
DADO: ATREE-STRUCXUREDMACRINE ARCRITECTURE FoRERODUcTIONSYSTEMS* 

Salvatore J. Stolfo 
and 

David Elliot Shaw 

Coltiia University 

ABs!rRAcT 

DAD3 is a parallel tree-structured machine 
designed to provide highly significant performance 
improvements in the execution of large Production 
systems. The DAD0 machine comprises a large (on 
the order of a hundred thousand) set of processing 
elements (PE's), each containing its awn processor, 
a small amount (2K bytes, in the current design) of 
local random access memory, and a specialized I/O 
switch. The PE's are interconnected to form a 
complete binary tree. 

This paper describes a general procedure for 
the parallel execution of production systems on the 
DAD0 machine, and outlines in general terms how 
this procedure can be extended to include 
conmutative and multiple, independent production 
systems. 

1. Introduction 

DAD0 [Stolfo and Shaw, 19811 is a parallel, 
tree-structured machine designed to provide highly 
significant performance improvements in the 
execution of production systems. A production 
system [Newell, 1973; Davis and King 1975; 
Rychener, 19761 is defined by a set of rules, or 
productions, which form the production memory (PM), 
together with a database of assertions, called the 
workinq memorv MM). Each production consists of a 
conjunction of pattern writs, called the left- 
&@ side (LHS) of the rule, along with a set of 
actions called the a-hand side (RRS). The RRS 
specifies information which is to be added to 
(asserted) or removed from WM when the LHS 
successfully mtches against the contents of WM. 

In operation, the PS repeatedly executes the 
following cycle of operations: 

1. Match: For each rule, determine whether 
the LRS matches the current environment 
of WM. 
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2. Select: Choose exactly one of the 
mtching rules according to same 
predefined criterion. 

3. A&: Add to or delete from WM all 
assertions spcified in the RI-IS of the 
selected rule. 

In this paper, data elements in WM will have 
the form of arbitrary ground literals in the first 
order predicate calculus. For pedagogical reasons, 
we will restrict our attention to the case in which 
both the LHS and RRS are conjunctions of predicates 
in which all first order terms are composed of 
constants and existentially quantified variables. 
(DAD3 in fact supports the incorporation of 
universally quantified variables in the LRS of a 
production as well, but an adequate treatment of 
this case would substantially complicate our 
exposition, and has thus been titted. The 
interested reader is referred to a discussion of 
the LSEC algorithm for logical satisfaction, 
presented in a doctoral dissertation by Shaw 
[ 19801.) A negated pattern in the LHS causes the 
matching procedure to fail whenever WM contains a 
matching ground literal, while a negated pattern in 
the RRS causes all matching data elements in WM to 
be deleted. 

An example production is presented in Figure 
l-l. (Variables are prefixed with an equal sign.) 

(Part-category =part electronic-component) 
(Used-in =part =product) 
(Supplied-to =product =custaner) 
(NOT Manufactured-by apart --cstmr) 
-> (Dependent-on =customer =part) 

(WI Independent =customer) 

Figure l-l: An Example Production 

Because the matching of each rule against WM 
is essentially independent of the others (at least 
in the absence of oontention for data in WM), it is 
natural to attempt a decanposition of the matching 
portion of each cycle into a large number of tasks 
suitable for physically concurrent execution on 
parallel hardware. While the design of special- 
purpose parallel machines adapted to artificial 
intelligence applications has attracted scme 
attention [Fahlman, 1979; Fuhlrott, 19821, little 
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progress has been made in the application of highly 
concurrent hardware to the execution of rule-based 
systems. Forgy [1980] proposed a very interesting 
use of the ILLIAC IV machine for such applications, 
but recognized that his approach failed to identify 
all matching productions under certain 
circumstances. 

In this paper, we describe a tree-structured 
machine architecture that utilizes the emerging 
technology of VLSI systems in support of the highly 
efficient parallel execution of large-scale 
production systems. Portions of the machine, which 
we have come to call DAIXJ, are now in the early 
stages of construction at Columbia University. We 
believe a full-scale DADO prototype, capble of 
significant performance improvements over 
implementations based on von Neumnn machines, to 
be technically and economically feasible for 
implementation using current technology. 

When a DAD0 PE enters MIMD mode, its I/O 
switch settings are changed in such a way as to 
effectively "disconnect" it and its descendants 
fram all higher-level PE's in the tree. In 
particular, 
instructions 

a PE in MIMD mode does not receive any 
that might be placed on the tree- 

structured cornnunication bus by one of its 
ancestors. Such a PE may, however, broadcast 
instructions to be executed by its own descendants, 
providing all of these descendants have themselves 
been switched to SIMD mode. The DAD0 machine can 
thus be configured in such a way that an arbitrary 
internal node in the tree acts as the root of a 
tree-structured, NON-VDN-like SIMD device in which 
all PE's execute a single instruction at a given 
point in time. 

As in NON-VCN, the DAD0 I/O switch supports 
cmunication between physically adjacent neighbors 
(parents and children) within the tree in addition 
to broadcast-based ccprmunication. 

2. The DAD0 Machine Architecture 
3. Allocation of Productions and working Memory 

The DAD0 machine cchnprises a very large (on 
the order of a hundred thousand) set of processing 
m (PE's), each containing its own processor, 
a small amount (2K bytes, in the current design) of 
local randam access memory, and a specialized I/O 
switch. The PE1s are interconnected to form a 
canplete binary tree. Certain aspects of the DAD0 
machine are modelled after KN-VON [Shaw, 1979; 
Shaw, et al., 19811, a tree-structured, highly 
parallel machine containing a larger number of much 
simpler processing elements. 

In NON-VON, most of the PE's are severely 
restricted in both processing power and storage 
capacity, and are thus not typically used to 
execute independent programs. Instead, a single 
control processor, located at the root of the NON- 
VON tree, typically broadcasts a single stream of 
instructions to all PE's in the tree. Each such 
instruction is then simultaneously executed (on 
different data) by every PF in the tree. This mode 
of operation has been referred to in the literature 
of parallel canputation as single instruction 
stream, multiple data stream (SIMD) execution 
[Flynn, 19721. (!Che above description is in fact 
somewhat oversimplified, since EJ(;N-VON in fact 
permits independent instruction streams to be 
broadcast to selected subtrees. Such subtrees, 
though, must be rooted at a single, fixed level 
within the tree, where additional processing power 
is available.) 

Within the DAD0 machine, on the other hand, 
each PE is capable of executing in either of two 
modes. In the first, which we will call m mode, 
the PE executes instructions broadcast by scone 
ancestor PE within the tree, as in the KBWON 
mchine. In the second, which will be referred to 
as JIIMD mode (for multiple instruction stream, 
multiple data stream), each PE executes 
instructions stored in its own local RAM, 
independently of the other PE's. 

In order to execute the production system 
cycle, the I/O switches are configured in such a 
way as to divide the DADC rrrachine into three 
conceptually distinct components. One of these 
canponents consists of all PE's at a particular 
level within the tree, called the m level, which 
is chosen in a manner to be detailed shortly. The 
other two components are the uouer portion of the 
tree, which canprises all PE's located above the PM 
level, and the lower portion of the tree, which 
consists of all PE's found below the PM level. 
This functional division is illustrated in Figure 
3-l. 

Each PE at the PM level is used to store a 
single production. The PM level must thus be 
chosen such that the number of nodes at that level 
is at least as large as the number of productions 
in PM. The subtree rooted by a given PE at the PM 
level will store that portion of WM that is 
relevant to the production stored in that PE. A 
ground literal in WM is defined to be relevant to a 
given production if its predicate sy&ol agrees 
with the predicate symbol in one of the pattern 
literals in the LHS of the production, and all 
constants in the pattern literal are equal to the 
corresponding constants in the ground literal. 
Intuitively, the set of ground literals relevant to 
a given production consists of exactly those 
literals that might match that production, given 
appropriate variable bindings. 

Ihe constituent subtrees that make up the 
lower portion of the tree will be referred to as 
the m-subtree For simplicity, we will assume in 
this paper thi< each PE in a WM-subtree rooted by 
some production contains exactly one ground literal 
relevant to that production. (Using "packing" 
techniques analogous to those employed in NON-VON, 
however, this assumption is easily relaxed at the 
expense of a modest cost in time.) It should be 
noted that, since a single ground literal may be 
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-PM Level: 
match, determine relevance 
8 instantiate 

relevant to more than one production, portions of 
WM may in general be replicated in different WM- 
subtrees. 

During the match @se, the WM-subtrees are 
used as co&&-addressable memories, allowing 
parallel zatching in time independent of the size 
of WM. The upper portion of the tree is used to 
select one of the matching productions to be 
executed, and to broadcast the action resulting 
frcan this execution (both in O(log P) time, where P 
is the number of productions). Details of these 
functions follow. 

4. The Matching Phase 

At the beginning of the matching phase, all 
PE's at the PM level are instructed to enter MIMD 
de, and to simultaneously (and independently) 
match their LHS against the contents of their 
respective WM-subtrees. The ability to 
concurrently match the LkIS of all productions 
accounts for some, but not all, of the parallelism 
achieved in DADO's matching phase. In addition, 
the matching of a sinule LHS is performed in a 
parallel manner, using the corresponding WM-subtree 
as an associative processinq device. The simplest 
case involves the matching of a single LJIS pattern 
predicate containing at most one instance of any 
variable. In order to match the predicate 

(Part-category =pert electronic-component), 

Figure 3-l: Functional Division of the DAD0 Tree 

for example, the PM-level PE corresponding to the 
production in question would first broadcast a 
sequence of instructions to all PE's in the WM- 
subtree that would ause each one to simultaneously 
canpare the field beginning in, say, its fifth PAM 
cell with the string "Part-category". All non- 
matching PE's would then be -bled causing all 
subsequent instructions to be ignokd for the 
duration of the match. Next, the string 
"electronic-component" would be broadcast, along 
with the instructions necessary to match this 
string against, say, the field beginning in the 
thirty-fifth RAM location of all currently enabled 
PE's. After again disabling all non-matching PE's, 
the only PE's still enabled would be those 
containing a ground literal that matches the 
predicate in question. If this were the only 
predicate in the LHS, matching would terminate at 
this point. It should be noted that the time 
required for this matching operation depends only 
on the complexity of the pattern predicate, and not 
on the number of ground literals stored in the wM- 
subtree. 

The general matching algorithm, which 
accoxmodates a LHS consisting of a number of 
conjoined predicates, possibly including common 
pattern variables, is considerably more ccznplex. 
While space does not permit a complete exposition 
of the general algorithm, readers familiar with the 
literature of relational database systems, and in 
particular, database machines, may find the 
following brief corrur'ents illuminating. First, we 
note that the set of all ground literals in a 
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single WM-subtree may be regarded as canprising 
several relations, each the extension of sane 
pattern literal. Viewed in this way, the general 
production matching problem reduces to a problem 
for which Shaw [1980] has proposed, and simulated 
in software, a highly efficient solution involving 
the use of associative hardware to evaluate 
relational algebraic primitives in parallel. The 
result is a new relation embodying the variable 
bindings corresponding to all possible 
instantiations of the production in question that 
are consistent with the contents of WM. 

5. The Selection Phase 

Since each production is asynchronously 
matched against the data stored in its WM-subtree, 
the production matching phase will in general 
terminate at different times within each PM-level 
PE. At the end of the matching phase, the PM-level 
PE's must thus be svnchronized before initiation of 
the selection phase. In support of this 
synchronization operation, each PM-level PE sets a 
local flag upon canpletion of its own matching 
task. The I/O switch contains combinatorial 
hardware that permits the DAD0 tree to compute a 
logical conjunction of these flags in time equal to 
O(log n) gate delays. DADO's tree-structured 
topology, along with the combinatorial, as opposed 
to sequential, canputation of this n-ary "logical 
AND", lead to a synchronization time which is 
dominated by that required for matching, and which 
mYI in practice, be ignored in analysis of the 
time complexity of the production system cycle. 

The selection of a single production to "fire" 
from among the set of all matching productions also 
requires time proportional to the depth of the 
tree. Unlike the synchronization operation, 
however, the primitive operations required for 
selection are ccanputed using sequential logic. We 
assume that each PM-level PE performs scme local 
ccanputation prior to the synchronization operation 
that yields a single, numerical priority rating. 
PE's containing matching productions are assigned 
positive values, while other PM-level PE's are 
assigned a priority of zero. We also assume that 
each PM-level PE has a distinct mu, stored in a 
fixed location within its local memory, which may 
be used to uniquely identify that PE. 

After synchronization, all PM-level PE's are 
instructed to enter SIMD mode. Each such PE is 
then instructed to send its priority rating to its 
parent. Each parent cornperes the priority ratings 
of its two children, retaining the larger of the 
two, along with the unique tag of the "winner". 
The process is repeated at successively higher 
levels within the tree until a single tag arrives 
at the root. This tag is then broadcast to all PM- 
level PE'S for matching, disabling all except the 
one having the highest priority rating, which 
remains enabled for the action phase. 

6. Ihe Action Phase 

At this point, the "winning" PE is instructed 
to instantiate its RHS, which is then broadcast to 
the root. Next, all PM-level PE's are enabled, and 
the RHS of the winning instance is broadcast to 
all. The details of the action phase are made more 
coanplex by the importance of avoiding unnecessary 
replication of WM literals within the lower portion 
of the tree, and of reclaiming local memory space 
freed by the deletion of such literals. These 
functions are based on associative operations 
similar to those employed in the matching 
operation. 

The HZ's at the PM level are instructed to 
enter MIMD mode and to concurrently update their 
WM-subtrees as specified by the RHS of the winning 
instance. 

First, the PM-level PE's perform an 
associative probe for each literal to be deleted 
frcin WM, enabling only those PE's in the WM- 
subtrees whose local memories are to be reclaimed. 
The enabled PE's are then instructed by the EM- 
level PE to overwrite their stored ground literal 
with a special free-t= identifying empty PE's. 
This tag is the target of the subsequent 
associative probe executed for each of the ground 
literals to be added to WM. 

When processing an asserted literal, the RI- 
level PE first determines whether or not the 
literal is relevant to its stored production. 
Next, the associative operation identifies those 
relevant literals which are not present in the WM- 
subtree, and thus are to be stored in some empty 
PE. 

After probing for the free-tag, all PE'S are 
disabled except the empty PE's. To avoid 
duplication of asserted literals, all but one of 
these PE's is disabled by a multip& match 
resolution scheme which uses combinatorial hardware 
in the I/O switch to very rapidly clear a flag in 
all but an arbitrary "first" enabled PE. The 
asserted literal is then broadcast to the one 
enabled PE. 

As in the matching phase, the action phase in 
general will terminate at different times in each 
PM-level PE. After synchronization, another 'cycle 
of production systan execution begins with the 
production matching phase. 

7. Specialized Production Systems 

The general scheme for production system 
execution on DADO can be extended to support 
cmutative production systems, as well as 
"cooperating expert systems" based on multiple, 
independently executing production systems. 

the 
A carmutative production system allc~s each of 
matching rules on every cycle of operation to 
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be selected for execution. The same canbinatorial 
hardware used in the action phase to select a 
single arbitrary "free" PE supports this operation 
by enumerating each of the matching productions in 
an arbitrary sequential order. Each of the RHS's 
so reported to the root are then processed by the 
action phase. 

In our exposition of the general production 
system algorithm, it was assumed that the upper 
tree was rooted at the (physical) root of DAD0 (see 
Figure 3-l). Since each PE in the DAD0 tree can 
execute its own independent program, the upper tree 
can be rooted at an arbitrary internal node of 
DADO. Thus, multiple, independent production 
systems are executed on the DADO machine by rooting 
a forest of upper trees at the same fixed level of 
the DADG tree. Ccmnunication among these 
independent production systems is implemented in 
the same fashion as ccmnunication among the PM- 
level PE's during the action phase of the 
(cmutative) production system cycle. 
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