n 5 

is decomposed as 

U, = EhL + B x ~  + aZ, 
where L is the signal 

n 

2 = 1  

, U  
G I +  
1 + sgn ( L  - B + mi) 

i E I -  

where I+ and I- are, respectively, the sets of index i that 
1 satisfy 
n 

L = - t;x3 

I+ = {il [:x% = l} 

I-  ={;I &xz 1 = -1}. 

3 f Z  

B is the bias which is equal to zero in this case, and aE, is 
the noise due to the crosstalk of other memorized patterns 

c 
P f l  
c 
j # i  

That is, the neurons in the "right" states belong to I+ and 
"wrong" states to I- .  There are n(1 - d)  elements in I+ and 
nd in I - ,  where d is the distance between the initial state x 
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and tI. So the zxpectation of the overlap 1’ is 

E [ t ]  = (1 - d)E[sgn ( L  + B + m)] 

+ a!E[sgn ( L  - L3 + .E)] 

= (1 - d)( l  - 2 Pr { L  + B + m < 0)) 
+ o ! ( l  - 2 Pr{L - B + a c  < 0 ) )  

= 1 -  2 { ( l -  d ) 4  (y?) + d $  (F)} 
where d(u) is the integral 

-U 

(6) 

with 

(7) 

Thus the expecration of the transformed distance is 

E[d’] = ;(l - E[1’]) 

When n is sufficiently large, the actual distance tends to the 
expectation (according to the law of large numbers). 

B. Details of the Calculation 

Now let us proceed to the proof in detail. There remains 
calculation of L,, B ;  and CT. The internal field ii is the sum of 
W x  and Wf(1Vz).  

Setting, without loss of generality, cl = (1, 1, 1, . . .  , l)T, 
it is easy to see that (see, for example, [3] or [25] )  

n 
1 
n. 

(Wz);  = - 1 W i J X j  

’ ”  j=1 

= l + N ;  (9) 

with 

and 

where N,  is a Gaussian noise with mean zero and variance 
(m - l ) / n .  This consequence is guaranteed by the law of 
large numbers and the central limit theorem. Here, the variance 
(m - l ) / n  21 , n /n  = T is the loading rate, a key parameter 
in the dynamical behaviors. 

For general wo-stage neurons, if we put 

[Wf(WZ)l,  = n/r, 

the internal field of the zth neuron is written as 

G, = 1 + N, + M, 

where the expectation of Mt is composed of the signal term 
and the bias term. Here, Mt is a Gaussian noise and is 
correlated with N,. To calculate L,  B ,  and 0, we need to 
evaluate the expectation of M, and the variance of the noise 
term 

r2 = V [ N 2  + M%] 
= V[N] + V [ M ]  + 2 cov ( K ,  Mt) 
= E[N:] + V[M,] + 2E[N,M%]. (10) 

Calculation of 0’ is rather complicated since M, is (in general) 
nonlinearly correlated with N, through the synaptic weight W ,  
i.e., the randomly generated patterns cp. 

Now let us proceed to the calculation of the expectation of 
U ,  

U, = [Wz + Wf(WZ)]% 

Hence, the expectation of fii is 

and this tends to 

If (fO+ 4)) + (m - 1)(tRj”f(l+ Nj)) 

with n tending to infinity, where the bracket ( 0 )  represents 
averaging with respect to random variables tp. Since we can 
set Nj = f i~ j ,  where ~ j ’ s  are mutually independent Gaussian 
noises N ( 0 ,  l), the expectation ( f ( l  + N j ) )  is 

F l ( 0  = ( f ( l  + V W )  

and, by the law of large numbers, we can regard this expecta- 
tion as the actual value of ( l / n )  Cjfi f ( l  + N j ) ,  the second 
term of (11). 

Now let us calculate the expectation ([f<;f(Z + N j ) ) .  To 
show the correlation of N j  with the coefficients and [r, 
we separate Nj into two terms, one correlated with and 
the other uncorrelated with it. We then write it as 

N .  - I<.<. p z i  + N,!. 
J - n  3 

Note that Nj can be written as f i ~ j  like N j  because 
[T[rx;/n vanishes as n tends to infinity. Also for simplicity’s 
sake we adopt a notation a = (7 and p = ti”. Then the 
expectation is 
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We first take the expectation with respect to E~ where a and 
io are fixed, giving 

where the dot means differentiation by 1. We then take the 
expectation with respect to a and /!?, yielding 

Thus, from (1 l), the bias in U i ,  in the limit of large n, is 

E [ 4  = 1 + Fl(1) + T P I ( Z ) Z i  (12) 

where we used the approximation (m  - l)/n = m/n = r .  
Calculations of the variance of Mz and the covariance of 

Mz and N, are carried out in a similar manner (see Appendix 
A). That is 

V [ M L ]  =rF2(1) + ~ T I F ~ ( L ) P ~ ( ; ( I )  + r@1(1)~ (13) 

(14) cov (N,,  M z )  = TZFl(1) + T P 1  ( I )  

where F2(1) is 

The Fundamental Lemma is thus proven from (8), (lo), and 
(1 2)-( 14). 

v. PROOF OF THE MAIN THEOREM 

Based on the Fundamental Lemma, we can derive the 
capacity and the radius of basin of attraction of memories. 
The capacity is obtained from the value of the loading rate at 
which radius of basin of attraction shrinks to zero. We first 
prove the linear case (the corollary). 

A. Linear ModiJication Functions 

To contrast the behaviors of the two-stage neurons with the 
simple threshold neurons, let us illustrate, in the beginning, 
their noise reduction properties. A simple example of the two- 
stage neuron would be the one with a linear modification 
function, i.e., f ( u )  = -au. Setting a = 0, the two-stage 
neuron is reduced to the simple threshold neuron. In this case, 
a simple addition of the modified internal field W f ( u )  to the 
original one U takes place. It is easy to get to the following 
noise reduction property (transformation of distance) from the 
Fundamental Lemma: 

where I is the initial overlap and is related to the corresponding 
initial distance by 1 = 1 - 2d, and 

cT2 = T [ 1 +  a y 1  + T + 3 1 2 )  - 2 4 1  + 171. 

In particular, for 1 = 1 (or equivalently d = O), the above 
equation is reduced to 

(15) 
I d ’ = $  

cTz = T [ ( 1  - 2 4 2  + 7 - 2 1 .  

This equation describes how the pattern is disturbed starting 
from the memorized pattern itself. Fig. 1 shows this property. 
The stability is best at a M l / 2 .  Actually, it is easy to find 
that the value of slope of the function a that minimizes d’ is 

a = (1 - ?“)/(a ~ ?-). 

Although most of the following discussion is devoted to the 
case of T (< 1, this optimality condition holds in general. It 
would be worth noting that the two-stage neuron with linear 
modification function manifests its power dramatically for 
smaller T .  This property is explained in Appendix B. 

B. Absolute Memory Capacity for  Linear 
Modijication Functions 

We will calculate the memory capacity for two-stage neuron 
nets with a linear modification function. The memory capacity 
is often called the storage capacity, or just the capacity. There 
are two usually accepted definitions of the capacity. One 
is the absolute capacity, which claims that the equilibrium 
state of the net to be strictly equal to a memory pattern, 
allowing no errors. The other is the relative capacity (or 
capacity in the sense of phase transition), which only claims 
that the net has equilibrium states close to memory patterns, 
allowing some errors in recollection. Since our analysis is 
statistical based on randomly generated memory patterns cp, 
it is required that the probability of the existence of the above 
equilibrium states tend to one as 12 tends to infinity. It is known 
that the absolute capacity for the conventional neuron net is 
n / ( 2  log n) [3], [ l l ] .  The well-known approximate value of 
0.15n for autocorrelation matrix associative memory is an 
example of the relative capacity [ 3 ] ,  [4], [SI. In the following, 
if not otherwise mentioned, we just use the word capacity for 
the absolute memory capacity. 

Here we give a rough analysis. The exact analysis requires 
the large deviation theory or combinatorial arguments [ 111. 

For the number of memory patterns to be within the 
capacity, the expected number of errors after one-step update 
has to be less than one, that is, the condition 

nd’ = 71$(U) < 1 (16) 

has to be satisfied for 1 = 1 (i.e., d = O), where the 
expression for U is seen in (15). For r i  >> 1, $ ( U )  must 
satisfy $ ( U )  << 1, then U should be large, and therefore we 
can take the approximation 4 ( U )  M y ( U ) / U  [cf., (6) and (7)] .  
Then the condition, (1 6), is approximated by 

log &U < 0. (17) 

Assuming U is of smaller order than n [actually this assump- 
tion is consistent with the conclusion, (21)], we can take the 
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Fig. I ,  The relation between transformed distance d‘ and slope “U” of the 
linear modification function f(u) = u u ,  starting from one of the memorized 
patterns (d  = 0). (a) Normal plot. Circles and squares are averages of 10 
trials of computer simulations with n = 500. (b) Semilogarithm plot. 

most dominanl terms into account 

+ log n < 0. 
U’ 
2 

-_ 

Note that the condition of (18) is stronger than that of 
(17), yielding the estimated capacity that is smaller than 
the corresponding one derived from (17). But also note that 
the difference vanishes as n tends to infinity. Replacing 
the inequality in (18) by an equality, we obtain the critical 
condition for the capacity. 

For the simple threshold neuron (a = O), U’ = 1/r = n/m 
from ( 15). Thus from (IS), the capacity is m, = n/(2 log n). 

Rewriting this capacity into the form of loading rate, we have 

In the case of a # 0, the capacity is derived as follows. 
Since U = (1 - a(1 + T ) } / o  with a’ = r [ (1  - 2 ~ ) ~  + m2], 
we have, from (1 8), the following equation to determine the 
capacity : 

T,  = l / ( 2  log n).  

a y 2  log 71. - l)r2 + 2[(1 - 2 4 2  log 72 

+ a(1 -a)]. - (1 - a)2 = 0. 

Setting a = 0, we have the results for the simple threshold 
neurons just mentioned above. For a # 0 and a # 112, this 
equation is approximated by 

2a2(log n)r  + 2(1 - 2a)’(log n)r - (1 - = 0 (19) 

hence the solution (the capacity in the form of loading rate) is 

Supposing O ( a )  = 1, we can approximate the solution further 
as 

If, in particular, a = 1/2,  (19) is approximated by 

(log n)~’  + r - 1/2  = o 

and the solution is 

1 
2 log n 

T, = __ [ d , -  11 

1 
N 

- JW. 
The capacity in the number of memorized patterns m, is 
m, = rcn = n/d-. Thus the corollary is proven. 

This result indicates drastic superiority of the two-stage 
neuron with modification function f ( u )  = -u/2. The number 
of memorized patterns that can be stably stored is d- 
times larger with a = l / 2  than with a = 0 (the simple 
threshold neuron). This reveals the emergence of a different 
phase in the dynamics of correlation-type associative memory. 

C. Piecewise Linear Modi$cation Functions 

Another interesting class of modification functions is the 
piecewise linear functions of the following type. Analog neural 
associative memory discussed in [26] deals with this function 
as the response function of a neuron. 

f ( u )  = -au + c sgn ( U )  (22) 

Here we will analyze the associative memory with this class 
of two-stage neurons. To apply the Fundamental Lemma, first 
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the integrals involved in the emma are calculated 

= -a1 + C j l  - 2 4 )  
2c 

Fl(1) 1 -a + -7 
fi 

= ay12 + T )  ~ 2ac[(l ~ 2 4 ) l +  ad74 + c2 

where we simplified the notations as 4 = d(Z/fi) and 

Now let us proceed to the calculation of the capacity. Since 
we are considering the situation r << 1, the terms of the form 
q5(Z/fi),fiy(Z/fi), and y( l /&)/f i  involved in the above 
expression are negligibly small in comparison to T .  If we set 
1 = 1, L + B and o are approximated, respectively, by 

Y = Y ( l / f i ) .  

L+ U = 1 + c - a ( l + r )  
and 

O2 = r ( 1 +  c - 2 4 2  + U 2 T 2 .  

It is easy to see that the condition which maximizes the 
capacity, or equivalently minimizes the transformed distance, 
is 

1 + c - a ( 2  - T ) / ( 1  - r )  = 0. (23 )  

Since we suppose r << 1, this optimality condition is further 
approximated by 

1 + c -  2a = 0. (24) 

Then we have 

U I 

under the condition a > 0. Note this is the same expression 
as in the case of f ( u )  = -u/2 [cf., (15)]. The capacity, then, 
is the same as (21). Actually, if we set c = 0 into the above 
optimality condition, we have a = l/2. The optimal choice of 
“a” for a linear modification function is a member of a more 
general class of piecewise linear functions with the restriction 
of (24). 

We arrive at the fact that the capacity is uniform for a class 
of piecewise linear modification functions with the constraint 
1 + c - 2a = 0 and a > 0. The next question is whether the 
dynamical property is the same or not for different pairs of c 
and a. The answer is that the radius of basin of attraction of 
memorized patterns varies significantly for different choices 

0.5 

0 

I I I I 

: threshold neuron 

I I I I 
0 0.1 0.2 0.3 0.4 0.5 

initial distance d 

Fig. 2. The relation between transformed distance and initial distance for 
piecewise linear modification functions of (22). A: c = -0.25, B: c = 0, C:  
c‘ = 1, and n = (1 -+ c ) / 2  for all. Dashed line is for simple threshold neuron. 

macroscopic value of loading rate, r = 0.2. Fig. 2 shows the- 
oretical results obtained from the equation in the Fundamental 
Lemma for several pairs of c and a which satisfies the above 
optimality condition (23). (Since the condition for optimal 
capacity is for T << 1, the above-mentioned optimal parameter 
1s not exactly optimal for the present case. But the difference 
is cmall.) To compare, a result for the simple threshold neuron 
( e  = a = 0) is also shown. A linear modification function 
( e  = 0. U = l/2) is certainly good at d = 0, but if we take 
the error-correction property into account, strongly nonlinear 
functions with a > 1 /2  are better. We shall evaluate the radius 
of basin of attraction in detail in the next section. 

D. Radius of Basin of Attraction 

For general values of 1, by neglecting terms including 
4(Z/d?, f i ~ ( z / f i ) ,  ~ ( z / f i ) ,  and y(Z/fi)ffi, we obtain 

L +  B = Z(1- U) + c F  T a  

and 

O’ = ~ [ l  + c2 + 3a212 - 4acZ + a2 + 2cl - 2a12 - 2a + a 2 r ] .  

We choose the parameters such that the capacity is maximized, 
i.e., c = -1 + 2a. Then we have 

2 = r[a% + (1 - I)H(Z, a)] 

where 

H(Z. U) = 2 - 2(3 - Z)a + (5 ~ 3 1 ) ~ ’ .  

H(Z. U) can be zero if and only if Z = 1 and is always positive 
otherwise. Minimum of (1-Z)H(Z, a) is (l-1)(l-Z2)/(5-3Z) 
at a = (3 - Z)/(5 - 31). 

Rewriting L ZIC B and CT in terms of the initial distance d 
and the slope of the function a 

L f B = a  - 2 ( 1 -  a ) d f r a  of the pairs. 
Before getting into concrete analysis of the radius of basin of 

attraction, we shall illustrate the noise reduction property for a 0’ = ~[a’ r  + 4(1 - a)’d - 4a(2 - 3a)d2] .  
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Fig. 3 .  The relation between loading rate ( = p / d w )  and the slope “U” 
for piecewise linear modification function of (22), for several values of radius 
of basin of attracticn (=b/d- ) .  

The condition under which the initial state converges directly 
to the nearest memory pattern is obtained in a similar way 
to (18) 

+ logn = 0. 
( L  i B)’ 

2 0 2  
- 

We estimate the maximum loading rate R such that an initial 
state within a distance D converges directly to the memorized 
pattern by one-step update. Scaling the loading rate as R = 
p/d-, this condition is reduced to the following: 

a2p2 + 4,9dG{(l - - a(2  - 3a)D)p 

+ {a - 2(l - a)D}’ = 0. 

The valid solution out of two is 
1 

a2 
p = ~ [ J A z  + a2{a  - 2(1 - a)D}2 - A] 

A = 2 L 1 J G { ( l  - a ) 2  - a(2 - 3a)D) .  (25)  

By scaling D as D = S / d w ,  since S is of order unity 
(in this case D << l), (25) is approximated by 

The relation between p and a is plotted in Fig. 3 for several 
values of S. For a desired radius of basin of attraction, the 
maximum loading rate R is maximized at a = 1. Solving (26) 
with respect to 6, we obtain the expression for the radius of 
basin of attraction given a loading rate 

In particular for a = 1, if the distance d is of order 
l/d=, an initial state converges directly to the nearest 
memory patterri by one-step with loading rate up to the 
capacity. In other words, the radius of basin of attraction 
is of an order larger than 1/* for a = 1. 

a = l  
0.5 

0.4 

n 0.3 

0.2 

0.1 

0 

K 

Radius of basin of attraction D as a function of loading rate Fig. 4. 
[ = K / ( 2  log n)] .  

To look at the case at a = 1 in detail, substitute a = 1 in 
(25). Then we obtain 

X = 2D2J= (28) 

and conversely 

To see how the two-stage neuron overwhelms the sim- 
ple threshold neuron, let us compare the radii of basins of 
attraction with the loading rate below the capacity of the 
simple threshold neuron, that is, T < 1/(2 log n).  Let us 
set R = ~ / ( 2  log n).  By setting a = c = 0 in the above 
discussion or as we can find in the literature [ l  11, the loading 
rate below which the radius of attraction basin is larger than 
D is K = (1 - 2D)2,  i.e., R = (1 - 2D)’/(2 log n),  or 
conversely D = (1-*)/2. Here D is of order unity. For two- 
stage neuron, let us first choose the most powerful parameter 
a = 1. Since 6 is of order d w ,  now the value X in 
(28) is X >> 1. Thus (25) is approximated by p = 1/(2X). 
Substituting (28) into this equation, we obtain 

1 
= 4D2d- 

Since 6 = pd- by definition, we have 

Since the radius of basin of attraction should satisfy D 5 l / 2 ,  
the radius of the two-stage neuron net with a = 1 is the 
possible maximum for K 5 1. Similar calculations for a = l / 2  
(optimal linear modification function) result in 

(1 - 2D)Z 
K =  

4D(1- D )  

and conversely 

D = 2 (1 - /%). 
Radii of basins of attraction for a = 1 and 1 /2  is shown 
together with the one for the simple threshold neuron in Fig. 4. 
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VI. SUMMARY AND DISCUSSION 

Capacity and radius of basin of attraction are calculated the- 
oretically for neural auto-associative memory with two-stage 
discrete neurons. Those characteristic values are estimated 
based on the exact solution to transformation of distance by 
one-step synchronous update of the net. The derived capacity 
is the absolute one by which we mean there is no recall 
error. Contrasted with the capacity n / ( 2  log n)  for the net 
with the simple threshold neurons, the net with the two-stage 
neurons has the capacity of n/ d- when the modification 
function is 

f ( u )  = -au + c sgn ( U )  

with l+c-2a = 0 and a > 0. The radius of basin of attraction 
is also estimated for one-step direct recall of memory patterns. 
The maximum radius is realized at (a, e )  = (1: l), decreasing 
as ‘‘a” goes apart from one. 

The Fundamental Lemma is for the number n of neurons 
tending to infinity. However, as the computer simulated results 
show [Fig. l(a)], it applies nicely to the net with hundreds of 
neurons. 

The Main Theorem and the corollary state the absolute 
capacity of the net. As a natural consequence, the involved 
values of the loading rate are vanishingly small. Thus, to 
see the relevance of those results with the relative capacity 
(macroscopic values of the loading rate) and the multistep 
recall processes, we comment on computer simulations of 
the present model. Since theoretical estimation of the relative 
capacity is difficult, we just remark that by computer simula- 
tions with hundreds of neurons, the relative capacity is about 
0.3n for the above-mentioned optimal combinations of a and 
e. And for basin of attraction, the computer simulations for 
loading rate r within -0.3 exhibit corresponding behaviors 
to the theory for T << 1. That is, the radius of basin of 
attraction decreases as slope changes from a % 1 to 0. 
Moreover, faster convergence to the memorized patterns is 
observed for parameters which provide the larger basin of 
attraction. 

To compare our results with Morita’s original two-stage 
model of (4), here we just show the results obtained from 
our Fundamental Lemma. The result is split into two cases 
depending on the scaling of parameters c and h according to 
the loading rate r.  First, when we put h = 1 + a& and 
c = -,6& with Q rv 0.6120 and @ rv 3.023, the capacity 
scales like r, N 0.6363/~’-. This is of the same order 
as the above discussed class of piecewise linear functions f .  
Second, if we use the constant parameter c (-2 5 c 5 O ) ,  
by scaling h as the above, we obtain the capacity of r ,  - 

The improved performance by the two-stage model with 
f ( u )  = -au can be understood by the correspondence 
between “correlation-matrix memory with two-stage neurons” 
and “orthogonal-projection-matrix memory with the simple 
threshold neurons.” Define an n x m matrix S ( m  < n)  
whose pth column is the pth memory pattern vector, that is, 
S = (tl, tz, . . . , E,). The correlation matrix we defined is 
the n x n. matrix W = SST (times 1/n minus r l ,  precisely). 

1/( log n ) 2 / 3 .  

The orthogonal-projection matrix for the above set of memory 
patterns is P = SS+ = S ( S T S ) p l S T ,  where S+ is the 
generalized inverse matrix of S. Using the von Neumann-type 
expansion for S+ and truncating the series at the second term, 
we get 

P X 2 Q W  I--w [ ; I  
with 0 < Q < 2/A, where X is the maximum eigenvalue of 
SST (see, e.g., [18]). Then we can see a good correspondence 
between the present two-stage model and the conventional 
model with the orthogonal projection matrix [see (3)]. 

We would like to draw the reader’s attention to another 
interpretation of the improvement. For the net with simple 
threshold neurons, although the absolute capacity of the auto- 
associative memory net and that of the layered or sequence- 
associative memory net are equal [i.e., n/(2 log .)], the 
relative capacities are different. This difference arises from 
the difference in correlation of consecutive internal fields of 
each neuron. Since layered or sequence-associative memory 
nets have weaker such correlation, their relative capacity is 
as large as 0.27n (e.g., [7]) .  On the other hand, the auto- 
associative memory net has stronger such correlation, hence it 
has larger variance of the noise term. However, if we know 
the nature of that correlation, we can devise mechanisms that 
make positive use of the correlation. One of these mechanisms 
is our two-stage neuron. 

Finally we point out some of remaining problems: 
1) the optimal shape of the modification function-if the 

class of functions investigated here is really optimal; 
2)  the relationship of our results with analyses for ana- 

log models [20], [26], in particular, whether or not 
our methodology contribute to verifying the stability 
problem in equilibrium analyses; 

3) possible generalization of the present theorem to 
multiple-step behaviors, including the relative capacity, 
or behaviors of the net far apart from memorized 
patterns ; 

4) influence of bias in a group of memory patterns as 
discussed in 1131; 

5 )  applicability of two-stage neurons to other types of 
associative memory, e.g., sequence-associative memory 
or neural nets other than associative memory. 

APPENDIX A 
DER~VATION OF THE VARIANCE 

AND THE COVARIANCE OF NOISE 
By rewriting Mz as 

,“ 
j f i  J ‘ f i  p # l  p’f l  

the expectation is 
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In the following zalculation we decompose N3 and N3/ accord- 
ing to a correlation with Er, E;, E,” ? , andor  combinations 
of them. The decomposition is, for N3 

1 

The expectations are as follows. For j = j ’  and /A = /A’ 

E [ M ~ .  j = j’, p = p’] = -nm( f ( l+ o O E ) ~ )  

I ,  

1 
n2 2 1  

= rFZ(1) (31) N3 = ; E;trxt + Ni 

and likewise for N3, .  Choice of the expression depends on 
what correlation we have to consider. Note that 

N .  - gosj 2 N !  - N!’ 
3 -  3 -  3 

in the large n limit, where 00 = fi. Since Nj is a sum of 
m - 1 mutually uncorrelated terms, we have 

That is 

and likewise for Nj , .  To summarize 

and for j = j ’ and p # p’ 

because asymptotically Nj is uncorrelated with E;”(;‘$‘’. 
For j # j ’ and p = p’ 

The random variables s, t ,  and t’ are independently subject 
to unit Gaussian distribution. Calculation of this expectation 
is as follows. 

By writing, for the sake of simplicity, E = E r ,  E’ = E;, 
x = x j ,  and x’ = xjl  

ErEPx; Go (EE’ f (M4)  = (EE’(f(.))t(f(4)tO 

E; [‘Xi n f i  
Nj,  =- + a o E j ‘  

<;<:xi cro 
n f i  

+ - Ej”S + a o E j  
- - 

n f i  = (<E ’ (  Fl ( 1  + e + * E s )  

n 

- - + -[;a + a o E j ,  

where the notation ( o ) ~  is used to denote explicitly averaging 
with respect to S. By expanding Fl into a Taylor series around 
1 we have 

where ~ j ,  ~ j ’ ,  and 6 are mutually uncorrelated Gaussian noise 
with mean zero and variance one. 

We divide the calculation into four parts according to 
whether j = j ’  or not and whether p = p’ or not (see 
1251 for reference to these kind of statistical-neurodynamical 
calculations). That is 

E[kl?] = E[M?; j = j ’ ,  p = p’] 

+ E[@; j = j’ ,  p # p’] 

+ E[M?; j # j’ ,  p = p’] 

+ j # j’ ,  CL # P’I. (30) 

We have: 
1) (n  - l ) ( m  - 1) 2: nm such terms that satisfy j = j ’  so that their product is 

and p = 14‘; 

2) (n  - l ) (m - l ) (m - 2 )  2: nm2 for j = j’ and p # p’; 
3)  (n  - l ) ( n  - 2)(m - 1) 2: n2m for j # j ’ and p = p’; 
4) (n  - I)(. - 2)(m - l ) ( m  - 2 )  2: (nm)2 for j # j’ 

m and p # p‘. 
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Noting that ( s ) ~  = 0 and ( s ’ ) ~  = 1 and that ([[’) = 0 and 
((<<’)’) = 1, we can see 

Multiplying this result by m according to (33) ,  we have the 
following result: 

T(Xj + Z j ~ ) F l ( Z ) ~ l ( Z )  + o,2Fl(z)2. 

By taking the expectation over XJ-, since E[z j ]  = 1, we obtain 

E[M:; j # j ’ ,  p = p’] = 2~2Fi(Z)F1(1) + o : F ~ ( l ) ~ .  (34) 

The case of j # j’ and p # p’ is easily calculated and 

( 3 5 )  

likewise approximated asymptotically by 

E[M?; j # j ’ ,  p # p’] = E[MzI2. 

Therefore, from (30)-(32), (34), and ( 3 3 ,  the variance of 
Mi is 

V[M,]  = E[M?] - E[MiI2 
=rFz(l)  + 2rlFi(Z)F1(Z) + o ~ F ~ ( Z ) ~ .  (36) 

Now let us calculate the covariance of N, and Mi. Since the 
expectation of Ni is zero, the covariance is equal to E[N&&] 

Here again we decompose terms into four cases 
For j = k and p = U 

= TlF, ( 2 ) .  ( 3 8 )  

This is because xj is uncorrelated with NJ-. For j = k and 
p # U ,  as in the corresponding case in E[M:] 

(39) E [ N z M z ;  j = k ,  p # U ]  = 0. 

For ,j # k and p = U 

E[N;Mi;  j # k ,  p = U ]  

1 
= - n C(E”Mf(1 + N k ) ) )  

j#i k#i p f l  

(n - 1)(n - 2)(m - 1) 
n2 

- - 

Since we can set, by expanding the function F1 around 1 

the expectation is 

by a similar procedure as used above. And for j # IC and 
I . # .  

Therefore, from (37)-(42), the covariance is 

Consequently, the variance of the noise u2 is, from (lo), 
(36), and (43) 

APPENDIX B 
OPTIMALLY TUNED SLOPE U VERSUS U = 0 
(THE SIMPLE THRESHOLD NEURON) FOR 
THE LINEAR MODIFICATION FUNCTION 

For U large (i.e., r small), we can approximate +(U)  as 

- -_ u2 - log U- log  G - 
2 

2 
U2 

M---- .  

For optimal a = ( l - r ) / ( 2 - r ) ,  U.pt = - (1-r+r2)/(2?) ,  
and for a = 0, U,$o = 1/r. So we have the fraction of 
relative performance 

= -f (+) 2 

+-cc (as T -+ 0). 
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