
Hardware-Determined Feature Edges

Morgan McGuire and John F. Hughes*
Brown University

Figure 1: Hidden line, realistic fur, shadow volume, and cartoon fur styles implemented using only the GPU.

Abstract
Algorithms that detect silhouettes, creases, and other edge based
features often perform per-edge and per-face mesh computations
using global adjacency information. These are unsuitable for
hardware-pipeline implementation, where programmability is at
the vertex and pixel level and only local information is available.
Card and Mitchell and Gooch have suggested that adjacency
information could be packed into a vertex data structure; we
describe the details of converting global/per-edge computations
into local/per-vertex computations on a related ‘edge mesh.’
Using this trick, we describe a feature-edge detection algorithm
that runs entirely in hardware, and show how to use it to create
thick screen-space contours with end-caps that join adjacent thick
line segments. The end-cap technique favors speed over quality
and produces artifacts for some meshes.

We present two parameterizations for mapping stroke textures
onto these thick lines—a tessellation-independent screen space
method that is better suited to still images, and an object space
method better suited to animation. As additional applications, we
show how to create fins for fur rendering and how to extrude
contours in world-space to create the sides of a shadow volume
directly on the GPU.

The edge mesh is about nine times larger than the original
mesh when stored at 16-bit precision and is constructed through a
linear time pre-processing step. As long as topology remains
fixed, the edge mesh can be animated as if it were a vertex mesh.

Keywords: NPR, GPU, contour, shadow volume, silhouette

1 Introduction
Many non-photorealistic rendering algorithms draw strokes to
mark the edge-features of a model; these strokes are often
textured, and may not follow the geometry of the model-edge
exactly. Current algorithms can be coarsely divided into
geometric and image-based methods. Geometric methods detect
features and then convert the resulting poly-lines into strokes to be
rendered. Image-based methods examine the color and depth

components of the frame buffer to discern edges. Computing the
edge list on the CPU and transmitting it to the GPU is a bottleneck
for the first class of algorithms; reading back the frame-buffer and
pixel-processing are bottlenecks in the second class.

Card and Mitchell [Card02] and later Gooch [Gooch03]
described a method of packing information about adjacent faces
into a “vertex” data structure that actually represents a single edge
of a mesh, and from which it is easy to determine whether that
edge represents a visible feature. We rediscovered this idea
extended it in several ways; the present paper therefore
contributes (a) a detailed explanation of the underlying method,
and (b) algorithms for using the detected edges in several new
ways. In particular, we present an algorithm for directly
computing and rendering the visible feature edges1 of a model
with thick, textured lines that executes entirely on the GPU after
an initial preprocessing step. We show how to make this
algorithm work for key-frame and skin-and-bones (matrix
skinned) animated models. We describe several applications of
these ideas, and discuss their limitations.

There are four drawbacks of the work: the first is that some
O(n)-time preprocessing is required on the CPU; the second is that
the data sent to the GPU is about nine times as large as the data
sent for an ordinary rendering; the third is that the thick-line-
drawing algorithm, which generally fills in gaps between adjacent
thick line segments, can fail to do so in some cases.; the fourth is
that the size of the vertex program makes it slow down the current
generation GPU, so there’s a substantial loss of rendering speed.

In Appendix A, we briefly discuss two further applications of
these ideas: generating Zorin-Hertzmann-style smooth contours,
and generating suggestive contours.

1.1 Definition of Edge Features
An edge feature is, loosely speaking, an edge we wish to stroke in
a line-drawing of a polyhedral object. This includes contour,
valley-crease, ridge-crease, marked, and boundary edges, each of
which we describe here.

Figure 2 shows an edge between adjacent faces A = <v0, v1, v2>
and B = <v3, v1, v0> with unit face normals

nA = normalize([v1 – v0] × [v2 – v0]) and
nB = normalize([v3 – v0] × [v1 – v0]).

Te edge connects vertices v0 and v1, which have per-vertex surface
normals n0 and n1 respectively. When exactly one of A and B is a

1 We also briefly mention an algorithm for drawing hidden contours.

a. b. c. d.

* e-mail: {morgan, jfh}@cs.brown.edu

front face and the other is a back face with respect to the viewer,
we call the an edge a contour edge2. A ridge-crease-edge is one
where the internal angle between A and B is less than the user-
specified threshold angle θR. A valley-crease-edge is one where
the external angle between A and B is less than the user-specified
threshold angle θV. (Together these last two are called crease
edges.) A marked edge is one that has been selected by a human
modeler to be always considered a contour edge, which is useful
for creating divisions between differently textured regions of a
model or for highlighting details. Finally, some models are not
closed—they have edges that have only a single adjacent face,
which are called boundary edges; following Buchanan and Sousa
[Buchanan00] we count these, too, as feature edges.3

1.2 Target Architecture
The techniques described in this paper are designed for use on
modern programmable graphics hardware implementation, a so-
called graphics processing unit (GPU) that is accessed through an
API like OpenGL or DirectX. We describe the relevant vertex
processing features and limitations of today’s GPUs.

The GPU pipeline consists of four sequential units: vertex
processor, rasterizer, fragment (pixel) processor, and combiner
and a large block (hundreds of megabytes) of dedicated video
memory. This memory is used to store the frame buffer, textures,
and scene geometry. The bus connecting the CPU to the GPU is
often too slow [NVIDIA] to transfer the texture and geometry data
needed every frame; when it is fast enough, demands increase to
once again make it too slow. This imposes a major restriction
necessary for performance: only a small amount of data can be
dynamically updated by the CPU, and a majority must be static
and preloaded before interactive rendering begins. This bandwidth
limitation is so severe that performance can drop by a factor of 10
to 100 when too much data is dynamic. The goal of moving
graphics processing from the CPU to GPU is therefore not just to
lessen the CPU load but to avoid the bandwidth limitation.

Geometry is stored in vertex buffers and fed to the vertex
processor as a stream of vertices. The order of vertices in the
stream can, at the programmer’s choice, either match the order of
their appearance in the buffer or be random access dictated by a
separate index array. The vertex processor is responsible for
transforming vertices from object to homogeneous clip space and
computing the quantities to be interpolated across a triangle
shading like the diffuse and specular lighting components. The
transformation is typically accomplished by multiplying by the
“model-view-projection” matrix MVP.

The vertex processor has two design characteristics that limit
flexibility but allow incredible throughput. First, each vertex must
be processed independently. No information can be stored in
registers between the handling of one vertex and the next, and the

2 Such edges are sometimes called silhouette edges in the literature; we
reserve that term for edges that lie between the object and the background;
such edges are a subset of the contour edges for a closed surface.
3 The Stanford bunny has several of these on its bottom surface, for
example

vertex processor is incapable of writing back to the input buffer.
Second, vertices can neither be created nor destroyed. We discuss
the challenges these limitations present for contour determination
at the end of this section.

Each vertex structure has many fields known as attributes that
are 4-tuples. Usually these are used to store 3D position, surface
normal, color, and multiple sets of texture coordinates at the
vertex but a programmer is free to use them for other purposes
such as encoding animation data. Although the CPU cannot
modify data per-frame, the vertex processor can distort the input
during the object-to-homogeneous-space transformation.

We write the attributes of a vertex using tuple notation. A
mesh vertex typical of real-time applications that stores 3D
position v in attribute 0, 4-component color c in attribute 1, 3D
normal n in attribute 2, and two 2D texture coordinates t0 and t1 in
attributes 3 and 4 is written as <v, c, n, t0, t1>. The unused w-
components of attributes 0, 2, and 3 and the unused z-component
of attribute 3 are ignored; they are present when these attributes
are loaded into registers but are not explicitly stored in the vertex
array. Boolean and small integer values can be stored in the
attributes, albeit encoded as floating point numbers.

The vertex processor offers the normal mathematical, branch,
and logic operators but is severely limited in terms of memory. It
has no stack and is limited to a handful (16 for the current
generation) of general purpose 4-component floating point
registers. Relative addressing is only available against a small
(255) set of constant registers that are written only by the CPU
between batches of vertices. These are used to store parameters
that are uniform across all vertices as well as numeric constants.

The rasterizer collects the transformed vertex stream from the
vertex processor and converts it to primitives, clips those
primitives against the clipping planes, then rasterizes the
remaining portions into fragments which are fed to the fragment
processor. It is not programmable; the programmer chooses only
the desired primitive type (every two vertices is a line, every three
is a triangle, or every four is a quad) prior to sending each batch
of vertices. For additional performance, the primitives can be
connected as strips, where only one vertex is needed per line
segment or triangle and two for each quad. Note that the rasterizer
is the only unit in the pipeline that has a notion of a primitive: the
vertex processor sees only a stream of vertices and the fragment
processor only a stream of fragments.

The fragment processor handles per-fragment texture lookup
and shading. It cannot move the location of the fragment being
shaded or access adjacent fragments, but can abort then rendering
of a fragment. The combiner unit performs final alpha blending
and writes fragments to the frame buffer.

We designed our contour determination algorithm for the
vertex processor because it is the only programmable stage where
3D geometry is available. The limitations of the vertex processor
make contour determination challenging for three reasons. First,
it is a vertex processor but contours are edge features. Second, the
definition of a contour depends on not only the edge’s vertices but
on adjacent vertices as well, and the vertex processor cannot
access these in the one-vertex-at-a-time model. Third, the number
of contour edges is viewer dependent and not known a priori, but
the vertex processor can neither create geometry to build up a
contour list or destroy geometry to cull non-contour edges.

2 Related Work and Other Applications
Packing adjacent face normals into the texture coordinates of a
vertex has been previously proposed [Card02; Gooch03]. In such
a scheme, each edge is rendered as a degenerate quad that is
expanded to non-zero width only if the edge is determined to be a
feature in the vertex processor.

Figure 2: The edge from v0 to v1 with adjacent faces A and B.

v3
v2 v0

v1
nA

nB

n1

n0 A B

 We extend this idea by storing the four vertices of the two
faces adjacent to each edge instead of explicit face normals. This
allows us to construct correct face normals under animation. We
then add a texture parameterization for artistic strokes and per-
face computations for smooth silhouettes and suggestive contours.
We then resolve the practical issues that arise by fixing the gaps
between quadrilaterals, computing correct face normals for
animated models, providing faster rejection using clip planes,
addressing coherence, compressing data, and identifying
shortcomings of the general technique.

Edge feature rendering methods can be classified into those
that construct stroke geometry and those that operate on images.
Geometry approaches such as ours construct explicit stroke
geometry for contours and then deform or texture that geometry to
produce stylized strokes. Previous geometry methods operated in
whole or in part on the CPU. Markosian et al. [Markosian97]
create strokes from contour edges detected using a randomized
algorithm; Gooch et. al [Gooch99] compute silhouettes by treating
face normals as points of the sphere, and edges as great arcs
between these normal vectors, so that finding silhouettes amounts
to intersecting this sphere mesh with a great circle; and
Hertzmann and Zorin [Hertzmann00] used a dual-surface
approach, in which tangent places to the surface are mapped to
points in a dual space, and the contour-detection problem becomes
a surface-plane intersection problem in that space, which can be
solved quickly with BSP methods. From stroke geometry, a
coherent texture parameterization can be developed. The coherent
stylized silhouette method by Kalnins et al. [Kalnins03] provides
nearly ideal frame-to-frame coherence as well as nicely placed
strokes for a still image by explicit pixel flow between frames.
Because their method cannot be implemented on the vertex
processor we rely on a significantly less sophisticated methods.
Our texture parameterizations are lower quality, but can be
executed in parallel on multiple vertex units and are therefore
amenable to substantially higher performance.

Image methods such as Saito and Takahashi’s G-buffer
[Saito90] detect depth, color, and curvature discontinuities in a
rendered image. ATI engineers implemented this method in a
pixel program for a real-time NPR demo shown at SIGGRAPH
2002 [Mitchell02]. Gooch et. al [Gooch99] observe that
environment maps can darken the contour edges of a model but
the resulting lines have uncontrolled, variable thickness. Dietrich
[Dietrich99] refined this idea and used it with dithered two-tone
shading to produce cartoon images on the GPU; Everitt
[Everitt00] used the isotropy of MIP-maps to achieve a similar
effect. Image methods have limited artistic style because there is
no explicit stroke geometry to manipulate. However, they are able
to detect edge features not explicitly present in the underlying
mesh, for example, contours on parametric curves and the valley
at the intersection of two polygons. Our method cannot detect
these features.

Raskar proposed a hybrid [Raskar01; 02] that constructs a
black polygonal halo around every triangle in a mesh (Dietrich
also proposed an early version of this using enlarged black
backfaces). This halo can be oriented so that it is exposed only
along contours and is otherwise concealed inside the mesh (artists
have long used a similar trick of a large, inside-out mesh to
simulate cartoon outlines on video game characters). Although he
describes a CPU solution, it is straightforward to implement his
method using only the vertex processor, however the conversion
will still rasterize many more polygons than our method. Raskar’s
method is limited to thin, black lines and cannot render thick or
stylized strokes.

Our method for selectively turning edges into extruded quads
also has applications for realistic rendering methods. We briefly
outline two such applications.

A real-time, realistic fur algorithm [Lengyel01] renders
individual hairs by stacking sheets of fur cross-section texture
called shells. When shells are stacked nearly perpendicular to the
view direction the individual layers can be seen, so Lengyel et al.
add quads called fins textured with hairs in profile at these
locations. They determine fin locations, which are near contour
edges, on the CPU. We implement their algorithm entirely on the
GPU. The vertex program used for shell rendering displaces each
vertex slightly along its normal. For fin rendering, a separate
vertex program detects locations where absolute value of the dot
product of the view vector and one of the normals along an edge
is greater than a threshold. As with our contour rendering
algorithm, these edges are culled by moving them beyond the near
clipping plane. The other edges are extruded into fins in a manner
analogous to our thick line rendering algorithm. For contour
rendering we extrude half-quads along the screen space
perpendicular; for fur rendering, we extrude along the object
space normal. The furry bunny in Figure 1b is rendered with this
method.
 The shadow volume method of shadow determination was
introduced by Crow [Crow77]. He creates volumes bounding all
points shadowed by an object by extruding the contour edges of
that object away from the light source. Lengyel [Lengyel02]
showed how to perform the extrusion in hardware using two
copies of each the input mesh vertex distinguished from each
other by a w-component of either 0 or 1. His notion of duplicate
vertices displaced according to an integer attribute is the
inspiration for the attribute i in our edge mesh data structure.
Although he extruded the volumes in hardware, Lengyel
performed contour edge determination on the CPU. Using the
edge mesh we can implement both the edge determination and
extrusion steps on the GPU in a single vertex program. This
vertex program culls non-contour edges as previously described
and creates quads stretching from contour edges to infinity, away
from the light source. Again these quads are similar to thick lines,
but rather than extruding a finite distance along the perpendicular
we extrude an infinite distance along the negative light vector.
The shadows in figure 1c were rendered with this method. The
other aspects of the shadow volume method are unchanged and
we refer the reader to our comprehensive shadow volume paper
[McGuire03] for details.

Our shadow method is similar to the one proposed by Brennan
[Brennan2003] that uses the face-normal structure of Card et al.
Our enhancements to the work of Card et al. extend Brennan’s
shadows with the benefits of our NPR method: removal of
unextruded edges earlier in the pipeline using a clipping plane and
correct face normals under animation. To save space and achieve
better vertex performance we render light and dark shadow caps
from the original and reserve the edge mesh for the sides. This
offsets the cost of computing correct face normals which Brennan
mentioned in passing, but rejected as too expensive because his
algorithm was vertex limited from the degenerate edges on the
caps.

Brabec and Seidel [Brabec03] determined contour edges on
the pixel processor using vertices encoded as color values and
McCool [McCool03] computed shadow volumes from a depth
map using an edge filter implemented on the pixel processor. Both
require a CPU step to convert pixel values read back from the
GPU into vertex values for a subsequent rendering pass. Although
future hardware is likely to support this readback operation
without CPU intervention, using the output of one rendering pass
as the input for the next will always limit performance because
shadow volume rendering cannot proceed until contour edge
determination is complete.

3 Edge Mesh
Our contour determination technique sends geometry for all edges
through the vertex processor and culls non-contour edges by
transforming them behind the near clipping plane. This works
around the vertex processor’s inability to explicitly destroy
geometry, and since clipping occurs before rasterization, there is
little cost for the edges that are culled. The key idea is to use the
vertex-list not as a way to transmit information about vertices to
the GPU, but rather to transmit information about edges. Thus
each entry in the vertex list will really hold information about an
edge in the model (and indeed, this edge information will be listed
in four successive vertices, for reasons that will become apparent).
To perform a per-edge contour determination at the vertex level
we pack all of the information about an edge into the attributes of
a vertex. We call a set of attributes packaged in this manner an
edge vertex and represent it as <v0, v1, v2, v3, n0, n1, r, i> where the
first six fields are the 3D vectors from figure 2, r is a random
scalar used for texture parameterization and i is an integer
between 0 and 3, inclusive, that differentiates the inside, outside,
start, and finish ends of a thick edge stroke.

In a pre-processing step, we compute the edge mesh from an
input mesh of indexed triangles with per-vertex normals.4 Every
undirected edge with index j in the input mesh becomes four
consecutive edge vertices with indices 4j, 4j + 1, 4j +2, and 4j + 3
in the edge mesh. These four edge vertices are identical except for
the i values, which successively have values {0, 1, 2, 3}. Because
the edges are undirected in the input mesh, direction of the edge in
the edge mesh is arbitrary, that is, v0, v2, n0 can be swapped with
v1, v3, n1 for all four edge vertices and produce an equivalent
mesh. We use v3 = v0 to signify a boundary or marked edge.

3.1 Memory use
Each edge vertex in the edge mesh requires 80 bytes in 32-bit
floating point representation and 37 bytes if the vectors are stored
with 16-bit integer precision and i and p are packed into a single
byte. For comparison, an input mesh vertex with a color, position,
and two 2D texture coordinates <v, c, n, t0, t1> requires 52 bytes
per vertex in floating point representation. An input mesh with E
edges produces an edge mesh with 4E vertices. Because the
numbers of vertices, edges, and faces (for an orientable surface)
are related to the genus, g, by V – E + F = 2 – 2g, and because 3F
= 2E, we get 3V – 3E + 2E = 3(2 – 2g), i.e., E = 3(V – 2 + 2g). For
typical closed meshes5 the genus g is small, and we can say that E
is about 3V. Thus on the whole, the edge mesh requires about 3 . 4
. 37 / 52 = 9 times as much storage as the input mesh.

3.2 Thin Line Contours – a straw-man algorithm
We need a vertex program and index array to render the edge
mesh; alone it is just an array of several collocated vertices with
unusual texture coordinates.

To render the contour edges of the input mesh as line
segments – the simplest possible form of contour-rendering – we
can render a line segment between alternate pairs of edge vertices.
This is done by rendering an indexed line set using the edge mesh
vertices an index array of the form [0, 1, 4, 5, …, 4E – 2, 4E – 1].6

4 The per-vertex normals can be computed using any reasonable weighting
of adjacent face normals and need not have unit length. Only the mesh
geometry is significant so collocated vertices can be welded together.
5 For orientable meshes with B boundary components (connected
collections of boundary edges), Euler’s formula becomes V – E + F = 2 –
2g – B; once again, if the number of boundary components is small, the
number of edges is approximately three times the number of triangles.
6 Note that in this algorithm, we ignore edge vertices with indices 2, 3, 6,
7, ... and hence could store only half as much data on the GPU.

Every pair of edge vertices is collocated, so these line segments
are initially degenerate. We use a vertex program to displace the
vertices to form an edge and cull the edge when it is not a contour.
The program is simple: the output is the point <0, 0, –1, 1> ,
which is behind the near clipping plane, if the vertices are on an
edge that is not a contour, otherwise the output is the product of
matrix MVP and v0 for edge vertices with i = 0 and the product of
MVP and v1 for edge vertices with i = 1.

A vertex is on a contour when any of the following
expressions are true:

Contour [nA · (eye – v0) < 0] XOR [nB · (eye – v0) < 0]
Ridge [nA · nB < – cos θR] AND [(v3 – v2) · nA ≤ 0]
Valley [nA · nB < – cos θV] AND [(v3 – v2) · nA > 0] (1)
Marked v3 = v0
Boundary v3 = v0

In Equation 1, eye is the eye-point—the object space position of
the viewer, or center of projection—θR and θV are the ridge and
valley thresholds, and nA and nB are the unit face normals. The
eye-point and cosines of threshold angles are uniform across all
vertices and can be computed once per object per frame. The face
normals are recomputed in the vertex program from the face
vertices for every vertex. Marked and boundary edges are
recognized by the v3 = v0 convention which must be enforced
when the edge mesh is created.
 Although OpenGL supports line rasterization for thick lines, it
does not provide line joining. A gap appears at the corner where
two thick lines meet, as shown in figure 3. DirectX does not
support thick line rasterization at all. This first method is therefore
only suited for thin edges with a thickness of one or two pixels.

3.3 Thick Contours
We render thick edges in three passes. The first pass extrudes each
edge along its perpendicular to form a quad. The second and third
passes create start and finish caps at the ends of each edge. When
two edges meet at a vertex, as depicted in figure 4, their caps fit
together to fill the gap shown in figure 3 (right), creating a smooth
join.

The first pass uses an index array containing the integers from 0
to 4E, in order.7 It uses a vertex program that displaces each of the

7 As a shortcut, the OpenGL function glDrawArrays processes each vertex
in an array in order, without an index array of sequential integers.

Figure 3: Thick lines leave a triangular gap where they
meet (left). We introduce end caps to fill the gap (right).

s0 s1

p
m0

m1

quad

start cap finish cap “outside”

Figure 4: The edge between screen-space points s0 and s1
extruded into a thick quad with triangular end caps between
the quad and vertex normals.

“inside”

four edge vertices for an edge to a different corner of the quad. As
before, if the edge is not a contour, all vertices are transformed to
<0, 0, –1, 1> where they are culled by the near plane. For each
edge vertex, let s0 = (MVP * v0)xy and s1 = (MVP * v1)xy be the xy
parts of the screen space projections of v0 and v1. The unit length
screen space perpendicular to the edge is p = normalize(<s0y – s1y,
s1x – s0x>), the unit length screen space projection of the vertex
normal is m0 = normalize(MVP * [v0 + n0]xy – s0), and the
transformed position depends on i as follows:

=+
=+
=−
=−

=

3
2
1
0

0

1

1

0

 vertexquad

ips
ips
ips
ips

pos
 (2)

This produces a degenerate quad that is culled for each non-
contour edge and a non-degenerate 2-unit thick quad for each
contour edge. The thickness can be adjusted by scaling p. Because
it is a screen space vector, a scale factor of k divided by screen
resolution produces a k-pixel thick line.
 It is sometimes desirable to only draw half the quad, for
example, to eliminate overdraw on the interior of an object when
rendering a silhouette. Equation 3 gives coordinates for a half
quad that is on the outside (side of the projected normal) of the
edge.

=•+
=•+
=
=

=

3)sign(
2)sign(
1
0

00

01

1

0

 quad half

ipmps
ipmps
is
is

pos
 (3)

The sign function returns –1 for a negative argument and +1 for a
positive argument.

The second pass uses an index array containing triples of
vertices of the form [0, 1, 2, 4, 5, 6, …, 4E – 4, 4E – 3, 4E – 2].
These form the start-cap triangles. Equation 3 gives the
transformed vertex position as a function of j, which is equal to i
when m0 and p are in the same direction (i.e., forward traversal
yields a front facing cap) and (2 – i) when backward traversal of
the vertices is required to create a front face.

=+
=•+
=

=
2
1)sign(
0

00

00

0

exstart vert

jms
jpmps
js

pos (4)

As before, the sign(m0
. p) term ensures that the second edge

vertex in each triangle is on the outside of the stroke. The third
pass produces the finish-caps using the same index array and an
equivalent transformation at the finish vertex:

=+
=•+
=

=
2
1)sign(
0

11

11

1

texfinish ver

jms
jpmps
js

pos (5)

where m1 = normalize(MVP * [v1 + n1]xy – s1). Stroke thickness is
controlled by both scaling m and p. As with the thin line and quad
programs, both end cap vertex programs transform vertices that
are not on contour edges to the point <0, 0, –1, 1>.
 The quad and two end caps fit together with adjacent lines to
form a solid thick line without gaps, as shown in the right half of
figure 4. The gap between quads appears on the convex side of the
projected curve. On the concave side the two quads overlap. That
overlap is an incorrect rendering but looks good; it is both hard to

see (even with a structured texture) and is often hidden inside the
model anyway. We'd like to insert triangles connecting each quad
to its neighbor to close the gap on the convex side. Because edges
do not have information about neighbor edges, we use the only
mutual information available: the normal at the shared vertex.
Projected into screen space, this provides a common point to
which both edges can connect triangle joins. We use two triangles
because there is no way, given the limited information available in
an edge vertex, to fill the gap between two thick lines with a
single triangle.
 This method of rendering line caps assumes that the projected
vertex normal lies between the ends of the quads for adjacent lines
and that it points towards the outside of the curve being stroked.
Figure 5 shows a case where this assumption does not hold and
gaps appear. When the end of a cylinder is viewed from a
particular angle under perspective projection the vertex normals
along the ridge point into the curve instead of out of it. The
underlying cause is that vertex normals poorly capture the sharp
curvature at this location; a beveled corner would not exhibit the
same problem. The method also fails in the more rare case where
the per-vertex normal is degenerate under projection. These
problems do sometimes occur for creases and boundary edges;
vertex normals, however, seem to reliably point the outside of a
mesh at the contour edges, making them relatively immune
regardless of curvature (see Appendix B.)

3.4 Rendering Silhouettes
For a closed manifold (mesh without boundary edges), the
silhouette between the rendered mesh and the background is a
subset of the contour edges. The silhouette cannot be
geometrically distinguished on the vertex processor. We therefore
use the traditional approach: render a write mask to the stencil
[McGuire02] or depth [Rossignack92] buffer and suppress the
internal contour edges that are not on the silhouette with a per-
pixel test against that mask. To avoid the expense of clearing the
stencil buffer between each mesh, we extend the stencil buffer
method with an incrementing test value as follows.
 Before rendering the frame, initialize a variable S to 0 and
clear the stencil buffer to 255. For each model:

 1. Set S := (S + 1) mod 255
 2. If S == 0 then clear stencil buffer to 255
 3. Render the model, setting stencil to S wherever
 the depth test passes
 4. Set the stencil test to pass where stencil == S
 5. Render contour edges

 For a scene with many objects, this reduces the number of
times the stencil buffer must be cleared by a factor of 254. The

Figure 5: The line capping method fails along the ridge line of
this cylinder where the projected vertex normals are a poor
indication of its curvature.

Figure 6: Brush stroke textures used to create figures 1 and 8.
From top to bottom: cartoon fur scanned from The Lorax by Dr.
Seuss, hand drawn watercolor stroke, charcoal from the Adobe
Photoshop brush palette, hand drawn pen stroke.

thin contours on the robot in figure 7c are rendered as previously
described; thick boundary strokes on the silhouette were then
added in a separate rendering pass with this method.

3.5 Hidden Contours
With this algorithm, we can also generate renderings in which
hidden contours are rendered as dashed lines. This involves three
passes. We first draw all models in the scene with a depth offset
using the OpenGL glPolygonOffset command. Then for each
hidden-contour model, we render solid contours. We then change
the rendering style to “dashed,” invert the sense of the depth test,
and re-render the edges; only those that are occluded will appear
dashed. This is essentially an easy application of Appel’s
“quantitative invisibility” idea [Appel79]. Figure 1a shows a
mechanical part rendered with this hidden line style.

3.6 Animating the Mesh
So far we have discussed a static mesh with a variable model view
transformation. The edge mesh may be animated in the same way
that an ordinary input mesh is animated by transforming each of
the four vertices and two normals encoded in an edge vertex.
Input meshes are typically animated through keyframe and
skeletal animation; we briefly describe the extension of these
ideas to edge-meshes.
 In hardware, the vertex stream can be composed from separate
attribute streams as they are fed to the vertex processor. A
common way to perform interpolated keyframe animation on the
input meshes is to store the vertex positions for each frame in
separate buffers and to specify the input stream as <v, v’, …>
where v is the previous frame, v’ is the next frame, and the
attributes not relevant to animation are not shown. A uniform
parameter α controls the interpolation between these through a
simple vertex program of the form posframe = MVP*[v +α (v – v’)].
 To extend this design to the edge mesh, we create a set of
vertex positions and normals for each keyframe and send streams
for the previous and next frame. The vertex processor now sees
edge vertices of the form <v0, v1, v2, v3, n0, n1, v0’, v1’, v2’, v3’, n0’,
n1’, r, i>, and interpolates corresponding data just as above.
 Skeletal animation requires less data and often produces more
desirable results. Fernando and Kilgard [Fernando03] describe
how skeletal animation with four bone influences per vertex is
performed on hardware using vertices of the form <v, …, M, β >
where M is a vector of four matrices and β is a vector of
corresponding blending weights. To implement skeletal animation
of an edge mesh, we extend the edge vertex with four M and β
values, one for each vertex. The vertex processor now sees edge
vertices of the form <v0, v1, v2, v3, n0, n1, M0, M1, M2, M3, B0, B1,
B2, B3, r, i>, where M0 and B0 are the parameters for v0 and n0, v0,
M1 and B1 are for v1 and n1, M2 is for v2, and M3 is for v3.
Although each vertex is large, it is within the 16-attribute limit of
current hardware.

4 Texture Parameterization
We map textures like those in figure 6 onto the thick lines to
produce stylized strokes. These stroke textures are designed so
that the horizontal texture coordinate varies from 0 to 1 along the
length of the stroke from start to finish and the vertical texture
coordinate varies from 0 to 1 from the outside to the inside of the
stroke. The “inside” of a stroke is the side that should lie against
the body of an object when stroking the silhouette and the
“outside” is the side that should lie against the background. These
textures tile in the horizontal direction and are clamped in the
vertical direction.

We require a parameterization on the mesh that maps vertices
to texture coordinates to place these textures along the strokes. A
good parameterization minimizes texture distortion and provides
continuous coordinates in both space and time (frame coherence).
Previous NPR stroke methods [Markosian97; Kalnins03] were
able to satisfy these criteria by combining adjacent edges into a
single stroke and examining the previous frame because they
operated on the CPU. These sorts of data are not available on the
GPU vertex processor, so the available parameterizations are
significantly limited.

 We propose two parameterizations, one in object space and
one in screen space, that are both inexpensive to compute and can
execute on the vertex processor. Neither of our parameterizations
is ideal. As a compromise to the lack of data available, they trade
space continuity against time continuity. Under both, the vertical
texture coordinate is always 0 on the outside of the stroke and 1
on the inside, so only the horizontal texture coordinates at the start
and end of the stroke, u0 and u1, are of interest.
 Let s0, s1, and c be the screen space projections of object space
vertices v0, v1, and the object space origin <0, 0, 0>. Recall that

Figure 7: Rendering styles created by varying the contour stroke and mesh fill texture: pen and ink, charcoal, anime, and watercolor.

Figure 8: Screen (left) and object (right) space texture
parameterization for the bunny. The object space method
degenerates to noise for highly tessellated models like this.

every group of four edge vertices is assigned a random scalar, r.
We now use that value as a unique parameter for each edge. The
object space parameterization assigns u0 = r at the start of a stroke
and u1 = r + w|s1 – s0| at the end of a stroke, where w is the line
width times sign(m0 • p), which is used here to maintain the aspect
ratio of the texture and flip the texture direction as needed so that
strokes wind in consistently around the silhouette. The strokes
rendered with this parameterization have constant tiling frequency
in screen space. Spatial discontinuities occur at the ends of edges,
so this parameterization is only appropriate for meshes with large
screen space edges like the robot in 7c or the base of the teapot in
figure 7d, or for stroke textures with little structure where texture
discontinuities are unlikely to be noticed, like the charcoal and
pen strokes in figure 6. This parameterization provides excellent
frame coherence under animation, deformation, and translation.
Under rotation, marked, boundary, and crease edges have
coherent parameterizations between frames but contour edges
may experience discontinuities when the model rotates far enough
that one contour edge is replaced with another near-by in screen
space.
 An alternative screen space parameterization assigns
u = w(sy – cy) for both ends of a mostly vertical edge and assigns
u = w(sx – cx) for both ends otherwise. A mostly vertical edge is
one where |s1y – s0x| > |s1x – s0x|. This parameterization has spatial
discontinuities only where horizontal and vertical edges meet. It is
completely independent of the tessellation of the mesh and
produces good still images—the cartoon fur in figure 1d was
rendered with this parameterization (the interior lines are valleys
stroked with our “pen” brush to give the bunny some detail). The
bunny has such high tessellation that the object space
parameterization yields only noise, as shown in figure 8. Because
it uses coordinates relative to the screen space projection of the
object space origin, the screen space parameterization produces
frame coherent results under translation perpendicular to the view
vector. Most objects exhibit no frame coherence under
deformation, animation, scale changes, and large rotations.
 We find that contour edges are best rendered with half quad
strokes where the u values map directly along the inside of a
stroke and are stretched across both the caps and quad on the
outside. Figure 9 demonstrates this mapping, where the on outside
of the stroke u0 and u1 are the exterior cap texture coordinates and
the quad texture coordinates are resolved by linear interpolation.
 For other contours, we use the u values for both the quad
corners and the caps, causing a single column of texture to stretch
across the caps. This distortion is undesirable, but the alternative
is to draw the quad in two pieces since no interpolated texture
distortion on a single quad could texture the inside half of the

quad from the top half of the texture and still make the quad’s
texture line up with the caps.

5 Performance
Our complete algorithm with textures incurs about a factor-of-30
cost over rendering the untextured, underlying mesh. There are
two main reasons: the vertex program is long and our
implementation lacks significant optimizations.

Vertex programs run in time roughly linear in the number of
instructions, but with a large performance drop at around 20
instructions, presumably due to the architecture of today's GPUs.
Our vertex program has about 200 instructions for the quad and an
additional 200 for each cap. In comparison, the fixed function
pipeline requires the equivalent of about 5 instructions.

Our vertex program has not been optimized. For flexibility, it
uses many slow IF statements to enable optional rendering of
marked edges, creases, etc., and the program is then compiled
with a pre-release compiler and run on a vertex processor that is
only in its second generation.

Our goal was to move processing 100% onto the GPU by
framing the (serial) CPU contour determination as a (parallel) per-
vertex problem. At this point parallelism can be brought to bear
on the problem by increasing the number of vertex processors,
which work in parallel. As vertex processors and their compilers
improve and the number of vertex processors increases,
techniques like the ones we have discussed will become
commonplace and dramatic performance gains will be available.

That said, limited applications of our methods are suitable for
use on today's processors, even for games, with significant hand
optimization. Reducing the thin-line algorithm to nearly the bare
minimum for rendering contour edges (29 instructions), we can
render a 163,000 (visible) polygon scene (more geometry than is
visible in most games) and its contour edges at 25 fps with 4x
antialiasing on an NVIDIA GeForceFX 5900 Ultra card. As
another datum, we can render 100,000 polygons at a rate of 5 fps
for mesh and quad contour strokes, 36 fps for mesh and contour
lines, and 250 fps for the mesh alone.

 c. d.

(u0, 0)

(u1, 0)

(u1, 1) (u0, 1)

(u0 + a(u1 – u0) / d, 0)
a b c

(u1– b(u1 – u0) / d, 0)

(u1, 0.5) (u0, 0.5)

(u0, 0) (u0, 0)

(u1, 0)

(u1, 0)

(u1, 0) (u0, 0)

Figure 9: Mapping a stroke texture (top) to a half-quad stroke
(center) and full-quad stroke (bottom). a = length of start cap, b
= length of quad, c = length of finish cap, d = a + b + c. Other
labels are texture coordinates at vertices.

6 Discussion and Future Work

Because we create thick lines in screen space, we assume that
both ends of the line can be projected to finite screen coordinates.
This assumption does not hold for an edge that crosses the plane
z = 0. Although we have not done so, presumably our method can
be extended to support edges that cross this plane by clipping
them at the near clip plane in the vertex program.
 We have moved edge feature determination and texturing
from the CPU to the GPU. This unlocks the potential for higher
performance through parallel execution but comes at a reduction
in quality compared to previous methods. For stroke textures with
significant structure (e.g. the Dr. Seuss texture), our screen-space
parameterization produces reasonable results for still images but is
barely adequate for animation. The object space parameterization
works very well for meshes with large edges in screen space but
produces noise for highly tessellated meshes. Our end-cap
rendering method for thick lines fails to render creases correctly
on models with sharp corners. The straightforward solution—
replacing the triangle end caps with half-disks— works well for
solid-color, opaque lines, albeit at the expense of several extra
rendering passes to create all of the geometry. That solution is
inappropriate for textured lines, which require a unique
parameterization across the end caps.
 Our methods can provide high performance and attractive
results for rendering relatively thin or noisy lines (figures 1a, 7ab),
fur (figure 1b), and shadows (figure 1c) and are well suited for
interactive applications like games and CAD. More abstract
rendering styles with thick strokes like cartoon fur (figure 1d) and
watercolor (figure 7d) also have high performance but require
hand tuning for each model to achieve attractive results.
Improving these is an interesting area for future work.
 We expect the current restrictions on GPUs to be relaxed over
time, leading to improved edge mesh implementations. By 2005,
there should be graphics cards available that will be able to
perform a memory lookup (texture reference) from the vertex
processor. This will allow a more space-efficient edge mesh
because each vertex and normal can be stored as one integer index
instead of three floating point numbers. The DirectX Next
[Microsoft03] specification, with hardware anticipated in 2006,
will allow vertices to be created and destroyed on the GPU and for
the vertex processor to write to memory. This will eliminate the
need for culling with clipping planes, and likely enable more
sophisticated frame coherence for stroke textures and hysteresis
for suggestive contours. Of course at that point the GPU will be
very close to a general purpose processor and the history of the
“wheel of reincarnation” suggests that it will be brought closer
and closer to the main processor, whereupon a new “close to the
display” graphics processor will be developed and limiting the
bandwidth to that processor will again be relevant.

Acknowledgements
John thanks the Evasion group at INRIA Rhône-Alpes, where he
was on sabbatical during this project. Morgan is supported by an
NVIDIA Ph.D. fellowship. Simon Green provided support for the
pre-release Cg compiler and NVIDIA donated the GeForceFX
5900 Ultra graphics cards on which the images were rendered.
Tomer Moscovich implemented radial curvature for suggestive
contours and Tomer, Sarah, Nick, and Hari helped prepare this
paper. Both authors thank the anonymous reviewers who not only
identified important related work but kindly described the
advantages of our approach for us; many of their words appear
verbatim in section 2.

References
APPEL, A., ROHLF, F., AND STEIN, A., The Haloed Line Effect for
Hidden Line Elimination. Computer Graphics (Proc. SIGGRAPH
'79), pp. 151-157, 1979.

BRENNAN, C. Shadow Volume Extrusion Using a Vertex Shader.
in ShaderX: Vertex and Pixel Shaders Tips and Tricks, Wolfgang
Engel editor, Wordware, May 2002.

BUCHANAN, J. W. AND SOUSA, M. C. The edge buffer: A data
structure for easy silhouette rendering. In Proc. of NPAR 2000,
pp. 39-42, 2000.

BRABEC, S. AND SEIDEL, H. Shadow Volumes on Programmable
Graphics Hardware. Proceedings of Eurographics 2003

DREW CARD AND JASON L. MITCHELL, Non-Photorealistic
Rendering with Pixel and Vertex Shaders. in ShaderX: Vertex and
Pixel Shaders Tips and Tricks, Wolfgang Engel editor, Wordware,
May 2002.

CROW, F. C. Shadow Algorithms for Computer Graphics.
Computer Graphics (SIGGRAPH ’77 Proceedings), 11(2): 242-
248, July 1977.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND SANTELLA,
A. Suggestive Contours for Conveying Shape. ACM Transactions
on Graphics. 22(3):848-855, July 2003.

DIETRICH, S. Cartoon Rendering and Advanced Texture Features
of the GeForce 256 Texture Matrix, Projective Textures, Cube
Maps, Texture Coordinate Generation and DOTPRODUCT3
Texture Blending. NVIDIA Corporation, Austin, TX.
http://developer.nvidia.com/object/Cartoon_Rendering_GeForce_
256.html

EVERITT, C. One-Pass Silhouette Rendering with GeForce and
GeForce2. NVIDIA Corporation, Austin, TX.
http://developer.nvidia.com/object/1Pass_Silhouette_Rendering%
20.html

FERNANDO, R. AND KILGARD, M. J. The Cg Tutorial: The
Definitive Guide to Programmable Real-Time Graphics, Addison-
Wesley, ISBN 0321194969, March 2003.

GOOCH, B., SLOAN, P.J., GOOCH, A., SHIRLEY, P. AND RIESENFELD,
R. Interactive technical illustration. In Proc. of 1999 ACM
Symposium n Interactive 3D Graphics, April 1999.

GOOCH, B. in Theory and Practice of Non-Photorealistic
Graphics: Algorithms, Methods, and Production Systems, course
organized by M. C. Sousa. SIGGRAPH 2003 Course notes 10.

HERTZMANN, A. AND ZORIN, D. Illustrating smooth surfaces.
SIGGRAPH 2000 Conference Proceedings. New Orleans,
Louisiana. pp. 517-526. July 23-28, 2000.

KALNINS, R. D., DAVIDSON, P. L., MARKOSIAN, L., FINKELSTEIN,
A. Coherent Stylized Silhouettes. Proc. of SIGGRAPH 2003. pp.
856-861, 2003.

LENGYEL, J. E., PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. Real-
time fur over arbitrary surfaces. In ACM Symposium on
Interactive 3D Graphics, March 2001.

LENGYEL,8 E.. The Mechanics of Robust Stencil Shadows.
Gamasutra, October 11, 2002.
http://www.gamasutra.com/features/20021011/lengyel_01.htm.

MARKOSIAN, L., KOWALSKI, M., TRYCHIN, S., AND HUGHES, J. F.
Real-Time Non-Photorealistic Rendering. In SIGGRAPH 97
Conference Proceedings, August 1997.

MCCOOL, M. D., Shadow volume reconstruction from depth maps.
ACM Transactions on Graphics, 19(1):1–26, January 2000.

MCGUIRE, M. Object outlining. flipcode, 2002
http://www.flipcode.com/articles/article_objectoutline.shtml

MCGUIRE, M., HUGHES, J. F., EGAN, K., KILGARD, M. J., AND
EVERITT, C. Fast, Practical and Robust Shadows. Brown Univ.
Tech. Report. October 27, 2003.

MICROSOFT. DirectX Preview. Slides from Meltdown 2003
Developer Conference, Seattle WA.
http://www.microsoft.com/downloads/details.aspx?FamilyId=331
9E8DA-6438-4F05-8B3D-B51083DC25E6&displaylang=en

MITCHELL, J., BRENNAN, C., CARD, D. Real-Time Image-Space
Outlining for Non-Photorealistic Rendering. SIGGRAPH 2002
Sketch.
http://www.ati.com/developer/SIGGRAPH02/SIGGRAPH2002_S
ketch-Mitchell.pdf

NVIDIA, NVIDIA nForce IGP TwinBank Memory Architecture,
Technical Brief, undated

RASKAR, R. AND COHEN, M.. Image precision silhouette edges. In
Proc. of 1999 ACM Symposium on Interactive 3D Graphics, April
1999.

RASKAR, R. Hardware support for non-photorealistic rendering.
Proc. of SIGGRAPH/Eurographics Workshop on Graphics
Hardware, pp. 41-46, 2001

ROSSIGNACK J. AND VAN EMMERIK, M. Hidden contours on a
framebuffer. In Proc. of SIGGRAPH/Eurographics Workshop on
Graphics Hardware. 1992.

SAITO, T. AND TAKAHASHI, T. Comprehensible rendering of 3d
shapes. Proc. of SIGGRAPH ’90, pp. 197-206. 1990.

Appendix A: Smooth Silhouettes and Suggestive
Contours
With a small modification the methods described in this paper we
have also generated “smooth” contour edges in the style
Hertzmann and Zorin [Hertzmann00]. These are piecewise linear

8 Eric Lengyel and Jed E. Lengyel really are different people, despite
sometimes working on related subjects.

curves that exhibit less pronounced angles than the actual contour
edges for the silhouette of the object, making it appear more
smooth.

Instead of “edge-vertices” we create triangle-vertices that
store <v0, n0, v1, n1, v2, n2, r, i>, the position and vertex-normal at
each vertex of the triangle, the scalar used for parameterization,
and the 0..3 index to distinguish the otherwise identical four
vertices created for each triangle. From this data one can compute,
for each edge of the triangle, the location p (if any) of a zero of
the function f(p) = (p – eye) • np, where np is interpolated from the
normals at the ends of the edge. If this function has zeros on two
edges at points pA and pB, we treat the line segment between those
points as a contour and render it as previously described, with pA,
pB, nA, and nB replacing v0, v1, n0, n1 in the edge vertex equations.9

Similarly, it may be possible10 to approximately11 implement
the suggestive contours of DeCarlo et al. [DeCarlo03] in
hardware; we have done so in a software simulator to produce the
results shown in Figure 11. (We did not do so in hardware
because the information required per vertex, for a simple
implementation, slightly exceeded the current hardware’s
capacity, and compressing it is merely an exercise in space-
hacking.) Our software implementation works like this: Again for
each triangle one generates a triangle-vertex. But the information
at each triangle-vertex is more complex: we send three sets of
information as before, one per vertex, but for each vertex we
include vi, the vertex position, ni, the vertex normal, and di,1, ki,1,
di,2, and ki,2, where di,1 is the direction of greater principle
curvature, and ki,1 is the larger principle curvature, and di,2 and ki,2
are the direction and value of the lesser principle curvature. From
this information, we can estimate the radial curvature at each
vertex as follows (dropping all i subscripts):

First, let e = eyePoint – v, and w = normalize(e – n (e • n)),
i.e., w is the projected “look” vector at the vertex. Then we
compute the radial curvature at the vertex as

kr, =(d1 • w)2 k1

 + (d2 • w)2 k2

With these radial curvature values at each vertex, we proceed

with the smooth-silhouette algorithm, using the radial curvatures
rather than n • e. If all three have the same sign, we cull the
segment by sending it behind the clipping plane. Otherwise, we
determine the two edges, AB and AC, along which kr has zeroes.

Along these two edges, we estimate the gradient of the radial
curvature via

∇kAB = (kB - kA) (B – A) / ||B – A||2
∇kAC = (kC - kA) (C – A) / ||C – A||2
W = normalize(E – N (N • E)),

where N is the face normal and E is a vector from the eye to either
of the two vertices (since we’re assuming that all triangles are
small).

If either (∇kAB • W < 0) or (∇kAC • W < 0), then the zero-
contour runs through a valley, and we reject it. Otherwise, we
compute and draw the zero-contour as in the smooth-silhouette
case.

9 We ignore the zero-probability event where f is zero on the entire
triangle, although one could generate output in that case.
10 We have not yet done so; the implementation of the main algorithm was
delayed until shortly before the submission deadline by Cg 1.0 compiler
problems, which the NVIDIA compiler team fixed for us in Cg 2.0.
11 The approximation involves assuming that the suggestive-contour-
detection function, Dw(n•v) in the notation of DeCarlo et al., is
approximately linear over each polygon; for models with large facets this
is a bad assumption, and the method will produce meaningless results.

Figure 10: Suggestive-contour triangle-vertex: the locations
and normals at each vertex are stored, along with the derivative
of the normal at each vertex, expressed in the A0B0-coordinate
system at v0 and in similar coordinates at each of the other
vertices.

v0 v1

v2
A0

n2

n1 n0

B0

Unfortunately, we cannot implement the hysteresis that allows
more forgiving thresholds for edges adjacent to suggestive
contours, which means that our suggestive contours end up
fragmented; the fragmentation is sufficiently annoying that for the
time being, this method of computing suggestive contours should
be regarded as a curiosity rather than a practical method.

Figure 11. Left: Contours. Center: Suggestive Contours added
using our method. Right: Shading added to show the mesh.

Appendix B: Projections of normal vectors.
At the end of section 3.3, we described a method for estimating a
normal vector to the 2D projection of a feature curve at one of its
vertices, namely, we project the (surface) normal at the
corresponding vertex in 3-space, but noted that this occasionally
failed. We can analyze this failure geometrically. Let us examine
a feature edge e that’s adjacent to a feature edge f, meeting at a
vertex v. The unit vector e points along edge e towards v, and the
unit vector f points along f but away from v. The unit outward
surface normal at v will be denoted s, d will be a unit vector in the
eye-to-v direction, and b will denote e × f.

First, if e and f are collinear, then so are their projections, and
hence the adjacent quads already meet perfectly, and the “cap” is
redundant.

When e and f are not collinear, there is a unique plane
containing both. If the surface normal s lies in this plane, on the
“convex side” of the bend, then the end-caps will join properly
(see figure 12a). If it lies on the concave side of the bend, they
will not; note that this means that even in this ideal case, when the
space-normal to a feature curve is ill-aligned with the surface
normal (along the ridge-line of a mountain range, for instance),
there will be problems (figure 12b). Fortunately the problems
generally occur on the “below the surface” part of the thickened
curve, and hence are generally invisible, unless the projected
surface normal points to the wrong side of the front-facing
polygon that would normally obscure the error (as in figure 5).

Let’s analyze this a little more carefully.

In Figure 13, if the lower half of the thickened line were

below the model surface, the problem on the left would be hidden,

as often happens in practice. In particular, for contour lines the
view direction is tangent to the surface in the smooth case, and
lies in the tangent cone in the polyhedral case. That means that the
projected normal is nearly the normal (smooth case) or nearly lies
in the normal cone (polyhedral case). Its opposite is therefore very
likely to lie inside the surface. For other feature curves, no such
promise can be made: the projected normal, from a near-overhead
view, may be very nearly tangent, and its opposite may well be
visible. The probability of this increases when the vertex is very
non-planar, but is also large when the vertex is planar, but the
surface “normal vector” is far from the normal to this plane. Thus
one should expect surface features on relatively smooth areas with
“good” normals to show relatively few cracks; on other areas, the
probability of cracks is larger. Unfortunately, for crease lines
cracking can be relatively likely.

To continue the analysis, cracks can only appear when the
projected normal lies on the “convex side” of the angle formed by
the projection of two adjacent segments. For a random direction
of projection, d, how likely is this? We’ll assume that the random

s

Figure 22(a) The surface normal s lies in the plane determined
by the two feature edges, on the convex side; “capping” will
work in this case. (b) The two darkened “ridge-line” edges form
a feature whose image-plane normal points down, while the
projection of the surface normal points up; capping will fail, but
the failure will be hidden by the surface (as shown by the dotted
quads).

s

(a) (b)

e v
f

A

B

Figure 13. At vertex A, there’s a cracking artifact because the
projected feature edges curve towards the projected normal; at B
there is not, because the edges curve away from the projected
normal and the grey “caps” fill in the gap appropriately.

