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ABSTRACT

Computing derivatives is key to many algorithms in scientific com-
puting and machine learning such as optimization, uncertainty
quantification, and stability analysis. Enzyme is a LLVM compiler
plugin that performs reverse-mode automatic differentiation (AD)
and thus generates high performance gradients of programs in lan-
guages including C/C++, Fortran, Julia, and Rust. Prior to this work,
Enzyme and other AD tools were not capable of generating gradi-
ents of GPU kernels. Our paper presents a combination of novel
techniques that make Enzyme the first fully automatic reverse-
mode AD tool to generate gradients of GPU kernels. Since unlike
other tools Enzyme performs automatic differentiation within a
general-purpose compiler, we are able to introduce several novel
GPU and AD-specific optimizations. To show the generality and
efficiency of our approach, we compute gradients of five GPU-based
HPC applications, executed on NVIDIA and AMD GPUs. All bench-
marks run within an order of magnitude of the original program’s
execution time. Without GPU and AD-specific optimizations, gra-
dients of GPU kernels either fail to run from a lack of resources or
have infeasible overhead. Finally, we demonstrate that increasing
the problem size by either increasing the number of threads or
increasing the work per thread, does not substantially impact the
overhead from differentiation.

CCS CONCEPTS

« Mathematics of computing — Automatic differentiation;
« Software and its engineering — Source code generation; «
Theory of computation — Parallel computing models; Shared
memory algorithms; -« Computing methodologies — Machine
learning.
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void init(double* ar, int N, double val) {
parallel for(int i=0; i<N ; i++)
// Concurrent reads of val
ar[i] = val;

double gradient init(double* ar, double* d ar,
int N, double val) {
double d val = 0.0;
parallel for(int i=0; i<N ; i++)
ar[i] = val;
parallel for(int i=0; i<N ; i++) {
// Concurrent writes to d_val

d val += d_ar[il; Z race ¢
d ar[i] = 0.0;

}

return d val;

}

Figure 1: A parallel initialize function (top) with a naive
reverse mode AD gradient function (bottom) that does not
take the parallelism into account. Consequently, the con-
current read of the variable val causes a race in the reverse-
mode gradient computation.
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ber 14-19, 2021, St. Louis, MO, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3458817.3476165

1 INTRODUCTION

Automatic differentiation (AD) provides an accurate way of comput-
ing derivatives of mathematical functions that are implemented in
computer programs. Gradients (or adjoints), a special case of deriva-
tives for functions with one output and many inputs, have applica-
tions in optimization [19], uncertainty quantification [21], inverse
design, stability analysis,and machine learning [40]. Reverse-mode
AD has been the tool of choice to compute these gradients for large
applications with many input parameters.

As the research community has been continuously pushing the
boundary of the size of problems they want to solve, large-scale
applications have had to leverage the latest in high-performance
computing including distributed computation, parallelism, and ac-
celerators. For many machine learning and scientific computing
applications, this means relying on kernels that are highly opti-
mized for graphics processing units (GPUs).

While considerable effort has been expended to compute gra-
dients of MPI and OpenMP programs (see Sec 2 for related work),
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no AD tool has been presented to date that can compute gradients
of CUDA or ROCm (AMD) kernels. The cause rests with both the
GPU’s parallelism and its complex performance characteristics. The
biggest issue for both performance and correctness is due to the
implied computational flow reversal of reverse-mode AD; every
read becomes a write in the adjoint computation and vice versa.
Consider the program at the top of Figure 1. It contains a simple
parallel for loop that reads from the same variable val in all threads
and sets each index of the output array ar to that value. Since all
threads read the same value, there is a concurrent read access on val,
which does not impact the final result. Computing the gradient func-
tion of this program (i.e. the derivative of the input val), one must
accumulate all of the partial derivatives of val generated by uses
in the outputs. Such an action unfortunately leads to a write race
on the gradient d_val, which may be updated by multiple threads
at the same time. Special care must be taken to avoid undefined
behavior and ensure the correctness of the gradient computation
while preserving as much of its parallelism as possible.

GPUs often have relatively small amounts of memory per thread.
Moreover, the memory of GPUs commonly has complex perfor-
mance characteristics, with global memory being slow but large,
shared memory being fast but small, and the use of certain types of
memory preventing the simultaneous use of large thread counts.
Potential remedies involve either sacrificing generality, by rewrit-
ing HPC applications in a differentiable domain-specific language
(DSL), or resorting to approaches such as numerical differentiation.

To leverage the potential performance benefits of reverse-mode
AD without sacrificing generality, one requires a tool that is capa-
ble of both handling the complex performance characteristics of
GPU architectures and generating code that maintains the correct-
ness of the gradient without sacrificing the inherent parallelism
of the original program. Unlike many other tools, Enzyme! [41]
performs AD alongside the traditional optimization pipeline by per-
forming differentiation within the LLVM compiler [38]. Thus, we
can leverage existing code transformation infrastructure to build
the requisite analyses and transformations for maintaining the cor-
rectness and performance of the corresponding gradient kernel.
Furthermore, LLVM provides frontends for most commonly used
languages including C/C++, Fortran, Julia, Rust, Swift, and Tensor-
Flow and backends for different hardware architectures including
CPU, NVIDIA GPUs [31, 48, 61], and AMD GPUs, allowing us to
build reverse-mode AD for multiple languages and architectures.

Overall, our paper makes the following contributions:

e An algorithm for correctly generating gradients of GPU
kernels and a corresponding proof sketch of correctness

e An extension to the Enzyme AD engine for LLVM that can
generate gradients for GPU kernels written in either CUDA
(NVIDIA) or ROCm (AMD)

o A collection of optimization passes for Enzyme/LLVM that
allow generated GPU gradients to run efficiently on modern
hardware

e A study demonstrating, for the first time, the feasibility
of reverse-mode automatic differentiation of GPU kernels
through the use of GPU and AD-specific optimizations (cach-
ing and recomputation).

Thttps://enzyme.mit.edu
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2 RELATED WORK

AD tools that differentiate programs at runtime are often relatively
straightforward to develop using, for example, operator overload-
ing in C++ [6, 26, 30, 39, 50, 59]. Unfortunately, in reverse mode,
they generally produce a large tape to store operations and inter-
mediate values for subsequent reverse differentiation, which causes
challenges with their memory footprint in real-world applications.

A more efficient, but more challenging type of AD uses a compile-
time transformation to translate the source code for a given function
evaluation into the derivative function evaluation. Several such
tools have been developed for Fortran and C including ADIFOR [11],
Tapenade [29], TAF [22], OpenAD [58], ADIC [12], and ADIC2 [43].
Unlike these tools, Enzyme is based on the LLVM compiler instead
of an AD-specific framework and emits gradient programs in LLVM
IR instead of the original source language. This approach allows
Enzyme to benefit from the language support, optimizations, and
maturity of the LLVM platform.

For differentiating codes running in distributed-memory environ-
ments, libraries such as the Adjoinable MPI library have been devel-
oped that reverse the nonblocking communication patterns in the
original code [17, 57]. Other studies have presented reverse-mode
AD for OpenMP codes [10, 15, 16, 20, 34, 35] or hybrid OpenMP/MPI
codes [23]. Some studies [10, 23] have identified that reverse-mode
AD creates potential write races on multicore CPU programs and
suggest atomic updates or privatization as solutions.

Derivatives can be computed on GPUs for programs written
in certain domain-specific languages (DSLs) such as PyTorch [45],
Halide [46], TensorFlow [1], or JAX [14]. The AD approach used
in these languages uses the structure of, and high-level knowledge
about, programs that can be written in those DSLs and does not
easily generalize to arbitrary programs written in a general-purpose
language such as C or CUDA. Previous works have discussed AD or
symbolic differentiation for programs that call CUDA kernels [24,
25]. Such works, however, do not present differentiation of the
kernels themselves or else use the forward mode of AD [13, 47].

3 AUTOMATIC DIFFERENTIATION

This section provides a brief summary of automatic differentia-
tion concepts that are relevant to this work. For a more thorough
introduction, we refer to [28, 41, 44].

AD takes as its input a computer program P that implements a
mathematical function and produces a new program that computes
the derivative, or gradient, of that function. AD tools are able to
produce such a derivative by examining the individual instructions
of P (such as add or mul) and generating the corresponding par-
tial derivatives of the instructions. By applying the chain rule of
calculus, they then compute the derivative of the entire program
by accumulating the partial derivatives all instructions of P. Any
order of accumulating these derivatives is correct, but the order
affects the efficiency, ease of implementation, and memory usage.
Two particular strategies have become popular.

Forward or tangent mode combines the derivatives of instruc-
tions in the order in which the original instructions are evaluated,
resulting in the propagation of derivatives from an instruction’s
input(s) to its output. Consider the instruction v = f(w,u). The
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derivative of its output, 9, can be evaluated by computing
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For the overall program, the derivative of all outputs zy, ..., zm

with respect to one of its inputs x can thus be computed by set-
ting X = 1 at the start of the program, and reading the final value
of the differential or shadow % ...z, at the end of the program.
Computing the derivative with respect to multiple inputs requires
a forward mode evaluation for every input. This is also true for
numeric differentiation or finite differences, where a separate eval-
uation with a small perturbation for each input variable is required.
Numeric differentiation has the added disadvantage of being less
accurate, and requiring the choice of a step size.

Reverse or adjoint mode combines the derivative of instruc-
tions in a reverse pass, which computes the derivative or adjoint
of the instructions in the reverse order of the original program,
and propagates them from an instruction’s outputs to its inputs.
Considering the same instruction v = f(w,u), the derivative of
inputs w, @ can be evaluated by computing®

17v+:£ 0; 12+=aic 0; 0=0.
ow ou

The derivative of output z with respect to any input x can then
be computed by setting Zz = 1 prior to evaluating all the partial
derivatives, then reading the final value of the shadow input x. This
allows a single evaluation of reverse mode to compute the gradient
(derivative of output with respect to all inputs) in a single evaluation.
Evaluating the derivative with respect to multiple outputs, however,
requires an evaluation per output. In practice, programs with a large
number of inputs, but few outputs (e.g. a loss function) dominate
both scientific and machine learning use cases. Since reverse mode
can compute derivatives in this case asymptotically faster than
other methods, our work focuses entirely on reverse-mode AD.

Despite its attractiveness for practical applications, reverse mode
AD is not without challenges, two of which are particularly relevant
for this work. First, for a nonlinear instruction (such as x2), one re-
quires the original input to compute the derivative (in this case 2x).
While this is true for both forward and reverse modes, it is a chal-
lenge during the reverse pass. To provide the necessary inputs, the
AD tool must evaluate all original instructions in an augmented
forward pass and cache the required intermediate values (poten-
tially causing a large memory footprint), or store only selected
intermediate variables from which others can be recomputed (trad-
ing some memory for additional computation). Our work addresses
analysis strategies to reduce the amount of storage needed, but
does not address recomputation strategies, which are an active
research subject on their own [5, 27, 60] and are beyond the scope
of this work. Second, since the derivative evaluation occurs in a
different order than the original program, parallelization strategies

%In reverse mode, the derivative adds to the shadow value w rather than setting it
directly. This ensure the derivatives from all uses of w are taken into account. The
total derivative of w is finalized when all partial derivatives have been accumulated.
This is guaranteed to occur before the reverse of the instruction that defines w as all
users of w must occur after w in the original program and thus all adjoints that update
‘w must occur prior the reverse of w’s defining instruction. Since we are adding to
the shadow, we must also initialize the shadow to zero. This is primarily done in the
forward pass when creating the primal variable. To accommodate variables which are
redefined (e.g. when in a loop), the shadow is again zero initialized after its value is
propagated to the shadow inputs.
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Memory store

Memory load
% store %ptr = %val

%res = load %ptr

Reverse memory load
%tmp = load %d_res
store %d res = 0
atomic %d ptr += %tmp

Reverse memory store
%tmp = load %d _ptr
store %d ptr = 0
load/store %d_val += Stmp

Figure 2: Rules for memory operations. Shadow registers
d_res and d_val are thread-local since they shadow thread-
local registers. There is no risk of racing on thread-local data
and no special handling required. Both ptr and shadow d_ptr
might be raced on and require atomics in the adjoint of the
load. If ptr (and consequently d_ptr) is proven to be thread-
local or have constant memory, the atomic update can be
replaced with a serial update or reduction, respectively.

that are correct for the original program may not be correct for
the derivative program, and special care needs to be taken to avoid
data races. This and other challenges are addressed in Section 4.

The reverse mode of automatic differentiation is closely related to
the backpropagation algorithm for neural networks, and both have
been implemented in DSLs such as PyTorch [45], TensorFlow [2],
and others [18, 32, 37, 53]. These DSLs do not differentiate compute
kernels directly, but expose high-level operations such as matrix
multiply, and provide existing superoptimized GPU kernels for
both the original function and its derivative. This approach is very
effective for programs that can be written within these DSLs. For
existing HPC applications or those that do not easily map to a DSL,
this is unfortunately not an option. For this reason, there continues
to be a need for AD tools such as Enzyme that can differentiate
programs written in general purpose languages.

4 REVERSE-MODE AD FOR GPU KERNELS

Enzyme performs reverse-mode automatic differentiation over the
LLVM intermediate representation (LLVM-IR). Since Enzyme is
tightly integrated within the LLVM pipeline, it can differentiate
any programming language with an LLVM frontend and can target
any architecture that has an LLVM backend. Most importantly, this
alleviates the need for DSLs or language restrictions to apply AD
to code. Prior to this work, GPU kernels could not be differentiated
in reverse mode without being rewritten in an explicitly differen-
tiable DSL (e.g., PyTorch). To differentiate GPU kernels, we extend
Enzyme to handle shared-memory accesses, avoid data races in the
presence of concurrent reads in the primal, differentiate parallel
control flow (e.g., sync_threads), and differentiate GPU-specific
intrinsic functions (e.g., the LLVM-IR representation of the CUDA
thread identifier threadIdx.x).

Enzyme first performs an activity analysis [9], which deduces
what instructions and values in the function could impact the re-
sulting gradient computation. For every active value, Enzyme cre-
ates a corresponding shadow memory location, which is used
to store intermediate derivative values. For active function argu-
ments, Enzyme expects the callee of the gradient function to pass
in the shadow of each argument (see Section 4.4). We refer to prior
work [41] for a more detailed explanation of Enzyme on serial
programs. Here, we will focus on our contribution of synthesizing
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gradient functions for GPU kernels and the necessary changes and
improvements to Enzyme.

4.1 GPU Memory-Aware Gradient Synthesis

Case 1 Case 2 Case 3

load S%ptr
barrier

store %ptr
barrier

store %ptr
barrier

store %ptr load %ptr store %ptr

Gradient Case 1 Gradient Case 2 Gradient Case 3

VB: VB: VB:
load %d ptr atomicAdd d_ptr load %d_ptr
store %d_ptr = 0 store %d ptr = 0
barrier barrier barrier

VA: VA: VA:

load %d ptr atomicAdd %d_ptr

store %d_ptr = 0

load %d ptr
store %d ptr = 0

Figure 3: Illustrations for the case analysis of the barrier in-
struction adjoint definition.

The most challenging aspect of generating fast and correct gradi-
ent code from parallel code is reasoning about memory operations,
especially on the different memory types of the GPU. Both NVIDIA
and AMD GPUs have thread-local, shared (block-local), and global
memory, as well as constant memory that cannot change during
the execution of a kernel. We define rules for synthesizing correct
gradients according to which kind of memory is accessed. We define
the shadow of constant memory to be global memory, to ensure that
the reverse pass is able to write the corresponding gradient to the
shadow. Our approach requires that the primal code is determinacy
race-free. Thus, we assume the appropriate use of atomic accesses
and barriers (see Section 4.2).

Memory that is known to be thread-local cannot be accessed
concurrently by multiple threads and is therefore equivalent to
memory in serial AD. The gradient computation can access and
update non-atomically without introducing a race.

In contrast, global and shared memory can be accessed concur-
rently by multiple threads in the primal. In the gradient computa-
tion this can cause concurrent write accesses, and thus races, if the
updates are performed non-atomically (see Figure 1). The generic
solution is to perform all accesses and updates in the reverse pass
atomically. Such an approach, however, has severe performance
downsides. Instead, we translate loads and stores of global- and
shared-memory locations according to the rules displayed in Fig-
ure 2. That is, locations that are accessible by other threads are
accessed atomically, while thread-local locations such as the thread-
local shadow locations are accessed non-atomically. Further, we
identify the special case where all threads in a block load from the
same memory location in shared memory. In this case we employ an
efficient block-level reduction computation that uses synchronous
warp shuffle operations instead of atomic accesses.

4.2 Adjoints of Barriers

In GPU programming, barriers (e.g. sync_threads in CUDA) can
synchronize the execution of threads within a warp or block. This
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is especially important in the presence of shared memory because
it allows threads to communicate efficiently without memory races.
We define the adjoint of barrier calls to be another barrier at the
corresponding location in the reverse pass and show that this is
sufficient by case analysis.

Given two consecutive code blocks A and B, separated by a
barrier, that write or read the same memory location, the barrier
provides four distinct memory guarantees:

(1) All stores in A must complete prior to a store in B.
(2) All stores in A must complete prior to a load in B.
(3) All loads in A must complete prior to a store in B.
(4) Allloads in A must complete prior to a load in B.

Figure 3 shows minimal examples for cases 1-3; all four cases are
discussed in the following.

Case 1: Store, Barrier, Store In the primal, the store in B will
clobber the store in A, causing subsequent loads to see the
value stored in B. As a result, we must ensure that the gra-
dient will increment only the derivative of the value stored
in B and not the value stored in A. The barrier in the reverse
pass ensures that only VB could read a nonzero adjoint from
d_ptr, as desired.

Case 2: Store, Barrier, Load For the reverse code to be cor-
rect we require the load of d_ptr, which is the adjoint of the
primal load, to happen after all atomicAdd operations, which
are the results of the primal store. The barrier in the reverse
pass is sufficient to guarantee that ordering.

Case 3: Load, Barrier, Store We require that all of the stores
of d_ptr, which are caused by the primal load, complete prior
to any atomicAdd, which is the adjoint of the primal store.
The barrier in the reverse pass will ensure this. Note that
there cannot be a race in VB because that would require a
preexisting race in B, which is violating our precondition.

Case 4: Load, Barrier, Load In the case of a barrier between
two loads, the barrier operation is superfluous and can be
removed with no change in semantics. Therefore, no extra
considerations are needed.

4.3 GPU Intrinsics and Shared-Memory
Allocations

The gradient is independent of most GPU-specific built-ins and
intrinsics (e.g., threadldx.x) since they are known to LLVM to be
pure, that is, independent of memory. Furthermore, most intrinisics
are inactive and can consequently be recomputed without special
handling by Enzyme. Exceptions include barriers and special mem-
ory accesses (e.g., tensor core or atomic memory operations). The
former is described in Section 4.2, and the latter can be implemented
in a manner similar to traditional memory operations.

Shared-memory allocations require explicit handling to provide
adjoint locations, also allocated in shared memory, that act as shad-
ows. In LLVM-IR, a shared-memory allocation is represented as a
global value with an explicit address space that is effectively unini-
tialized at kernel launch time. Therefore, in addition to the shadow
allocation, we generate initialization code that is executed at the
very beginning of differentiated kernels.
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__device__ void inner(float* a, float* x, float* y) {
yl[threadIdx.x] = a[0] * x[threadIdx.x];
}

__device__ void  enzyme autodiff(void*, ...);

__global__ void gradient kernel(float* a, float* da,
float* x, float* dx,
float* y, float* dy) {

__enzyme_autodiff((void*)inner, a, da, x, dx, y, dy);

}

// Synthesized by Enzyme on the LLVM-IR level from the

// definition of the inner function.

__device__ void gradient inner(float* a, float* da,
float* x, float* dx,
float* y, float* dy) {

y[threadIdx.x] = a[0] * x[threadIdx.x];

float dy tmp = dy[threadIdx.x];
dy[threadIdx.x] = 0.0f;

float dx_tmp = a[0] * dy tmp;
atomic { dx[threadIdx.x] += dx tmp; }

float da tmp = x[threadIdx.x] * dy tmp;
atomic { da[0] += da_tmp; }
}

Figure 4: A simple GPU function, inner, that is differentiated
by Enzyme within the CUDA kernel gradient_kernel (top).
A high-level representation of the synthesized gradient En-
zyme would generate is shown as gradient_inner (bottom).
The callto __enzyme_autodiff is replaced by a call to the newly
generated derivative function.

4.4 Usage

Enzyme is available as a plugin for the LLVM “core” compiler compo-
nent. When Enzyme is loaded into compilers such as Clang, an opti-
mization pass is enabled that acts on calls to the __enzyme_autodiff
function.® The first argument to this function is the primal that is
differentiated, followed by the primal arguments interleaved with
shadow locations for pointers. For usage within CUDA, one calls
__enzyme_autodiff from inside a device kernel that is launched
through the normal CUDA API. Figure 4 shows how the GPU
function inner is differentiated and how the synthesized gradient,
gradient_inner, looks conceptually?.

5 OPTIMIZATIONS

GPU architectures feature multiple kinds of memory that dif-
fer in their access latency, visibility, and size. While registers and
shared memory are much faster than global memory, they are lim-
ited resources on GPUs and are allocated for a kernel at launch
time. If a kernel requests a large number of registers or a large
shared-memory allocation, the effective available parallelism (oc-
cupancy) of the kernel is lowered to fulfill the request. This can

3 As Julia is JIT compiled, Enzyme.jl can explicitly call Enzyme’s ABI for creating
derivatives, rather than loading Enzyme into an existing optimization pipeline.

“Note that while we show CUDA code for readability, Enzyme acts on the lower level
LLVM-IR that can be targeted by various languages and parallel programming models.
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become a bottleneck for applications since a major benefit of using
GPUs is their high throughput offered by plentiful parallelism. To
achieve good performance, Enzyme must consequently consider
trade-offs between using slower global memory or increasing the
use of registers and shared memory, which may result in fewer
kernel instances being run simultaneously.

Like all reverse-mode AD tools, Enzyme may need to preserve
values generated in the forward pass for use in the reverse. If a
value is available in the reverse pass, for example, if the memory
that holds it was not overwritten, Enzyme will simply use it. When
a memory location holding a value required for the reverse pass is
modified, however, Enzyme must ensure that the value is preserved,
or cached, an action that inevitably requires additional storage.

While it is generally beneficial to reduce the amount of memory
used to cache values, doing so is especially important for GPU
execution. In general, the number of memory locations that need
to be cached is not known at compile time. Consequently, Enzyme
has to cache values in thread-local storage, allocated through the
dynamic allocation function malloc. In CUDA, malloc is backed by
global memory and cached in the L1 cache. Global memory is sub-
stantially slower to access than registers or shared memory, which
is why cache use can dramatically increase the kernel runtime.
Moreover, excessive caching can require more than the available
GPU heap memory and prevent the program from being run at
all. Since memory size and bandwidth are the primary bottlenecks,
most of our optimizations aim to minimize global memory accesses.
Our experimental results in Section 6 demonstrate that significant
GPU-specific and AD-specific optimizations are necessary to run
the reverse pass in a reasonable time. Below, we briefly explain the
most important optimizations that we use for this work.

Alias Analysis. Alias analysis [4, Ch. 12] is fundamental to
Enzyme’s ability to determine whether an instruction can be recom-
puted or must be cached. Instructions that do not access memory
are trivially recomputable. For instructions that read memory, En-
zyme uses LLVM’s alias analysis pipeline to determine whether
the value is overwritten before it is required in the reverse pass.
Depending on the quality of available alias information, for exam-
ple, from types and restrict qualifiers, this can reduce the number
of cached values significantly. However, if there are potentially
aliasing pointers (e.g. two plain pointer arguments), Enzyme is
required to assume that writes to one might modify any element
read through the other. In the worst case, this uncertainty can force
Enzyme to cache all read accesses of a constant input array.

In our analysis, we found that common math functions, such as
cos, are seen as being able to write to any global memory and thus
potentially overwrite most memory locations. LLVM models 1ibm
implementations of these functions as writeonly because they can
set the global errno variable, assuming the user does not explicitly
disable this potential side effect. The situation is different for CUDA
code since there is no 1ibm available. Instead, Clang will effectively
map all available math functions onto respective CUDA builtin
functions, for example, nv_cos. Since the LLVM analyses and
optimizations are not aware of these CUDA-specific functions, they
are conservatively assumed to read and write arbitrary memory. For
the sake of Enzyme’s cache, we allow alias analysis to assume that
common math functions do not act as barriers to recomputation.



SC ’21, November 14-19, 2021, St. Louis, MO, USA

() (b)
for (int i=0; i<N; i++) {
for (int j=0; j<M; j++) {
use(array[jl);

double *cache = new double[N*M];
for (int i=0; i<N; i++) {
for (int j=0; j<M; j++) {
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(c)
double *cache = new double[M];
memcpy (cache, array, M*sizeof(double));
for (int i=0; i<N; i++) {

} cache[i*M+j] = array[jl; for (int j=0; j<M; j++) {
} use(array[jl); use(array[jl);
overwrite(array); } }
} }
overwrite(array); overwrite(array);

diffe overwrite(array);

}
}
delete[] cache;

for (int i=N-1; i>=0; i--) {
for (int j=M-1; j>=0; j--) {
diffe use(cache[i*M+j]);

diffe_overwrite(array);
for (int i=N-1; i>=0; i--) {
for (int j=M-1; j>=0; j--) {
diffe use(cache[j]);
}
}
delete[] cache;

Figure 5: In (a), there is a sample program that uses values of an array in a loop nest. The loads of the array cannot be hoisted
by LICM. The array is overwritten outside of the loop nest. Enzyme would require caching a value for every execution of the
load instruction, as shown in (b) and using ©(NM) memory. Using the cache LICM optimization, the cache could be hoisted

outside the loop as shown in (c), requiring only ©(M) memory.

Another significant barrier to performance is the aliasing be-
havior of sync_threads. In order to ensure correctness for multi-
threaded GPU programs, LLVM’s aliasing properties of architecture-
specific barrier intrinsics assume that barrier can read and write
to most memory locations. For the same reasons as above, this as-
sumption forces Enzyme to unnecessarily cache values. We extend
Enzyme to define a barrier instruction S as having the aliasing
behavior of all instructions that precede S until it reaches another
barrier or the start of the kernel being differentiated.

Loop-Invariant Cache. Enzyme caches the results of individ-
ual instructions rather than memory ranges. This approach can be
more efficient for general programs, especially if memory access pat-
terns are sparse. This can be problematic, however, in cases where
many instructions load from the same piece of memory that must
be cached. Enzyme relies on LLVM-based optimizations such as
common sub-expression elimination (CSE) and loop-invariant-code-
motion (LICM) [42, Sec. 13.2] to remove such equivalent accesses
in the original program and subsequently prevent unnecessary
caching. In several cases, however, the LLVM optimizations may
not be legal, or even beneficial for the original code, but would
otherwise result in a large amount of unnecessary caching.

For example, consider the program shown in Figure 5(a). The
load cannot be optimized by LICM since it depends on the inner-
most iteration variable j. If the load is required for a reverse-pass
computation, Enzyme must cache every result of the load as shown
in Figure 5(b), resulting in an ©(NM) cache. However, we notice
that the array is only potentially overwritten outside of the loop
nest, and we could have instead chosen to simply cache the total
size of the memory used (©(M)) as in Figure 5(c). This cache opti-
mization detects scenarios where it is legal and profitable to cache
loads from a parent loop nest, thereby reducing the total cache.

Equivalent Load Cache. Similar to how the loop-invariant
cache optimization remedies issues where LICM may not optimize
the initial code to reduce the cache, we also present a cache-variant
of common sub-expression elimination. Consider two loops that

both load from an array. Because the loops are not fused, these
loads cannot be deduplicated by common sub-expression elimina-
tion. Consequently, Enzyme would have to create two separate
caches. However, since both of these load from the same memory
without a potential write in between, we can instead cache the
array once and use it during the reverse pass in both places.

Cache Forwarding. GPU programs commonly use shared mem-
ory as a cache for global memory when it may be used by many
threads. This is highly beneficial because accesses from shared
memory are much faster than loads from global memory. If that
shared memory is overwritten, however, it may need to be cached
for the reverse pass. The original global memory it is derived from,
however, may not have been overwritten. In this case, instead of
allocating a cache to preserve the overwritten values in shared
memory, we can simply reload the underlying memory the shared
memory is acting as a cache for, preventing an unnecessary allo-
cation of global memory for the cache. An additional though yet
unimplemented extension to this optimization is to reuse the faster
shared memory as a cache for the reverse pass rather than having
to load from the slower global memory.

PHI Unwrapping. In addition to load and call instructions that
may not be recomputable, Enzyme may also have to cache PHI
instructions. PHI instructions occur when the current basic block
has multiple potential predecessors. The PHI instruction forwards a
value from the actual predecessor that just branched to the current
block, preventing recomputation and requiring caching.

This optimization aims to compute an equivalent value to the
PHI by determining a condition C that determines the actual prede-
cessor of the basic block. The PHI node can then be recomputed
by recomputing the condition C and selecting the corresponding
value the PHI node would have when coming from the predecessor
corresponding to C. Computing C can be done by traversing the
function’s control-flow graph and attempting to identify a chain of
conditions to branch instructions that lead to the PHI node from a
given predecessor. This cannot always be done at compile-time but
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() (b)
use(x[0] + y[01); double x_cache ;
overwrite(x, y); double y cache = y[0];

use(x[0] + y[0]);
overwrite(x, y);
diffe overwrite(x, y);

1l
X
(=)
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(c)
double sum cache = x[0] + y[0];
use(x[0] + y[0]);
overwrite(x, y);
diffe overwrite(x, y);
diffe use(sum cache);

diffe use(x cache[i] + y cache[i]);

Figure 6: (a) A sample program that loads two variables x and y and then perform some computation with the result. These
variables are subsequently overwritten and thus would require caching to be available in the reverse pass. A naive cache
algorithm would produce the code in (b) in which both overwritten memory locations x and y are cached. As shown in (c), one
could instead cache the sum since neither x nor y is individually necessary to compute the gradient.

nevertheless allows Enzyme to avoid caching many PHI instruc-
tions in unnecessary allocations.

Allocation Optimizations. Enzyme performs most cache al-
locations on the heap, backed by global memory. By running the
heap-to-stack optimization pass, we can lower a heap allocation
into a stack allocation and subsequently open the possibility of
promoting the stack allocation to individual registers. Additionally,
Enzyme may make several separate allocations for different instruc-
tion caches. A function call (such as a call to malloc or free) is
expensive on the GPU. We provide a further optimization that coa-
lesces several individual allocations into a larger allocation, thereby
reducing the overhead of allocating cache memory.

Recompute versus Cache Heuristics. When Enzyme deduces
that a value V is required in the reverse pass, Enzyme explicitly
caches all loads, calls, and PHI instructions necessary to compute
V. We extend Enzyme with a heuristic to instead directly cache
the value being recomputed, rather than the loads necessary to
recompute it, if we predict that this will result in a smaller amount of
cached memory as shown in Figure 6. We also extend this heuristic
to find the minimal set of values to cache by determining a minimum
branch cut between values that must be cached and instructions
that require values from the forward pass. In general, solving for
the optimal cache size is difficult to do at compile time because
many relevant parameters such as loop bounds may not be known.

Loop Bound Calculation. Enzyme frequently computes the
bounds of loops, for example, to determine the size of cache space
allocations or to index into the cache. Enzyme piggybacks on top
of LLVM’s existing scalar evolution analysis to attempt to statically
deduce the size of loops. This allows Enzyme to allocate the required
cache memory in advance. However, not all loops have statically
known bounds. For these dynamically sized loops, Enzyme must
continuously reallocate the cache inside the loop to ensure sufficient
memory exists to contain the values from all iterations. When the
total number of iterations is not statically analyzable, Enzyme adds
a variable to cache the count for use in index computations.

Consequently, it is desirable for Enzyme to statically deduce the
bounds of loops. However, LLVM’s analysis passes must be conser-
vative and account for behavior like potential integer wraparound,
causing hard-to-analyze bounds on seemingly simple loops. En-
zyme extends LLVM’s scalar evolution to take advantage of a key
fact: if one is indeed evaluating code in the reverse pass, none of the

forward-pass loops could have been infinite loops. When comput-
ing bounds for cache sizes, we can consequently add the extra fact
that the loop is not infinite, allowing Enzyme to statically compute
bounds of additional loops.

Register Locality. In contrast to virtual instruction sets like
LLVM, physical architectures have a fixed set of registers available
for computation. To map a computation onto a physical instruc-
tion set such as that used by a GPU, one must perform register
allocation to map the virtual registers used by LLVM to a fixed set
of physical registers. When there are insufficient registers avail-
able to represent all virtual registers, the compiler must spill the
instruction into a stack allocation (which on NVIDIA GPUs spills
to the L1 cache and subsequently global memory). Therefore, it
is crucial for Enzyme to maximize the locality of virtual register
uses to avoid spilling. By default, Enzyme reuses a value from the
forward pass if it dominates its potential use in the reverse pass,
because it will always be available without an explicit allocation.
This scheme is problematic for the GPU, however, because it may
increase the lifetime of registers, leading to spilling and increased
global memory use.

To remedy this situation, Enzyme will choose to recompute loads
from shared memory if there is register pressure. While a load from
shared memory is certainly slower than reusing a register, it is still
faster than a load from global memory in a potential spill.

Inlining. Choosing to inline or call a function can have substan-
tial performance implications. Inlining a function may be beneficial
because it may allow Enzyme to combine loads or otherwise reduce
redundant cache allocations through the loop-invariant cache or
equivalent load cache optimizations. On the other hand, by calling
a function rather than inlining it, Enzyme will explicitly recom-
pute data structures generated by the function being called in the
reverse pass. This action can increase register locality and may
require fewer instructions to recompute PHI nodes since there are
fewer potential predecessors.

6 EVALUATION

We evaluate our approach on five established GPU-based HPC
proxy applications:
e CUDA-based RSBench [55] and XSBench [56], two imple-
mentations of Monte Carlo neutron transport algorithms
e An extended version of the CUDA lattice-Boltzmann method
(LBM) solver from the Parboil benchmark suite [54], with
applications in computational fluid dynamics
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Figure 7: AD overhead of the benchmark applications, as
compared with a single evaluation of the forward pass. An
overhead of N can be read as saying that collecting the gra-
dients of all inputs (as well as running the original code) is
equivalent to running the original code N times.

e CUDA-based Livermore Unstructured Lagrangian Explicit
Shock Hydrodynamics (LULESH) code [36], a proxy applica-
tion for computational fluid dynamics solvers

e A discontinuous-Galerkin (DG) volume integral®[3] kernel

as used in the pure Julia [8] climate code ClimateMachine jl° [52]

and implemented for both CUDA and AMD GPUs

6.1 Setup

For each application, we time just the evaluation of the code being
differentiated, excluding time taken for device memory initializa-
tion and transfer or other calling code. For CUDA kernels, we explic-
itly increase the size of the device heap to 1 GB. RSBench, XSBench,
and the CUDA.jl version of DG were evaluated on an NVIDIA 2080
Super. LBM was evaluated on an NVIDIA V100. LULESH was evalu-
ated on an NVIDIA RTX A6000. The AMDGPU.jl version of DG was
evaluated on an AMD Vega 64. Benchmarks were tested with LLVM
main at commit 8dab25954b0acb53731c4aa73e9a7f4f98263030,
Julia 1.6, and Enzyme at commit ec75831a8cb0. The benchmark

suite is available at https://github.com/wsmoses/Enzyme-GPU-Tests.

All benchmarks were evaluated a minimum of five times, taking
the geometric mean as the final result. For each benchmark we
evaluated the original kernel and the combined forward/reverse
pass generated by Enzyme (Figure 7); the combined forward and
reverse pass with various optimizations described in Section 5
disabled (Figure 10); the compile times of the benchmarks (Figure
14); and the scalability of the gradients compared to the original
code (Figures 11 and 12).

With the exception of the LBM benchmark (see below), modify-
ing a benchmark to enable differentiation simply required allocating
and initializing shadow arrays (to store the output gradients), and
creating a kernel which calls __enzyme_autodiff on the kernel
to be differentiated, as demonstrated in Figure 4.

Shttps://github.com/lcw/Heptapus.jl
Shttps://github.com/CliMA/ClimateMachine.jl/
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void kern(float* src, float* dst) {
streamCollide<<<...>>>(src, dst);
}

void lbm(int nTimeSteps, float* src, float* dst) {

for (unsigned int i=0; i<nTimeSteps/2; i++) {
kern(src, dst);
kern(dst, src);

Figure 8: Simplified version of the computation within LBM.
The kern function calls a GPU kernel that iterates the sim-
ulation one timestep forward in time, storing the result in
dst. The 1bm CPU function calls the GPU kernel until all it-
erations have completed. The iteration must happen outside
the kernel to ensure that all threads from one timestep have
completed prior to performing another timestep.

The correctness of the generated gradients was verified by com-
paring with numeric differentiation. Since our benchmarks have
too many parameters to use numeric differentiation effectively, only
a few inputs per benchmarks were tested.

6.2 Benchmark Descriptions

RSBench and XSBench. RSBench and XSBench are U.S. De-
partment of Energy proxy applications that represent the core
computation of Monte Carlo simulations within particle transport
algorithms such as in OpenMC [49]. The majority of the runtime
of XSBench is spent in memory operations with a semi-random
access pattern. By calculating neutron cross-sections with the mul-
tipole method, RSBench trades off several magnitudes of memory
in exchange for a significant amount of computation to unpack the
data. Together, RSBench and XSBench allow us to differentiate both
compute-bound and memory-bound applications, respectively.

Lattice Boltzmann Method (LBM). LBM is a particle-based
fluid dynamics simulation method. It works by modeling fluid den-
sity on a lattice (grid) and in each time step performing a streaming
step (allowing fluid to flow into adjacent grid cells) and a collision
step (which models the interaction of fluids flowing into a particular
cell from neighboring cells). This so-called stream-collide sequence
is responsible for the majority of the computational cost of typical
LBM solvers and is implemented in the CUDA version of Parboil
LBM in a method called performStreamCollide kernel. CPU
driver code calls this kernel in a loop to advance the simulation by
several timesteps, as shown in Figure 8.

Unlike the other benchmarks tested, where the entire function
being differentiated was on the GPU, differentiating LBM requires
the differentiation of heterogeneous programs. Since LLVM does
not yet support modules which contain both CPU and GPU code,
we perform differentiation in two steps. First, we use Enzyme to
generate an augmented forward and reverse pass for the GPU
kernel. The forward pass is equivalent to the original function,
saving any data that is required for the reverse pass and may be
overwritten. The forward and reverse pass of the GPU kernels can
then be imported into the CPU code by using Enzyme’s support for
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// CPU Code (a)
void aug kern(float* src, float *dsrc,
float* dst, float* ddst) {
void* tape = Allocator.allocate(...);
aug streamCollide<<<...>>>(src, dsrc, dst, ddst, tape);
}
void grad kern(float* src, float *dsrc,
float* dst, float* ddst, void* tape) {
grad streamCollide<<<...>>>(src, dsrc, dst, ddst, tape);
Allocator.free(tape);
}
__attribute_ ((enzyme(aug_kern, grad_kern)))
void kern(float* src, float* dst);

void grad lbm(int nTimeSteps, float* src, float* dsrc,
float* dst, float* ddst) {
~_enzyme autodiff(lbm, nTimeSteps, src, dsrc, dst, ddst);

}
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// GPU Code (b)
__global__
void aug streamCollide(float* src, float* dsrc,

float* dst, float* ddst, void** tape) {
size_t idx = threadIdx.x + ...;
tape[idx] = _ enzyme augmentfwd(streamCollide, src, dsrc,
dst, ddst);

__global__
void grad streamCollide(float* src, float* dsrc,

float* dst, float* ddst, void** tape) {
size_t idx = threadIdx.x + ...;
__enzyme_reverse(streamCollide, src, dsrc,
dst, ddst, tape[idx]);

Figure 9: Differentiation of the combined CPU+GPU computation in LBM. The code in (a) represents host code, which differ-
entiates the overall function 1bm, defined in Figure 8. The kern function is annotated with custom forward and reverse passes
aug_kern and grad_kern. These functions allocate a tape and call the aug_streamCollide and grad_streamCollide kernels,

which are generated by Enzyme in (b).

custom derivatives. The heterogeneous AD setup is demonstrated
in Figure 9. Note that while we demonstrate this shim layer for
clarity, in practice this can be simplified for end users through the
use of advanced compiler transformations or macros.

LULESH. LULESH [36] is an unstructured explicit shock hy-
drodynamics solver, which was initially introduced as a proxy ap-
plication for computational fluid dynamics on high-performance
computing systems and has since been employed as a proxy appli-
cation for complex fluid dynamics codes. LULESH emulates com-
plex hydrodynamic solvers by splitting the computational domain
into volumetric elements on an unstructured mesh. This allows
LULESH to mimic the complex data movement characteristics of
unstructured data structures. All measurements were analyzed with
NVIDIA NSight Compute to discern the individual measurements
of the gradient ApplyMaterialPropertiesAndUpdateVolume kernel
from the general application runtime.

Discontinuous Galerkin (DG). The discontinuous-Galerkin
volume integral[3] kernel is part of a fluid dynamics simulation

model. It is written in Julia, and we use CUDA. j 1 [7] and AMDGPU. j 1 [51]

in combination with Enzyme.jl [41] to synthesize and execute the
kernel and its derivative. The code features GPU-specific features,
such as shared memory, and is memory bound. We modified the
original code to use noncoherent memory loads in the case of
CUDA. j 1 and constant memory loads in the case of AMDGPU. j1.

6.3 Results

The original Enzyme paper [41] demonstrated that by embedding
AD within the compiler, one can perform AD after optimization
which is on average 4.2X faster than AD before optimization. Since
prior tools perform AD at a source level, they must perform AD
prior to any compiler optimizations. Although there exist no tools
that we can compare against that perform reverse-mode AD on
GPU kernels, we attempted to perform a similar ablation analysis

here to see what a tool not implemented within a compiler might
be able to achieve, if one were to be written. Without applying
standard LLVM optimizations prior to AD, RSBench and XSBench
take an indefinite amount of time to run. LULESH has an overhead
of 2979.1x without preprocessing optimizations. LBM is able to
be differentiated without preprocessing optimizations for two it-
erations, but exhausts GPU memory on anything larger (scaling
tests use 50-600 iterations). In order to legalize Julia code for the
GPU (such as the ROCm and CUDA DG codes), it is necessary
to run the LLVM optimization pipeline, along with Julia’s custom
optimization passes. We therefore conclude that the ability to run
optimizations alongside AD is in fact a precondition of successful
reverse-mode AD of general GPU programs.

Overall, the combined forward and gradient generated by En-
zyme have a reasonable overhead when compared with that of the
forward pass (Figure 7). RSBench and XSBench have a 3 — 4X over-
head due to the need to cache intermediate computations from the
forward pass. Similarly, LBM must cache the current state variables
every iteration leading to an overhead of 6.3x. The kernel evaluated
in LULESH does not need to cache additional values, and as a result
the 2.01x overhead is spent performing the corresponding gradient
computations. The DG benchmark has a 5.4x overhead when run
on AMD, primarily from the additional computation, whereas it
has a 18X overhead on CUDA as it quickly exhausts the amount of
available registers and the CUDA assembler decides to spill a large
number of registers into global memory.

AD and GPU-Specific Optimizations. To evaluate the effec-
tiveness of the optimizations described in Section 5, we evaluated
all benchmarks with several AD and GPU-specific optimizations
being successively disabled. Not all benchmarks benefit from the
same optimizations, and the order in which compiler optimizations
are applied can dramatically impact performance [33]. For each
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Figure 10: Overhead of selectively disabling AD and GPU-specific optimizations described in Section 5. OOM indicates running
out of memory or an indefinite runtime. Each dot represents the overhead of AD compared to the forward pass alone.

benchmark, we visualize a path through the exponentially large op-
timization space that attempts to enable each optimization when it
will have the largest impact on performance. The results of this anal-
ysis are shown in Figure 10. An end user trying to maximize their
performance wouldn’t explore all optimization combinations/paths,
instead simply enabling all optimizations. As disabling optimiza-
tions quickly blows up the runtime of the program, the ablation
analysis of benchmarks was run at a smaller test size to ensure the
computation completed in a reasonable time where necessary.

For the ROCm DG kernel, an unrolling optimization was nec-
essary to allow Enzyme to create the gradient without caching
any additional values. Without unrolling, the GPU was unable to
allocate sufficient device memory to succeed.

For the CUDA DG kernel, simply applying the standard Ju-
lia+LLVM optimization pipeline enabled the gradient to run, though
at a 1378.3X overhead. Running an optimization that coalesced mul-
tiple allocations into a single malloc call reduced this runtime to
116.6%. Like in the ROCm case, applying unrolling eliminates any
need to cache values, reducing the overhead to 17.8x%.

For ablation analysis, we ran the LBM kernel for 150 iterations.
The use of an efficient CPU to GPU calling convention for caching
values was necessary for the gradient to run on a problem of this
size. Applying the improved recompute vs cache heuristic allowed
Enzyme to detect that it could cache a double which representing a
sum, rather than the individual of overwritten values. This analysis
reduced the size of the cache from 80 bytes per thread to 20 bytes
per thread. As a result, the AD overhead was reduced from 19.87x
to 8.7x. Finally, using a LIFO allocator rather than cudaMalloc to
allocate cache memory brought the AD overhead down to 6.4X.

For ablation analysis, LULESH was run on a computational do-
main size of 90%. Applying just LLVM optimizations prior to AD
brought the LULESH gradient overhead down to 2.4x from 2979.1x.
As the LULESH kernel was particularly branch heavy, enabling
speculative execution of ¢ predecessors when recomputing values
in the reverse pass reduced the AD overhead down to 2.01X.

Running RSBench on a problem size of 10,200, LLVM optimiza-
tions alone resulted in an overhead of 6374X. By applying additional

inlining, this overhead was reduced to 9.5x as LLVM could optimize
between functions, enabling Enzyme to eliminate redundant values
being cached, as well as use a more efficient intraprocedural caching
infrastructure. Enabling the loop invariant cache and equivalent
load cache optimizations reduced the overhead down to 4.7x.

Running XSBench on a problem size of 17,000,000 with LLVM
optimizations, the overhead was 25.9x. Allowing Enzyme to avoid
caching loop bounds when it can prove that all its instructions are
inactive, drops the overhead to 16.3x. Performing PHI restructur-
ing reduces the overhead to 9.5x. Passing the mode of simulation
through a C++ template eliminates code generation of helper rou-
tines from different simulation modes and reduces the overhead to
3.2X. This leads to fewer branches in the forward pass and allows
Enzyme to avoid analogous branches in the reverse pass.

Scalability. We compare the scalability of our approach in two
ways. First, we consider applications where increasing the problem
size increases the number of threads, while maintaining constant
work per thread. We plot the overhead as a function of problem
size for DG and LULESH, XSBench, and RSBench in Figure 11. DG
on CUDA, LULESH, XSBench, and RSBench maintain a constant
overhead as the problem size increases. DG on AMD’s overhead
increases at the start but quickly asymptotes. When the problem
size is increased in the LBM benchmark, the amount of work and
number of kernel calls increase without increasing the number of
threads. As demonstrated by Figure 12, the overhead quickly asymp-
totes as the additional setup required by Enzyme gets amortized
across a larger number of iterations.

LULESH Case Study. Automatic differentiation of LULESH’s
compute kernels is a prime example of the importance of running
optimizations prior to reverse-mode automatic differentiation on
GPUs. While the generated gradient has a 2979.1x overhead with-
out any LLVM optimizations prior to AD, this is reduced to 2.4x
by simply running LLVM’s standard optimization pipeline. This
does not require deep changes to LULESH or manual tuning. Using
all the optimizations described in Section 5 resulted in a reduction
of the AD overhead to ~ 2.01x. Because of the effectiveness of
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Figure 11: Overhead of Enzyme compared with the forward
pass as the problem size and number of threads increase,
with constant work per thread.

the optimizations and low overhead, we looked at the memory
access patterns in depth to understand the impact Enzyme and its
optimizations had on the memory system of the GPU.

In Figure 13, we analyze the memory characteristics of the Apply-
MaterialPropertiesAndUpdateVolume kernel, using NVIDIA’s NSight-
Compute analyzer. We use the memory workload analysis as a guide
to evaluate the performance of the synthesized gradient kernel and
judge whether there are potentially missed optimizations, or com-
mon access patterns within the gradient kernel. For this kernel,
the profile shows that there is an ~ 50% increase in memory traf-
fic when performing gradient calculations. If excessive caching or
register spilling occurred, we would have seen an increase in Local
memory traffic. This performance report is typical of an efficient
gradient kernel, which is reflected in the low AD overhead of 2.01x.

Discontinuous Galerkin (DG) Case Study. We evaluated the
DG kernel on both AMD and NVIDIA GPUs. The NVIDIA variant
shows an overhead of 18X versus an overhead of 5.4% for the AMD
variant. Performance analysis of the NVIDIA implementation un-
veiled two bottlenecks in the gradient kernel. The first bottleneck
was caused by a large number of values reused from the forward
pass. This created excessive register spilling and correspondingly
increased global memory traffic. Second, some atomic increment op-
erations on shared memory were heavily contended. Surprisingly,
the AMD implementation performs much better. We hypothesize
that AMD is faster because the AMDGPU LLVM backend directly
optimizes for the target architecture and can perform optimiza-
tions such as target register allocation. In contrast, the NVIDIA
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Figure 12: Overhead of Enzyme compared with the forward
pass where work is increased while maintaining a constant
number of threads.

LLVM backend targets NVIDIA’s virtual instruction set architecture
NVPTX and leaves register allocation to ptxas.

Enzyme allows the user to specify whether the gradient should
be calculated with respect to an argument. We used the DG kernel to
verify that applying Enzyme with all arguments set to be constant
(not differentiated), would not incur any overhead.

Compile Time. We compare the time spent to compile kernels
with and without the gradient generated by Enzyme. In practice,
when running large simulations the compile time is negligible com-
pared with the runtime. Nevertheless, it is useful to verify that also
compiling the derivatives does not substantially change the pro-
gram’s overall compile time. For the four C/C++ benchmarks (LBM,
LULESH, RSBench, and XSBench), we measured just the compile
time of the file that contained the kernel being differentiated. This
is then compared with compiling the same source file, but also
generating all the requisite derivative information. This involves
creating additional functions, running a second round of optimiza-
tions, and running the backend code generator for the additional
kernel(s). For codes that just compile the combined forward and
reverse passes (LULESH, RSBench, and XSBench), we would expect
a ~ 3x overhead as in addition to the original kernel, there is now
a second kernel which is twice the size (containing the forward and
reverse pass). For codes in which a forward and reverse pass are
requested separately, we would expect a ~ 4X overhead to account
for the additional augmented forward pass, and the split reverse
pass (which contains its own forward and reverse pass). These
compile times are all within expectation.

The two Julia codes must be analyzed separately. As Julia is a JIT,
Enzyme.jl works by running its own additional compilation within
Julia’s runtime and performing foreign function calls into Enzyme
loaded as a dynamic library As a result, a direct comparison is not
meaningful. Nevertheless we demonstrate that the “forward” time,
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Fwd: 109.42 MB Fwd: 174.60 MB
AD: 153.20 MB AD: 255.22 MB
L2 Cache Fwd Hit Rate: AD Hit Rate:
39.85% 42.53%
A A
Fwd: Fwd: Fwd: Fwd:
98.78 MB 171.01 MB 0.00 B 0.00 B
AD: AD: AD: AD:
125.93 MB < 236.24 MB 0.00 B v 0.00 B
Device Memory System Memory

Figure 13: Memory workload analysis for LULESH at size
135% comparing the original code (Fwd) to the gradient (AD).

taken to compile the original kernel, is comparable with the “AD”
time to perform a foreign function call to 1ibEnzyme. so, which
generates the derivative runtime function.

7 CONCLUSION

By extending Enzyme, an AD tool for LLVM, we have created the
first AD tool capable of generating gradients of GPU kernels with-
out rewriting entire applications with a differentiable DSL. Reverse-
mode differentiation of GPU kernels adds several challenges in-
cluding potential data races caused by the GPU’s parallelism and
the GPU’s complex performance characteristics. We demonstrate
an algorithm for differentiating GPU-based parallel control flow
and other intrinsics that ensures the correctness of the resultant
gradients. To maximize performance of the generated gradients,
we introduce several novel AD and GPU-specific optimizations.
Through various ablation analyses, we show how without these
optimizations reverse-mode GPU AD is intractable in practice. We
demonstrate reasonable performance and scalability on several
applications relevant to the HPC community.

There exist several avenues for future work. Many of the opti-
mizations described in Section 5, especially those involving caching,
could make better use of shared memory, when available. For ex-
ample, with rare exception, Enzyme currently maintains the GPU
schedule described in the forward pass for use in the reverse. One
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Test Forward AD | Overhead
LBM 1.54 5.65 4.32%
LULESH 8.34 | 23.82 2.86X
RSBench 14.99 | 33.29 2.22X
XSBench 15.9 235 1.48%
Julia DG CUDA 0.50 | 3.41 6.82%
Julia DG AMD 1.12 2.56 2.29%

Figure 14: Compile time in seconds of the source file with
and without derivatives.

could imagine allowing Enzyme to reschedule a kernel in such
a way that minimizes potential races and therefore allows bet-
ter performance. Moreover, Enzyme currently identifies constant
shared-memory indices as the only scenarios where it can perform
areduction rather than falling back to an atomic increment. Extend-
ing Enzyme to more aggressively identify locations where it can
perform a reduction rather than atomics can result in additional
performance boosts, especially in kernels that, like the DG kernel,
make heavy use of shared memory (see Section 6.3). Extending
Enzyme to support Forward and Mixed-Mode [7] AD may provide
potential performance boosts by allowing Enzyme to choose the
differentiation algorithm expected to perform fastest for a particu-
lar workload. Moreover, support for parallelism demonstrated here
in the context of GPUs can be extended to support both CPU paral-
lelism and distributed frameworks such as MPI to allow Enzyme to
efficiently differentiate a wider variety of HPC applications.
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Reverse-Mode Automatic Differentiation and Optimization of GPU Kernels via Enzyme

A ARTIFACT DESCRIPTION/ARTIFACT
EVALUATION

Our paper explored how reverse-mode automatic differentiation
could be performed on existing GPU kernels by extending the
Enzyme automatic differentiation engine for LLVM. The paper
demonstrates how various novel optimization passes and differen-
tiation rules for GPU instructions allow for correct and efficient
evaluations of the gradient.

The paper evaluated 6 benchmarks: XSBench (CUDA), RSBench
(CUDA), Parboil LBM (CUDA), LULESH (CUDA), DG (CUDA), DG
(AMD). Of these benchmarks, the AMD and CUDA DG codes are
Julia-based where as the remainder are C++/CUDA. All benchmarks
are available on Github https://github.com/wsmoses/Enzyme-GPU-
Tests at commit d4daa0cd5931494bc4dfbfffc7874c3b00ble3ad
withaDOI of 10.5281/zenodo.5147573. Evaluation of these bench-
marks allowed the paper to demonstrate the efficiency of the gen-
erated gradients in comparison to the original code, the impact of
the novel optimizations, the scalability of the generated gradients,
and the correctness of the tool.

To run the benchmarks used in the paper, we first need to
build the LLVM compiler toolchain before we can subsequently
link the compiler plugin of Enzyme against our built LLVM ver-
sion. For our compiler toolchain we used LLVM 13 (main) at com-
mit 8dab25954b0acb53731c4aa73e9a7f4f98263030. To install
LLVM, please follow the following steps:
$ cd ~
$ git clone https://github.com/1lvm/1lvm-project
$ cd llvm-project
$ git checkout 8dab25954b0ach53731c4aa73e9a7f4f98263030
$ mkdir build && cd build
$ cmake ../llvm -DLLVM ENABLE_PROJECTS="clang" \

-DLLVM TARGETS TO BUILD="X86;NVPTX" \
-DCMAKE_BUILD TYPE=Release -G Ninja

$ ninja # This may take a while

# clang is now be available

# in ~/llvm-project/build/bin/clang

We now must build an Enzyme based off of our chosen LLVM
version. We use Enzyme at commit ec75831a8cb0170090c36.
$ cd ~
$ git clone https://github.com/wsmoses/Enzyme
$ cd Enzyme/enzyme
$ git checkout ec75831a8cb0170090c366f8dabe3b2b8
$ mkdir build && cd build
$ cmake ../enzyme -DLLVM DIR=/path/to/llvm/build \
-DCMAKE_BUILD TYPE=Release -G Ninja
$ ninja
# ClangEnzyme-13.so0 will now be available in
~/Enzyme/enzyme/build/Enzyme/ClangEnzyme-13.so

Some of the C++ benchmarks require a custom CUDA libdevice
(the implementation of various CUDA intrinsics). This is to remedy
an issue within LLVM that prevents common math functions from
being identified as LLVM intrinsics (this is being worked on up-
stream). For the default CUDA installation, libdevice can be found at
/usr/local/cuda/nvvm/libdevice.10.bc. The following code
snippet describes how to replace a libdevice file, assuming you are
using CUDA 11.2. The instructions are similar for a different CUDA
installation, with the path changed accordingly. Note that you may
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need to be root to perform the change, and that you should always
make a backup of your previous libdevice.

# Save a copy of your current libdevice

$ sudo cp /usr/local/cuda-11.2/nvvm/libdevice/libdevice.10.bc\
/usr/local/cuda-11.2/nvvm/1libdevice/libdevice.10.bc.old

$ sudo cp /path/to/new/libdevice.10.bc\
/usr/local/cuda-11.2/nvvm/libdevice/libdevice.10.bc

We have created Python3 scripts to ease setting up and run-
ning our experiments. They will attempt to deduce appropriate
paths given the following environmental variables. In the event
that there is an issue, you likely may need to change bench.py
or the Makefile for the test as appropriate. All of the bench.py
benchmarking scripts follow the same structure.

The index of the CUDA GPU desired

export DEVICE=1

The path to the CUDA installation

export CUDA_PATH=/usr/local/cuda-11.2

The path to the Clang++ binary we built above
export CLANG_PATH=/path/to/1lvm/build/bin/clang++
The path to the Enzyme plugin we built above

export ENZYME PATH=\
path/to/Enzyme/enzyme/build/Enzyme/ClangEnzyme-13.s0

N A H A e e R

Let’s now clone the benchmark suite.
$ git clone https://github.com/wsmoses/Enzyme-GPU-Tests

The benchmark suite folder breaks down into the following
structure:

e DG, a Discontinuous Galerkin benchmark (CUDA & ROCm
in Julia)

e LBM, a Lattice Boltzmann benchmark (CUDA in C++)

e LULESH, a Lagrangian Hydrodynamics benchmark (CUDA
in C++)

e RSBench, a Monte Carlo Particle Transport benchmark (CUDA
in C++)

e XSBench, a Monte Carlo Particle Transport benchmark (CUDA
in C++)

We can now enter one of the 4 C++ test directories (XSBench,
RSBench, LBM, LULESH) and run the corresponding benchmark.
$ cd Enzyme-GPU-Tests/LBM

$ python3 bench.py
# output of benchmark times printed out here

The bench. py script will run first an ablation analysis that en-
ables or disables differentiation, along with several optimizations.
The result of these tests will be the execution time of the gradient
and/or original kernel. The script will then run by scaling tests
for both the gradient and original kernel by evaluating on increas-
ing problem sizes. Some benchmarks (XSBench, LBM, LULESH,
DG (CUDA)) will end by printing out the derivative as computed
by both numeric differentiation and Enzyme. These will include
"VERIFY=yes" as part of the run line. All other run lines will con-
tain the execution time of that benchmark. Be aware that LULESH’s
ablation analysis includes benchmarks configurations, which do
not perform compiler optimizations and are hence significantly
slower than the other benchmarks.

XSBench and RSBench require the libdevice found in Enzyme-
GPU-Tests/libdevice1, and were run using CUDA 11.2 on an NVIDIA
2080 Super.
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LBM uses the packaged libdevice from NVIDIA and was run
using CUDA 11.3 on an NVIDIA V100.

LULESH uses the libdevice found in Enzyme-GPU-Tests/libdevice2
and was run using CUDA 11.2 on an NVIDIA A6000. The LULESH
benchmark suite furthermore relies on NVIDIA’s N-Sight compute
utility (NCU). NCU has known issues with access to the GPU Perfor-
mance counters, which you will need to benchmark the gradient ker-
nel of LULESH. If you should run into this issue please have a look at
the following documentation to remedy it https://developer.nvidia.

com/nvidia-development-tools-solutions-err-nvgpuctrperm-nvprof.

Odd performance results or a compiler error is a potential indi-
cator of using an incorrect libdevice.

For example, when compiling one of the ablation tests of RS-
Bench without the correct libdevice, one may see the following
error when running bench. py:
cannot handle (augmented) unknown intrinsic

%5 = tail call i32 @llvm.nvvm.d2i.hi(double %0) #21
error in backend: (augmented) unknown intrinsic
clang-13: error

The two DG tests were run using Julia 1.6. Julia at this ver-
sion must be found in your path before being able to run the Julia
tests. To obtain a working Julia installation see https://julialang.
org/downloads/ and follow the provided installation instructions.

DG (CUDA) was run with the libdevice found in Enzyme-GPU-
Tests/libdevicel on CUDA 11.2 by an NVIDIA 2080 Super.

DG (AMD) was run on an AMD Vega 64.

We have provided a similar bench.py script for DG. While
printed in a different format (CSV-style), it contains the same in-
formation about runtimes for both ablation and scaling as the C++
CUDA tests (DG AMD does not have an ablation analysis as it does
not run without all optimizations applied).
$ cd Enzyme-GPU-Tests/DG/cuda
$ python3 bench.py

Note that the numeric verification may come earlier in the
script’s output, and should look something like this:

# Enzyme derivative as the first element of tuple
# followed by numeric approximation on the right
(dQ.dval[1l], (02 - ol) / 0.0001) =\

(-1.105959f0, [-1.10626220703125])

The forward pass alone in the CSV-style output are denoted as
the "primal" rows, whereas the derivative runtimes are marked as
"all_dub".

The DG tests may require additional setup. For example, you see
an output like below (note that this may also occur if you try to
run DG (AMD) on a system without the relevant AMD libraries
available).

Warning: HSA runtime has not been built,\
runtime functionality will be unavailable.
Please run Pkg.build("AMDGPU") and reload AMDGPU.

You may then need to explicitly run various setup routines within
Julia’s package manager. To fix the Julia setup for the test, perform
the following to enter an interactive shell.
$ cd Enzyme-GPU-Tests/DG/rocm
$ julia --project=.
julia> using Pkg; Pkg.build("AMDGPU")

Moses, Churavy, Paehler, Hiickelheim, Narayanan, Schanen, and Doerfert
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