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Abstract

Background: Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due
to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the
pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological
driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems.
In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are
compared and quantified for major African land cover types.

Results: Continental gross primary production estimates derived from remote sensing were higher than corresponding
estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from
remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found
among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf
forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing
method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships
for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly
affect this relationship.

Conclusion: Observed significant differences in estimated vegetation productivity may have several causes, including
model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions.
Integrating the realistic process representation of dynamic vegetation models with the high resolution observational
strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource
monitoring, providing suitable validation data is available.

Keywords: Africa; MOD17; NPP; GPP; LPJ-GUESS; Resource assessment; Carbon cycle
Background
Estimates of photosynthetic assimilation and respiration of
carbon (C), along with fluxes from fires and other ecosys-
tem disturbances, form the basis for quantifying the ter-
restrial carbon balance. Carbon balance studies and the
understanding of factors controlling carbon fluxes, as well
as their spatial and temporal variation, are key features of
recent research relating to climate change [1-5].
Gross primary production (GPP) is the capacity of

the vegetation to capture carbon and energy during
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photosynthesis. Net primary production (NPP) is the
net carbon stored after subtracting the autotrophic
plant respiration (Ra) from GPP. Ra is commonly di-
vided into growth respiration, often assumed to be a
fixed proportion of NPP, and maintenance respiration,
which is dependent on temperature [6] and nitrogen
content [7]. The influence of water availability and soil
moisture (in addition to temperature) on heterotrophic
respiration (Rh) in drier areas is well known [8,9], but
recently a drought-induced decline in Ra has been
shown for trees in Amazonas [10].
While some of the annual NPP in an ecosystem may

be lost by episodic events like fire, the remainder consti-
tutes essential ecosystem services [11,12] such as fuel,
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food, feed, fiber and construction materials [13]. As hu-
man access to these resources and services is crucial,
monitoring of primary production is important in asses-
sing the variability of resource availability and in evaluat-
ing the potential impact of climate change on plant
production [14,15] and resource availability [16].
Recent work on the carbon budget of Africa reports

that the continent is a small sink of carbon (−0.61 ± 0.58
Pg C yr−1) (1 Pg = 1015 g) [17] and stresses the import-
ance of Africa in the global carbon cycle, despite consid-
erable uncertainty. African ecosystems contribute about
20% of global NPP, 20% of heterotrophic respiration [18]
and 20% of global land use CO2 emissions [19]. The at-
mospheric input from fossil fuel in Africa is low [20],
but fire emissions are estimated to form about 40% of
the global total, mostly from savanna burning [19,21].
Ciais et al. [19] used model analysis to report that GPP
was more important than total ecosystem respiration
(TER) in determining African net biome productivity.
Annual variability is larger for GPP than for TER and is

mainly driven by rainfall [19,22], whereas TER is more
dependent on temperature [23]. Jung et al. reported a
mean GPP for Africa of 24.3 Pg ±2.9 C yr−1 for the period
1982–2008 [24]. Valentini et al.recently reported signifi-
cant variability (for the period 1990–2009) in both GPP,
ranging from 20.61 to 40.91 [Pg C yr−1] with a mean of
28.16, and NPP, ranging from 9.25 to 20.46 [Pg C yr−1]
with a mean of 13.27 [17]. Much of the interannual vari-
ability of the global carbon cycle can be derived from the
African continent [25], so it is important to quantify these
fluxes from a carbon budget perspective as well as from a
resource mapping perspective. Recent studies of potential
climate change implications also stress the importance of
related studies in Africa [17,19,25,26].
Remote sensing-based models, applying the concept of

light use efficiency (LUE), and dynamic vegetation models
(DVM) are two common approaches for assessing carbon
budgets and for monitoring resources. Both methodolo-
gies can provide spatially and temporally distributed mea-
sures of GPP, NPP and Ra.
LUE-based models often assume a relatively constant

assimilation rate of carbon per unit absorbed photosyn-
thetically active radiation [27,28]. This rate is called the
light use efficiency (ε) and is commonly expressed in
g C MJ−1 APAR (absorbed photosynthetic active radi-
ation). APAR is estimated as the product of incoming
PAR and the fraction of absorbed PAR (FAPAR).
FAPAR is derived from earth observation data, often
with a spatial resolution of around 250–1000 m and
weekly to monthly temporal resolution, from sensors
such as the Advance Very High Resolution Radiometer
(AVHRR), Moderate Resolution Imaging Spectrometer
(MODIS) and the Satellite Pour l’Observation de la
Terre (SPOT).
Vegetation indices such as the Normalized Difference
Vegetation Index (NDVI) and the Enhanced Vegetation
Index (EVI) are used to describe and quantify FAPAR,
as they do this well [29,30]. Additional environmental
constraints on assimilation, such as temperature or water
availability (e.g. through soil moisture content, evaporative
fraction or vapor pressure deficit), are usually estimated
from meteorological data, but may also be derived directly
from earth observation data [31]. This reduces depend-
ency on data sources with comparatively low spatial reso-
lution and potential delays in data availability through the
need to process data originating from in situ measure-
ments and meteorological reanalysis data sets. Recently
suggested developments of LUE models include improved
estimation of Ra, incorporation of diffuse radiation [4] and
the use of variable LUE based on plant functional types or
photosynthetic pathways [28]. LUE may also be deter-
mined directly using remote sensing, with a potential to
provide improved estimates of the spatial variability of
LUE compared to current methods [32,33].
DVMs integrate research from several disciplines, in-

cluding plant geography, vegetation dynamics, biogeo-
chemistry, plant physiology and biophysics [34]. They
often present a more detailed representation of essential
processes (photosynthesis, Ra, allocation of carbon, hy-
drology, etc.) and ecology (population dynamics, mortal-
ity, disturbances) when compared to LUE models, but
are computationally more demanding. Driven by me-
teorology, CO2 concentration and soil data, often with
low spatial resolution, and governed by plant functional
types, DVMs can be used both as a diagnostic and a
prognostic tool, allowing estimates of future responses
to climatic change and thereby providing valuable infor-
mation on forthcoming resource availability, as well as
prognoses of future carbon budgets [35]. A wide range
of DVMs are available; for an overview see [34,36].
The combination of ecological process models and

satellite-derived information can involve several strat-
egies. Plummer [37] identified a remote sensing-based
generation of “spatially comprehensive and temporally
repeatable global data sets for use by ecological model-
lers” as one of the more central. Verstraeten et al. [38]
integrated the C-FIX model with soil moisture data de-
rived from an active microwave sensor, and found that
soil moisture had an impact on both magnitude and
spatial pattern of carbon exchange fluxes. Smith et al.
[39] investigated the feasibility of two methods (satellite-
based estimates of FPAR and stand structure descrip-
tions) to constrain dynamic ecosystem model behavior
using data from remote sensing, and concluded the
combination to “…offer a promise as a step towards the
development of operational tools…”.
This study compares and combines the LPJ-GUESS dy-

namic vegetation model with the earth observation-based
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LUE model MOD17, both described in more detail
below.
The differences between DVMs and LUE models in

terms of driver data and utilized concepts can result in
differences in estimated vegetation productivity. This
study aims to describe and quantify the differences in es-
timated vegetation productivity for Africa (Figure 1), and
also to combine the two methodologies using a simple
approach. The study is divided into three tasks:

� Comparing GPP and NPP from MOD17 and LPJ-
GUESS (Null hypothesis 1: MOD17 vegetation
productivity = LPJ-GUESS vegetation productivity).

� Simple integration of the two methodologies (Null
hypothesis 2: NPP estimated by LPJ-GUESS = NPP
estimated by the combined approach.)

� Validation versus in situ measurements of vegetation
productivity (Null hypothesis 3: Model estimated
Figure 1 Study area. Land cover of Africa from MODIS (MOD12Q1). This d
MOD17 from the Biome Property Look-Up Table (BPLUT), and describes the
vegetation productivity = in situ measured vegetation
productivity).

Can knowledge that promotes reliable methods for es-
timation of GPP and NPP in Africa be acquired through
comparison and integration of LPJ-GUESS and MOD17?
Does the combination of the observational strength of
high spatial and temporal resolution earth observation
data with the more realistic process representation of
the DVM improve estimates of net primary productivity?
The central findings of this study, produced while trying
to answer the questions above, included general agree-
ment regarding estimated vegetation productivity for
most land cover classes except for the evergreen broad-
leaf forest, a moderate relationship when comparing
model-estimated vegetation productivity versus in situ
data, and potential benefits through a simple integration
of the two model approaches.
ata was used for looking up the correct biome parameters used in
land cover classes used in analysis and their spatial distribution.
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Results
GPP and NPP for Africa
Mean annual GPP (2000–2010) for Africa was 22.6 ±
0.45 (±1 standard deviation) Pg (range 21.4-23.0) for
MOD17 versus 20.9 ± 0.50 Pg for LPJ-GUESS (range
20.2-21.6) (Figure 2a). Mean annual NPP (2000–2010)
for Africa was 10.3 ± 0.35 Pg for MOD17 (range 9.4-
10.6) versus 12.2 ± 0.31 Pg for LPJ-GUESS (range 11.7-
12-6) (Figure 2a). Total NPPCombined was 13.3 Pg. There
was a weak linear relationship (r2 = 0.39) between the
annual sums of GPP for MOD17 and LPJ-GUESS
(Figure 2b); removing the outlier year 2005 increased
r2 to 0.55. A similar relationship was found for NPP (r2 =
0.43) (Figure 2c). MOD17 GPP was systematically higher
than LPJ-GUESS GPP, but the opposite applied for NPP.
The spatial pattern of NPP and GPP were similar for

both methods but with some notable exceptions
(Figure 3). Mean MOD17 GPP (2.41 kg C m−2 yr−1) was,
on average, 0.8 kg C m−2 yr−1 higher (t-test, p < 0.01)
than LPJ-GUESS GPP (1.61 kg C m−2 yr−1) for the ever-
green broadleaf forest (EBF) (Figure 4a). This is equiva-
lent to a total GPP for MOD17 exceeding LPJ-GUESS
GPP by 2.4 Pg yr−1 for the EBF (Figure 4a). GPP of
remaining forest types (DBF, DNF, ENF) differed less
(<0.07 kg C m−2 yr−1) between MOD17 and LPJ-GUESS,
and ranged from 1.09 to 1.29 kg C m−2 yr−1 for MOD17
and from 1.10 to 1.21 kg C m−2 yr−1 for LPJ-GUESS
(Figure 4b). These remaining forest types (DBF, DNF,
EBF) have low areal extent and contribute only 2% (0.46
Pg) and 2.1% (0.44 Pg) to total GPP, for MOD17 and
LPJ-GUESS, respectively (Figure 4a).
Average (2000–2010) GPP for remaining land cover

classes (Wsavanna, Savanna OShrub, CShrub and Grass)
Figure 2 GPP and NPP for Africa. (a) mean GPP (black) and NPP (grey) fr
2000–2010), and mean NPPCombined. Error bars illustrate ± standard deviatio
p < 0.01), (b) Annual (2000–2010) MOD17 and LPJ-GUESS GPP [Pg C] and (
differed by less than 0.2 kg C m−2 yr−1 (Figure 4b), be-
tween MOD17 and LPJ-GUESS. These land cover classes,
all with large areal extent, contribute a large proportion of
total continental GPP (63% for MOD17 and 71% for
LPJ-GUESS). Woody savannas have the second highest
GPP per area after the evergreen broadleaf forest
(2.41 kg C m−2 yr−1), averaging 1.42 kg C m−2 yr−1for
MOD17 and 1.32 kg C m−2 yr−1 for LPJ-GUESS.
The temporal variability of each model is smaller than

the differences between the models; both show a dip in
2005, but this is larger for MOD17 (Figure 5a). On average,
MOD17 GPP for Africa was 1.7 Pg yr−1 higher than LPJ-
GUESS GPP, while average MOD17 NPP was 1.9 Pg yr−1

lower than average LPJ-GUESS NPP. These differences
were smallest for GPP (0.97 Pg) in 2005 and largest for
NPP (−2.4 Pg) in 2005 (Figure 5b).
The average annual (2000–2010) NPP/GPP ratio was

0.456 (range 0.438-0.465) for MOD17 and 0.583 (range
0.578-0.587) for LPJ-GUESS (Figure 5c). For MOD17
the ratio among the land cover classes ranged from 0.35
(Grasslands) to 0.47 (Savannas), and for LPJ-GUESS
from 0.55 (Woody Savanna) to 0.62 (Savannas). The
NPP/GPP ratio for EBF was 0.42 for MOD17 and 0.56
for LPJ-GUESS. The temporal variability of the NPP/
GPP ratio was small, especially for LPJ-GUESS and the
lowest ratio for both methods occurred in 2005 (Figure 5c).
Parts of southern Africa have a distinctly lower NPP/GPP
ratio for LPJ-GUESS (Figure 3f). On average MOD17 as-
sumed Ra to be about 79% (0.46/0.58) of LPJ-GUESS Ra.

MOD17 quality control (QC) data
QC values quantify the proportion of growing days (%)
during the growing season that use artificially filled
om MOD17 and from the LPJ-GUESS model (average for the period
n. GPP and NPP differ significantly (LPJ-GUESS vs MOD17, t-test,
c) NPP [Pg C], the open circle in b and c denote year 2005.
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FPAR&LAI, so higher QC values = lower quality. High
QC values are reached in the coastal areas of western
Africa (QC >70%), in the Congo basin, and along a nar-
row band just south of the Sahara Desert (Figure 6), due
to high frequency of clouds and aerosols. Southern
Africa and other drier regions with less cloud have lower
QC (assuming more reliable annual GPP and NPP) com-
pared to the tropical forest areas and parts of the
Ethiopian Highlands. Average QC values per land cover
classes are 24% (OShrub), 32% (Crop), 33% (Savanna
and Grass), 43% (Wsavanna), 36-49% (all forest types
except EBF) and 65% (EBF) (Figure 6). The overall mean
QC when all land cover classes are included is 39.5%.

Comparison between in situ-collected NPP and
model-estimated NPP
Average MOD17 NPP (2000–2010) is strongly correlated
with in situ ANPP (r = 0.80, RMSE = 153 g) (Figure 7a).
Using MOD17 NPP and in situ ANPP for Sudan col-
lected the same year reduces the linear correlation (r =
0.64, RMSE = 145 g, Figure 7b). NPPCombined are moder-
ately correlated compared with in situ-collected ANPP



a

b

Figure 4 GPP and NPP per land cover class. (a) Totaled MOD17 and LPJ-GUESS GPP and NPP per land cover class, where GPP differs significantly
(t-test p < 0.01) for all land cover types except for mixed forest and savannas. NPP differs significantly (t-test p < 0.01) for all land cover types. (b) Mean
GPP and NPP per land cover class and unit area. Yellow bars denote NPPCombined (MOD17 GPP – Ra from LPJ-GUESS).
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(r = 0.64. RMSE = 176 g) for the same year. All MOD17
NPP estimates are systematically higher than the in situ
data, which may partly be explained by the in situ data
only representing aboveground biomass.
The NPP Multi-biome data set [40] shows a strong

linear relationship for LPJ-GUESS (r = 0.90, RMSE =
207 g) and a weaker linear relationship for MOD17 (r =
0.21, RMSE = 141 g) and NPPCombined (Figure 8), using
the 2000–2010 averages. Note that Figures 7 and 8 com-
pare in situ collected aboveground NPP with total NPP
(from MOD17 and LPJ-GUESS), and this influences the
relationships illustrated.
NPPCombined are illustrated in Figure 9, with a more

detailed comparison with LPJ-GUESS NPP for areas
centered on the Ethiopian Highlands and the Congo
Basin (Figure 10). The effect of the increased spatial
resolution (1 × 1 km) of MOD17 is visible, but the 0.5 ×
0.5 degree pattern originating from LPJ-GUESS still re-
mains for some regions. Figure 10c and f illustrate the
relationship between LPJ-GUESS NPP and NPPCombined

for the two subareas.

Discussion
Observed statistically significant differences in primary
production between MOD17 and LPJ-GUESS support
rejection of hypothesis 1 and exclude the possibility of
both methods being fully correct (Figure 2). For the en-
tire continent, MOD17 GPP exceeds LPJ-GUESS GPP
by 1.7 Pg yr−1 on average for the study period (2000–
2010). The differences are consistent over the study



Figure 5 Time series of vegetation productivity. (a) Annual GPP
and NPP for MOD17, LPJ-GUESS and the combined approach for the
period 2000–2010, (b) differences (MOD17-LPJ-GUESS) and (c) the
NPP/GPP ratio.
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period (Figures 2 and 5) and can mainly be explained
by the higher MOD17 GPP for the evergreen broadleaf
forest (Figure 4). GPP of large land cover classes such
as grasslands, savannas and woody savannas vary less.
Both GPP and NPP reported here (Figure 2) are within
the ranges shown in earlier results for Africa, even if
the ranges are wide [17,24,41].
Average MOD17 NPP was 1.9 Pg yr−1 less than LPJ-

GUESS NPP, which can largely be explained by a lower
NPP/GPP ratio for MOD17, indicating substantially
higher autotrophic respiration than LPJ-GUESS (Figures 3
and 5c). A similar result was reported from a recent study
covering northern Eurasia, where a spatial correlation of
0.63 was found for mean annual GPP (2000–2009) derived
from LPJG (a slightly modified version of LPJ-GUESS in-
cluding methane from wetlands) versus MOD17 GPP
[42]. LPJG explained about 40% of the variability found in
the MOD17 product. Reported LPJG GPP was about 40%
lower than MOD17 GPP, which may indicate that the LPJ-
GUESS vs MOD17 GPP differences are not limited to
Africa or warmer climates.
The higher proportion of GPP lost as autotrophic respir-

ation by MOD17 has been attributed to an excessive
temperature sensitivity of the MOD17 algorithm [43,44].
However, Clark et al. showed decreased increment in trop-
ical trees due to high temperatures, and reported strong
correlation between temperature-induced tree growth pat-
terns and tropical CO2 fluxes. They suggested a “remark-
able sensitivity of the net carbon balance of tropical rain
forests to increasing temperature” [45], which is also sup-
ported by other studies [46]. Mahli et al. reported NPP
ranging from 1.0 to 1.44 kg C m−2 yr−1, based on in situ
measurements in Amazonian rainforests, close to the
mean EBF NPP of MODIS (1.02 kg C m−2 yr−1) and LPJ-
GUESS (0.91 kg C m−2 yr−1) found here (Figure 4b). Cor-
responding Amazonian carbon use efficiencies (NPP/GPP)
ranged from 0.32 to 0.49 [47], overlapping well with the
MOD17 NPP/GPP ratio of 0.42 found here for the ever-
green broadleaf forest, but lower than the 0.56 of LPJ-
GUESS.
For large areas of Africa, the NPP/GPP ratio for

MOD17 was lower than for LPJ-GUESS (Figure 3), indi-
cating a higher autotrophic respiration rate for MOD17.
Southern Africa, Morocco & Northern Tunisia and parts
of Ethiopia are exceptions to this, with lower NPP/GPP
ratio for LPJ-GUESS.
In a global study, Ahlström reported that differences

in meteorological forcing data used by LPJ-GUESS and
MOD17 had small effects on estimated vegetation prod-
uctivity [48]. However, Traore et al. suggested that the
uncertainty in the ORCHIDEE model is strongly related
to the meteorological forcing data in regions with sparse
weather station data [49], something potentially affecting
all models utilizing driver data derived from weather
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station data. From this study, no conclusions can be
drawn on what determines the spatial pattern and ob-
served differences in the NPP/GPP ratio among land
cover classes, but effects of model formulation such as
the temperature sensitivity and/or propertires of plant
functional types (LPJ-GUESS) and biome specific param-
eters (MOD17) may be contributing factors.
Zhang et al. [50] reported a global average MOD17

NPP/GPP ratio of 0.52, higher than the results presented
here for Africa (0.46). The MOD17 data used by Zhang
et al. was driven by meteorological data from the NASA
Data Assimilation Office (DAO) which is not fully com-
parable with later versions of MOD17 using NCEP climate
driver data [50]. Amthor [51] suggested 0.35-0.80 as the
Figure 7 Validation versus in situ data from Sudan. NPP estimates vers
(a) Average (2000–2010) MOD17 NPP (n = 31, r = 0.80, RMSE = 153 g), (b) MOD
for the same year (r = 0.64, RMSE = 176 g, n = 35).
‘allowable’ range for the NPP/GPP ratio (with 0.45-0.60 as
a more realistic alternative) and proposed that available
data is not sufficient to decide how constrained the NPP/
GPP ratio is across species and environments. Valentini
et al. reported a NPP/GPP ratio ranging from 0.37 to 0.59
when comparing nine DGVMs, with a continental NPP
for Africa ranging from 9.25 to 20.46 Pg C yr−1and a GPP
ranging from 20.61 to 40.91 Pg C yr−1. This illustrates sub-
stantial uncertainty in vegetation productivity estimates
for Africa, including both magnitudes and the carbon use
efficiency (NPP/GPP) [17] in addition to the limited field
data (eddy covariance measurements, long term ecological
field experiments and similar) available for tropical and
subtropical areas [52].
us field-based validation data of aboveground NPP (ANPP) from Sudan.
17 NPP for the same year (r = 0.64, RMSE = 145 g, n = 35), (c) NPPCombined



Figure 8 Validation versus NPP Multi-Biome: Global Primary Production Data Initiative (GPPDI) above ground NPP (ANPP). (a) Average
(2000–2010) LPJ-GUESS NPP vs GPPDI (r = 0.90, RMSE =207 g), (b) Average (2000–2010) MOD17 NPP vs GPPDI (r = 0.21, RMSE =141 g) and (c) Average
(2000–2010) NPPCombined vs GPPDI (r = 0.21, RMSE = 142 g), n = 35.

Figure 9 Integrated NPP. NPPCombined, produced by MOD17 GPP x NPP/GPP ratio from LPJ-GUESS, average for the 2000–2010 period.
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Figure 10 Dynamic vegetation model NPP vs NPPCombined. NPP from (a) LPJ-GUESS and (b) NPPCombined for a 1000 x 1000 km area in the
Ethiopian Highlands and (c) a scatter plot of LPJ-GUESS NPP vs NPPCombined. (d-f) show the same as (a-c) bur for a 1000 x 1000 km are in the
Congo Basin. Urban areas are red, water is blue, and barren areas are grey. NPPCombined is calculated from MO17 GPP and LPJ-GUESS Ra.
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Assuming a global GPP of ~120 Pg, and applying a car-
bon use efficiency of 0.58 versus 0.46, yields a difference in
estimated global NPP of 14.4 Pg (69.6-55.2). Even if these
assumptions hardly are applicable globally, 14.4 Pg C ‘lost
in modelling space’ is enough to encourage further investi-
gations and additional collection of calibration & valid-
ation data and long-term ecosystem experimental data
sets from tropical regions, such as Africa. Integration of
different types of methods, such as remote sensing, data-
oriented methods and process-oriented models, may help
to produce consistent estimates of primary productivity
and respired fraction, and increase knowledge about in-
volved ecosystem processes and their drivers.
Validation of model estimates using in situ measure-

ments provides vital information on model performance
[6,53,54], even if scale differences, sampling strategies
and methodological discrepancies in data collection re-
duce comparability. Significant positive relationships be-
tween estimated NPP versus field data were found for
both models (Figures 7 and 8), indicating a general ap-
plicability of both models, as shown earlier for MOD17
[54,55] and LPJ-GUESS [56,57]. The significant positive
relationships of estimated NPP versus in situ collected
NPP suggest that hypothesis 3 cannot be rejected
(Figures 7 and 8). A stronger linear relationship between
in situ NPP data and model estimates favors LPJ-GUESS
(Figure 8) whereas a lower RMSE and no systematic
overestimation favor MOD17. Bias and differences arising
from comparing NPP with ANPP introduce additional un-
certainty, and no definite conclusion can be drawn from
the current small data set available, except general signifi-
cant positive relationships (Figures 7 and 8). The limited
spatial distribution of the validation data (Senegal and
semi-arid Sudan) limited the representativity, as major bi-
omes such as the evergreen broadleaf forest are missing. A
coordinated effort to compile continent-wide in situ data
for calibration and validation of methods estimating bio-
mass and NPP could enhance the possibilities for statisti-
cally sound and representative evaluation of methods
estimating vegetation productivity for Africa.
Integrating MOD17 and LPJ-GUESS by applying the

NPP/GPP ratio from the dynamic vegetation model to
the observational and high spatial resolution remote
sensing model GPP seems reasonable (Figure 10) if we
assume a proper process representation in LPJ-GUESS.
However, the validation does not support any clear im-
provement (Figures 7 and 8), even if estimated NPP of
MOD17, LPJ-GUESS and NPPCombined differ on a con-
tinental scale (Figure 2) and for individual land cover
classes (Figure 4). There is also a risk of violation of in-
ternal model logic due to differences in model assump-
tions and formulations when applying the LPJ-GUESS
NPP/GPP ratio to MOD17 GPP. Consequently, there is
support both for and against rejection of hypothesis 2.
The temporal variability of each method is smaller

than the differences between the models. The dry year
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2005 [15] yields a clear dip for MOD17 GPP but only a
small dip for LPJ-GUESS GPP, whereas the lowest NPP/
GPP ratio for both models occurs in 2005 (Figure 5), sup-
porting increased respiration during dry conditions [58].
The NPP/GPP ratio in 2005 for MOD17 was 0.438 versus
0.578 for LPJ-GUESS, a deviation of 3.8% and 0.9% re-
spectively from the 2000–2010 average NPP/GPP ratio.
This indicates that MOD17 responds more strongly to the
drought in 2005, potentially through higher temperature.
In general, the temporal variability is similar, indicating
similar forcing and similar response to precipitation and
moisture availability, both important drivers of vegetation
productivity in drier parts of Africa [22,59].
The evergreen broadleaf forest has the lowest satellite

data reliability (Figure 6) among all land cover classes,
partly due to frequent cloud cover [60]. The large pro-
portion (QC = 65%) of FPAR data originating from
MOD15 and used in MOD17 that is replaced by inter-
polated values may impact the GPP estimation [54] and
increase the uncertainty of estimated GPP. Areas af-
fected by frequent cloud cover, such as parts of the ever-
green broadleaf forest, may then show less reliable
estimates of vegetation productivity using MOD17 (or
any method based on optical remote sensing). All land
cover classes are affected by this, as most areas have QC
values > 30%, and the overall mean is 39.5%, indicating a
need for effective gap-filling methods [54,61].
Estimated global median GPP for the tropical forest,

by Beer et al. [59] of 2.34 kg C m−2 yr−1 (median of
seven different up-scaling schemes) is close to the
2.41 kg C m−2 yr−1estimated by MOD17 (for EBF) but
clearly exceeds the 1.61 kg C m−2 yr−1 estimated by LPJ-
GUESS (Figures 3 and 4). Fisher et al. [62] estimated
average GPP of the African tropical forest to range from
about 1.4 to 4.0 kg C m−2 yr−1, indicating large variabil-
ity among applied global dynamic vegetation models.
Without in situ validation data, the absolute magnitudes
of plant productivity is difficult to evaluate, and focus is
often on interannual variability related to climatic
drivers [41,62].
The higher spatial resolution gained through using ob-

servational data such as MOD17 enables estimates of
driver variables such as temperature, vapor pressure def-
icit [63] and incoming PAR [64] with high spatial and
temporal resolution. This may reduce dependency on
climate data sets like NCEP and CRU, facilitating high
resolution estimates of vegetation productivity, especially
in areas with low density of meteorological observations
[62,65]. Using observational data on spatial distribution
of GPP and NPP within LPJ-GUESS grid cells could in-
crease spatial information content while keeping LPJ-
GUESS within grid cell integrity (e.g. sums of GPP and
NPP). From a local to regional resource monitoring
perspective [16], earth observation provides additional
useful spatial and temporal resolution (Figure 10), while
regions with frequent cloud cover reduce the possibil-
ities for robust continent-wide monitoring of plant prod-
uctivity in Africa.
Conclusion
The results from this study suggest significant differ-
ences in (1.7 Pg C yr−1) between estimated continental
GPP from MOD17 and from LPJ-GUESS, mainly origin-
ating from higher MOD17 GPP for the evergreen broad-
leaf forest biome. The causes of this difference are not
determined, but reduced availability of cloud-free earth
observation data may cause uncertainties in the MOD17
estimates.
Substantial differences in carbon use efficiency (NPP/

GPP ratio) result in continental NPP from LPJ-GUESS ex-
ceeding (1.9 Pg C yr−1) NPP from MOD17, even if exten-
sive land cover classes such as Savannas and Cropland
show reasonable similarities in estimated GPP and NPP
produced by both models.
Merging MOD17 GPP with the NPP/GPP ratio from

LPJ-GUESS could help combine the high spatial reso-
lution of the remote sensing-based MOD17 model with
the more process-oriented LPJ-GUESS model. Utilization
of preferred elements originating from different modelling
schemes or representing different spatial & temporal re-
gions or resolution may be beneficial in resource assess-
ment and carbon cycle studies.
Unfortunately, as long as availability and accessibility

of local meteorological data and in situ validation data
(eddy covariance measurements, long-term ecological
field experiments and similar) remain low, we can expect
the quality and representativity of vegetation productiv-
ity estimates for Africa to remain hard to determine.
Based on current available data may both methods be
considered to produce plausible estimates of vegetation
productivity for Africa.
Methods
Study area
This study covers Africa (Figure 1) with an area of ap-
proximately 30 million km2, including savannas (Savanna,
5.6 million km2), woody savannas (WSavanna, 3.9 million
km2), open shrublands (OShrub, 3.7 million km2) ever-
green broadleaf forest (EBF, 3.0 million km2), grassland
(Grass, 2.2 million km2), croplands (Crop, 0.89 million
km2), and closed shrublands (CShrub, 0.18 million km2).
Other forest types (Evergreen Needleleaf Forest (ENF),
Deciduous Needleleaf Forest (DLF), Deciduous Broadleaf
Forest (DBF) and Mixed Forest (MF)) cover a total of 0.37
million km2. Other land cover classes, not considered here
as MOD17 does not calculate GPP and NPP for them, in-
clude barren and sparsely vegetated areas (9.8 million
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km2), water (0.25 million km2), and urban & built up areas
(53600 km2) (Figure 1).

LPJ-GUESS
LPJ-GUESS is an “object oriented, modular framework for
modelling the dynamics of ecosystem structure and func-
tioning at scales from the patch to the globe, and at varying
levels of process detail” [66]. The framework incorporates
process-based representations of plant physiology and
ecosystem biogeochemistry. The model is driven by at-
mospheric CO2 concentration, temperature, precipitation,
radiation, and soil physical properties. Photosynthesis, res-
piration, stomatal conductance and phenology are simu-
lated using a daily time step. Eleven plant functional types
are used to represent vegetation [48]. Model output in-
cludes GPP, NPP, respiration, carbon pools and potential
vegetation among a range of other possible outputs. LPJ-
GUESS performs well when compared to other vegetation
models [56] and predicts present day GPP in agreement
with observation-based estimates [57]. Details on the LPJ-
GUESS model are available in [6,67].
Annual GPP and NPP (kg C m−2 year−1), estimated by

LPJ-GUESS and with a spatial resolution of 0.5 × 0.5 de-
grees (longitude, latitude), for the period 2000–2010 were
used [48]. The model was forced with monthly precipita-
tion, number of rain-days (days with >1 mm precipita-
tion), incoming short-wave radiation and temperature
from the CRU-NCEP (v2.0) dataset. Annual CO2 concen-
tration was set from atmospheric and ice core measure-
ments as described in [48].
GPP and NPP were resampled to the MOD17 grid

(1 km spatial resolution and an equal area Sinusoidal pro-
jection). Grid cells without valid MOD17 GPP and NPP
(MOD12Q1 land cover barren, water, or urban, Figure 1)
were masked out from the LPJ-GUESS data in order to
make the data sets comparable (i.e. identical spatial extent,
land cover classes and number of grid cells).

MOD17
MOD17 is based on the LUE concept and consists of
two products, MOD17A2 and MOD17A3. MOD17A2
contains both 8-day GPP and 8-day net photosynthesis
(PSNnet), whereas MOD17A3 contains annual sums of
GPP, NPP and quality (QC) data [15,68].
The MOD17 algorithm calculates daily GPP as:

GPP ¼ εmax � 0:45� SWrad � FAPAR� f VPDð Þ
� f Tminð Þ

where εmax is the maximal, biome-specific light use effi-
ciency [g C MJ−1], SWrad is incoming short-wave radi-
ation (assuming 45% to be PAR), FAPAR is the fraction
of absorbed PAR, f(VPD) and f(Tmin) are linear scalars
reducing GPP due to water and temperature stress.
MOD17 GPP uses National Center for Environmental
Prediction-Department of Energy (NCEP-DOE) reanalysis
II data for Tmin, VPD and SWrad [69,70]. The NCEP-
DOE reanalysis II data is interpolated from the original
resolution of approximately 1.9° latitude × 1.9° longitude
to 1 × 1 km grid cells [60]. FAPAR in the MOD17 GPP al-
gorithm is derived from the 8-day MOD15A2 1 km prod-
uct, and the 1 km University of Maryland (UMD) land
cover classification scheme in the MOD12Q1 product
(Figure 1) is used to map biome-specific physiological pa-
rameters (εmax, minimum temperature, VPD etc.) from the
Biome Property Look-Up Table (BPLUT). NPP is calcu-
lated annually:

NPP ¼
X365

i¼1

PsnNet− Rmo þ Rg
� �

;

where PsnNet = GPP-Rml-Rmr. The maintenance respir-
ation by leaves (Rml) and fine roots (Rmr) respectively are
calculated daily. Rmo is the annual maintenance respir-
ation by all other living parts except leaves and fine
roots, Rg is the annual growth respiration.
A recent evaluation of MOD17 GPP for Africa, based on

eddy covariance data, concluded that MOD17A2 underes-
timated GPP by a mean difference of 0.70 g C m−2 day−1

but seasonality was captured well [54]. The underestima-
tion was larger for drier sites, and differences between
driver data (climatology from NCEP/DOE II and FAPAR
from MOD15) and field observations of the same variables
were found. Several studies have pointed out problems at
drier sites [71-73] and suggest that prescribed MOD17A2
εmax causes underestimation of MOD17A2 GPP [54,71,73].
Plummer concluded that the global performance of the
MOD17 GPP is good under unstressed conditions, but
suggested adaption of εmax to better account for spatial
and temporal within-biome variation [74]. MOD17 PsnNet
and MOD17 NPP have also been reported to underesti-
mate NPP when compared to field-measured aboveground
NPP in Senegal [75].
MOD17A3 (UM Collection 5) annual totals of GPP

and NPP for the years 2000–2010 were downloaded
from ftp.ntsg.umt.edu and mosaicked for Africa at a 1 ×
1 km spatial resolution and an equal area sinusoidal pro-
jection. Land cover (MOD12Q1) used by the BPLUT in
MOD17 (same resolution and projection as MOD17A3)
were downloaded from ftp://ftp.ntsg.umt.edu/.autofs/
NTSG_Products/MOD12Q1_FOR_MOD15-17 and used
for land cover stratification (Figure 1).

Simple integration
The mean LPJ-GUESS NPP/GPP ratio for the 2000–2010
period was calculated (average NPP(2000–2010)/average
GPP(2000–2010)) for each 1 × 1 km grid cell and multiplied
by the 1 × 1 km MOD17 GPP, resulting in a 1 × 1 km

ftp://ftp.ntsg.umt.edu/.autofs/NTSG_Products/MOD12Q1_FOR_MOD15-17
ftp://ftp.ntsg.umt.edu/.autofs/NTSG_Products/MOD12Q1_FOR_MOD15-17
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spatial resolution NPP dataset, denoted NPPCombined. This
simple combination thereby applies the autotrophic res-
piration calculated from LPJ-GUESS to MOD17 GPP. The
ratio of NPP to GPP is sometimes referred to as carbon
use efficiency, and it is often assumed to have a constant
value ~ 0.5 [76].

MOD17 QC data
A MOD17 quality control (QC) measure is used to quan-
tify the proportion of growing days (%) during the growing
season that use artificially filled FPAR/LAI (originating
from the MOD15A2 FAPAR/LAI product) due to cloud
cover, to calculate 8-GPP and annual GPP and NPP.

QC ¼ NUg=TOTALgð Þ � 100

where NUg is the number of days during the growing sea-
son with unreliable or missing MOD15 LAI inputs, and
TOTALg is the total number of days in the growing sea-
son [60]. The growing season is defined as all days with
Tmin above −8°C, also used as the minimum temperature
control on photosynthesis for all biomes [60]. This
temperature is only occasionally reached in Africa, and
then mainly at higher elevations, so TOTALg = 365 in
most cases. The QC data of MOD17A2 is inherited from
the MOD15A2 FAPAR/LAI product and totaled to an an-
nual value in MOD17A3 [60]. Average (2000–2010) QC
for each land cover class was calculated.

Validation using in situ data
Scale differences and temporal sampling make evalu-
ation of coarse to moderate spatial resolution remote
sensing models and DVMs difficult using in situ mea-
surements of NPP, as they represent distinctly smaller
areas. Despite this, two field-based data sets are used for
comparison with model estimates to permit validation.
Firstly, 35 sites were available in Sudan with in situ

collected aboveground NPP data [77]. The sampling sites
were distributed along a north to south precipitation
gradient in Northern Kordofan, from approximately
200 mm yr−1 in the north to about 600 mm yr−1 in the
south. Each site was an area of approximately 300 ×
300 m, with homogeneous vegetation selected. The data
was collected from 2008 to 2010, using nested quadrats
with 10 × 10 m quadrats for tree biomass and 1 × 1 m
quadrats for the field layer (herbaceous biomass). Above-
ground NPP of the field layer was assumed to equal the
dry weight of the green herbaceous biomass at the end
of the vegetation season. Tree NPP was estimated using
allometric equations [78]. On each site, 20 to 24 quad-
rats were sampled and on most sites only aboveground
biomass data was collected; details in [77]. Biomass was
assumed to contain 50% C. For each of these 35 sites,
MOD17 NPP and NPPCombined for the corresponding
grid cells and corresponding sampling year were ex-
tracted and compared to the in situ collected data. Aver-
age MOD17 NPP for the period 2000 to 2010 was also
calculated for each site. Four sites without MOD17 data
available for all years in the 2000–2010 period were re-
moved when in situ NPP was compared with average
MOD17 NPP. Due to differences in size, and as this in
situ NPP data only overlap six different LPJ-GUESS grid
cells (0.5 x 0.5 degrees), this data was not compared to
LPJ-GUESS NPP.
Secondly, LPJ-GUESS NPP, MOD17 NPP and NPPCombined

were compared to NPP data from the Global Primary Pro-
duction Data Initiative [40,79]. This data was available for
32 0.5° × 0.5° cells in West Africa (Senegal) and constituted
aboveground NPP (ANPP) representative of the 1987–1997
period. Even if the time period of data collection does not
overlap, this data may be informative regarding the general
relationship between model estimates versus in situ esti-
mates of vegetation productivity.
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NPP: Net primary production; GPP: Gross primary production; LPJ-GUESS: Lund
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