
DADO: ATREE-STRUCXUREDMACRINE ARCRITECTURE FoRERODUcTIONSYSTEMS*

Salvatore J. Stolfo
and

David Elliot Shaw

Coltiia University

ABs!rRAcT

DAD3 is a parallel tree-structured machine
designed to provide highly significant performance
improvements in the execution of large Production
systems. The DAD0 machine comprises a large (on
the order of a hundred thousand) set of processing
elements (PE's), each containing its awn processor,
a small amount (2K bytes, in the current design) of
local random access memory, and a specialized I/O
switch. The PE's are interconnected to form a
complete binary tree.

This paper describes a general procedure for
the parallel execution of production systems on the
DAD0 machine, and outlines in general terms how
this procedure can be extended to include
conmutative and multiple, independent production
systems.

1. Introduction

DAD0 [Stolfo and Shaw, 19811 is a parallel,
tree-structured machine designed to provide highly
significant performance improvements in the
execution of production systems. A production
system [Newell, 1973; Davis and King 1975;
Rychener, 19761 is defined by a set of rules, or
productions, which form the production memory (PM),
together with a database of assertions, called the
workinq memorv MM). Each production consists of a
conjunction of pattern writs, called the left-
&@ side (LHS) of the rule, along with a set of
actions called the a-hand side (RRS). The RRS
specifies information which is to be added to
(asserted) or removed from WM when the LHS
successfully mtches against the contents of WM.

In operation, the PS repeatedly executes the
following cycle of operations:

1. Match: For each rule, determine whether
the LRS matches the current environment
of WM.

*This research was supported in part by the Defense
Advanced Research Projects Agency under Contract
N00039-82-C-0427.

2. Select: Choose exactly one of the
mtching rules according to same
predefined criterion.

3. A&: Add to or delete from WM all
assertions spcified in the RI-IS of the
selected rule.

In this paper, data elements in WM will have
the form of arbitrary ground literals in the first
order predicate calculus. For pedagogical reasons,
we will restrict our attention to the case in which
both the LHS and RRS are conjunctions of predicates
in which all first order terms are composed of
constants and existentially quantified variables.
(DAD3 in fact supports the incorporation of
universally quantified variables in the LRS of a
production as well, but an adequate treatment of
this case would substantially complicate our
exposition, and has thus been titted. The
interested reader is referred to a discussion of
the LSEC algorithm for logical satisfaction,
presented in a doctoral dissertation by Shaw
[19801.) A negated pattern in the LHS causes the
matching procedure to fail whenever WM contains a
matching ground literal, while a negated pattern in
the RRS causes all matching data elements in WM to
be deleted.

An example production is presented in Figure
l-l. (Variables are prefixed with an equal sign.)

(Part-category =part electronic-component)
(Used-in =part =product)
(Supplied-to =product =custaner)
(NOT Manufactured-by apart --cstmr)
-> (Dependent-on =customer =part)

(WI Independent =customer)

Figure l-l: An Example Production

Because the matching of each rule against WM
is essentially independent of the others (at least
in the absence of oontention for data in WM), it is
natural to attempt a decanposition of the matching
portion of each cycle into a large number of tasks
suitable for physically concurrent execution on
parallel hardware. While the design of special-
purpose parallel machines adapted to artificial
intelligence applications has attracted scme
attention [Fahlman, 1979; Fuhlrott, 19821, little

242

From: AAAI-82 Proceedings. Copyright ©1982, AAAI (www.aaai.org). All rights reserved.

progress has been made in the application of highly
concurrent hardware to the execution of rule-based
systems. Forgy [1980] proposed a very interesting
use of the ILLIAC IV machine for such applications,
but recognized that his approach failed to identify
all matching productions under certain
circumstances.

In this paper, we describe a tree-structured
machine architecture that utilizes the emerging
technology of VLSI systems in support of the highly
efficient parallel execution of large-scale
production systems. Portions of the machine, which
we have come to call DAIXJ, are now in the early
stages of construction at Columbia University. We
believe a full-scale DADO prototype, capble of
significant performance improvements over
implementations based on von Neumnn machines, to
be technically and economically feasible for
implementation using current technology.

When a DAD0 PE enters MIMD mode, its I/O
switch settings are changed in such a way as to
effectively "disconnect" it and its descendants
fram all higher-level PE's in the tree. In
particular,
instructions

a PE in MIMD mode does not receive any
that might be placed on the tree-

structured cornnunication bus by one of its
ancestors. Such a PE may, however, broadcast
instructions to be executed by its own descendants,
providing all of these descendants have themselves
been switched to SIMD mode. The DAD0 machine can
thus be configured in such a way that an arbitrary
internal node in the tree acts as the root of a
tree-structured, NON-VDN-like SIMD device in which
all PE's execute a single instruction at a given
point in time.

As in NON-VCN, the DAD0 I/O switch supports
cmunication between physically adjacent neighbors
(parents and children) within the tree in addition
to broadcast-based ccprmunication.

2. The DAD0 Machine Architecture
3. Allocation of Productions and working Memory

The DAD0 machine cchnprises a very large (on
the order of a hundred thousand) set of processing
m (PE's), each containing its own processor,
a small amount (2K bytes, in the current design) of
local randam access memory, and a specialized I/O
switch. The PE1s are interconnected to form a
canplete binary tree. Certain aspects of the DAD0
machine are modelled after KN-VON [Shaw, 1979;
Shaw, et al., 19811, a tree-structured, highly
parallel machine containing a larger number of much
simpler processing elements.

In NON-VON, most of the PE's are severely
restricted in both processing power and storage
capacity, and are thus not typically used to
execute independent programs. Instead, a single
control processor, located at the root of the NON-
VON tree, typically broadcasts a single stream of
instructions to all PE's in the tree. Each such
instruction is then simultaneously executed (on
different data) by every PF in the tree. This mode
of operation has been referred to in the literature
of parallel canputation as single instruction
stream, multiple data stream (SIMD) execution
[Flynn, 19721. (!Che above description is in fact
somewhat oversimplified, since EJ(;N-VON in fact
permits independent instruction streams to be
broadcast to selected subtrees. Such subtrees,
though, must be rooted at a single, fixed level
within the tree, where additional processing power
is available.)

Within the DAD0 machine, on the other hand,
each PE is capable of executing in either of two
modes. In the first, which we will call m mode,
the PE executes instructions broadcast by scone
ancestor PE within the tree, as in the KBWON
mchine. In the second, which will be referred to
as JIIMD mode (for multiple instruction stream,
multiple data stream), each PE executes
instructions stored in its own local RAM,
independently of the other PE's.

In order to execute the production system
cycle, the I/O switches are configured in such a
way as to divide the DADC rrrachine into three
conceptually distinct components. One of these
canponents consists of all PE's at a particular
level within the tree, called the m level, which
is chosen in a manner to be detailed shortly. The
other two components are the uouer portion of the
tree, which canprises all PE's located above the PM
level, and the lower portion of the tree, which
consists of all PE's found below the PM level.
This functional division is illustrated in Figure
3-l.

Each PE at the PM level is used to store a
single production. The PM level must thus be
chosen such that the number of nodes at that level
is at least as large as the number of productions
in PM. The subtree rooted by a given PE at the PM
level will store that portion of WM that is
relevant to the production stored in that PE. A
ground literal in WM is defined to be relevant to a
given production if its predicate sy&ol agrees
with the predicate symbol in one of the pattern
literals in the LHS of the production, and all
constants in the pattern literal are equal to the
corresponding constants in the ground literal.
Intuitively, the set of ground literals relevant to
a given production consists of exactly those
literals that might match that production, given
appropriate variable bindings.

Ihe constituent subtrees that make up the
lower portion of the tree will be referred to as
the m-subtree For simplicity, we will assume in
this paper thi< each PE in a WM-subtree rooted by
some production contains exactly one ground literal
relevant to that production. (Using "packing"
techniques analogous to those employed in NON-VON,
however, this assumption is easily relaxed at the
expense of a modest cost in time.) It should be
noted that, since a single ground literal may be

243

-PM Level:
match, determine relevance
8 instantiate

relevant to more than one production, portions of
WM may in general be replicated in different WM-
subtrees.

During the match @se, the WM-subtrees are
used as co&&-addressable memories, allowing
parallel zatching in time independent of the size
of WM. The upper portion of the tree is used to
select one of the matching productions to be
executed, and to broadcast the action resulting
frcan this execution (both in O(log P) time, where P
is the number of productions). Details of these
functions follow.

4. The Matching Phase

At the beginning of the matching phase, all
PE's at the PM level are instructed to enter MIMD
de, and to simultaneously (and independently)
match their LHS against the contents of their
respective WM-subtrees. The ability to
concurrently match the LkIS of all productions
accounts for some, but not all, of the parallelism
achieved in DADO's matching phase. In addition,
the matching of a sinule LHS is performed in a
parallel manner, using the corresponding WM-subtree
as an associative processinq device. The simplest
case involves the matching of a single LJIS pattern
predicate containing at most one instance of any
variable. In order to match the predicate

(Part-category =pert electronic-component),

Figure 3-l: Functional Division of the DAD0 Tree

for example, the PM-level PE corresponding to the
production in question would first broadcast a
sequence of instructions to all PE's in the WM-
subtree that would ause each one to simultaneously
canpare the field beginning in, say, its fifth PAM
cell with the string "Part-category". All non-
matching PE's would then be -bled causing all
subsequent instructions to be ignokd for the
duration of the match. Next, the string
"electronic-component" would be broadcast, along
with the instructions necessary to match this
string against, say, the field beginning in the
thirty-fifth RAM location of all currently enabled
PE's. After again disabling all non-matching PE's,
the only PE's still enabled would be those
containing a ground literal that matches the
predicate in question. If this were the only
predicate in the LHS, matching would terminate at
this point. It should be noted that the time
required for this matching operation depends only
on the complexity of the pattern predicate, and not
on the number of ground literals stored in the wM-
subtree.

The general matching algorithm, which
accoxmodates a LHS consisting of a number of
conjoined predicates, possibly including common
pattern variables, is considerably more ccznplex.
While space does not permit a complete exposition
of the general algorithm, readers familiar with the
literature of relational database systems, and in
particular, database machines, may find the
following brief corrur'ents illuminating. First, we
note that the set of all ground literals in a

244

single WM-subtree may be regarded as canprising
several relations, each the extension of sane
pattern literal. Viewed in this way, the general
production matching problem reduces to a problem
for which Shaw [1980] has proposed, and simulated
in software, a highly efficient solution involving
the use of associative hardware to evaluate
relational algebraic primitives in parallel. The
result is a new relation embodying the variable
bindings corresponding to all possible
instantiations of the production in question that
are consistent with the contents of WM.

5. The Selection Phase

Since each production is asynchronously
matched against the data stored in its WM-subtree,
the production matching phase will in general
terminate at different times within each PM-level
PE. At the end of the matching phase, the PM-level
PE's must thus be svnchronized before initiation of
the selection phase. In support of this
synchronization operation, each PM-level PE sets a
local flag upon canpletion of its own matching
task. The I/O switch contains combinatorial
hardware that permits the DAD0 tree to compute a
logical conjunction of these flags in time equal to
O(log n) gate delays. DADO's tree-structured
topology, along with the combinatorial, as opposed
to sequential, canputation of this n-ary "logical
AND", lead to a synchronization time which is
dominated by that required for matching, and which
mYI in practice, be ignored in analysis of the
time complexity of the production system cycle.

The selection of a single production to "fire"
from among the set of all matching productions also
requires time proportional to the depth of the
tree. Unlike the synchronization operation,
however, the primitive operations required for
selection are ccanputed using sequential logic. We
assume that each PM-level PE performs scme local
ccanputation prior to the synchronization operation
that yields a single, numerical priority rating.
PE's containing matching productions are assigned
positive values, while other PM-level PE's are
assigned a priority of zero. We also assume that
each PM-level PE has a distinct mu, stored in a
fixed location within its local memory, which may
be used to uniquely identify that PE.

After synchronization, all PM-level PE's are
instructed to enter SIMD mode. Each such PE is
then instructed to send its priority rating to its
parent. Each parent cornperes the priority ratings
of its two children, retaining the larger of the
two, along with the unique tag of the "winner".
The process is repeated at successively higher
levels within the tree until a single tag arrives
at the root. This tag is then broadcast to all PM-
level PE'S for matching, disabling all except the
one having the highest priority rating, which
remains enabled for the action phase.

6. Ihe Action Phase

At this point, the "winning" PE is instructed
to instantiate its RHS, which is then broadcast to
the root. Next, all PM-level PE's are enabled, and
the RHS of the winning instance is broadcast to
all. The details of the action phase are made more
coanplex by the importance of avoiding unnecessary
replication of WM literals within the lower portion
of the tree, and of reclaiming local memory space
freed by the deletion of such literals. These
functions are based on associative operations
similar to those employed in the matching
operation.

The HZ's at the PM level are instructed to
enter MIMD mode and to concurrently update their
WM-subtrees as specified by the RHS of the winning
instance.

First, the PM-level PE's perform an
associative probe for each literal to be deleted
frcin WM, enabling only those PE's in the WM-
subtrees whose local memories are to be reclaimed.
The enabled PE's are then instructed by the EM-
level PE to overwrite their stored ground literal
with a special free-t= identifying empty PE's.
This tag is the target of the subsequent
associative probe executed for each of the ground
literals to be added to WM.

When processing an asserted literal, the RI-
level PE first determines whether or not the
literal is relevant to its stored production.
Next, the associative operation identifies those
relevant literals which are not present in the WM-
subtree, and thus are to be stored in some empty
PE.

After probing for the free-tag, all PE'S are
disabled except the empty PE's. To avoid
duplication of asserted literals, all but one of
these PE's is disabled by a multip& match
resolution scheme which uses combinatorial hardware
in the I/O switch to very rapidly clear a flag in
all but an arbitrary "first" enabled PE. The
asserted literal is then broadcast to the one
enabled PE.

As in the matching phase, the action phase in
general will terminate at different times in each
PM-level PE. After synchronization, another 'cycle
of production systan execution begins with the
production matching phase.

7. Specialized Production Systems

The general scheme for production system
execution on DADO can be extended to support
cmutative production systems, as well as
"cooperating expert systems" based on multiple,
independently executing production systems.

the
A carmutative production system allc~s each of
matching rules on every cycle of operation to

245

be selected for execution. The same canbinatorial
hardware used in the action phase to select a
single arbitrary "free" PE supports this operation
by enumerating each of the matching productions in
an arbitrary sequential order. Each of the RHS's
so reported to the root are then processed by the
action phase.

In our exposition of the general production
system algorithm, it was assumed that the upper
tree was rooted at the (physical) root of DAD0 (see
Figure 3-l). Since each PE in the DAD0 tree can
execute its own independent program, the upper tree
can be rooted at an arbitrary internal node of
DADO. Thus, multiple, independent production
systems are executed on the DADO machine by rooting
a forest of upper trees at the same fixed level of
the DADG tree. Ccmnunication among these
independent production systems is implemented in
the same fashion as ccmnunication among the PM-
level PE's during the action phase of the
(cmutative) production system cycle.

REFERENCES

Davis, Randall and Jonathan King.
& Overv& a Production St/stems.
Technical Report, Stanford University Canputer
Science Department, 1975.
AI Lab Memo, AIM-271.

Fahlman,ScottE.
a &&net mterconnection Scheme.
Technical Report 125, Department of Computer
Science, Carnegie- Mellon University, 1979.

Flynn, Michael J.
Some computer organizations and their
effectiveness.

Transactions QB Ccmmuters, 948-960, September,
1972.

Forgy, Charles L.
_A Note on Production,Wstems and IrlLIAC m.
Technical Report 130, Department of Ccanputer
Science, Carnegie-Mellon University, July, 1980.

Fuhlrott, Oskar.
Bibliography on AI Machines.
SIGART w (79), January, 1982.

Newell, Allen.
Production Systems: Models of Control Structures.
In w. chase (editor), Information Visual
Processinq, Academic Press, 1973.

Shaw, David Elliot.
Architecture for &&
Relational asebraic

tabase primitives
Technical Report *STAN-(3-79-778, Department of
Tr Science, Stanford University, October,

.

Shaw, David Elliot.
Knowledqe-Based Retrieval m a Relational Database

of Ccanputer Science,

Shaw, David Elliot, Salvatore J. Stolfo, Hussein
Ibrahim, Bruce Hillyer, Gio Wiederhold and J. A.
Andrews.
The NON-VON Database Machine: A Brief Overview.
J&abase Epuineeru 4(2), December, 1981.

Stolfo, Salvatore J. and David Elliot Shaw.
Specialized Hardware for Production Systems.
Technical Report, Department of Computer Science,
Columbia University, August, 1981.

Rychener, Michael.
production j3vstems M B B m for
Btificial BN.
PhD thesis, Department of Ccanputer Science,
Carnegie-Mellon University, 1976.

246

