
for Probabilistic

Nicholas Kushmerick Steve Hanks Daniel Weld
Department of Computer Science and Engineering, FR-35

University of Washington Seattle, WA 98195
(nick, hanks, weld) @cs. Washington. edu

Abstract

We define the probabilistic planning problem in terms
of a probability distribution over initial world states,
a boolean combination of goal propositions, a proba-
bility threshold, and actions whose effects depend on
the execution-time state of the world and on random
chance. Adopting a probabilistic model complicates
the definition of plan success: instead of demanding
a plan that proovably achieves the goal, we seek plans
whose probability of success exceeds the threshold.

This paper describes a probabilistic semantics for
planning under uncertainty, and presents a fully im-
plemented algorithm that generates plans that succeed
with probability no less than a user-supplied probabil-
ity threshold. The algorithm is sound (if it terminates
then the generated plan is sufficiently likely to achieve
the goal) and complete (the algorithm will generate a
solution if one exists).

Introduction
Classical planning algorithms have traditionally
adopted stringent certainty assumptions about their
domains: the planning agent is assumed to have com-
plete and correct information about the initial state of
the world and about the effects of its actions. These
assumptions allow an algorithm to build a plan that
is provably correct: given an initial world state, a suc-
cessful plan is a sequence of actions that logically en-
tails the goal. Our research effort is directed toward
relaxing the assumptions of complete information and
a deterministic action model, while exploiting existing
techniques for symbolic least-commitment plan gener-
ation.

This paper presents the BURIDAN' planning algo-
rithm. BURIDAN is a sound, complete, and fully im-

*We gratefully acknowledge the comments and sugges-
tions of Tony Barrett, Tom Dean, Denise Draper, Mike Erd-
mann, Keith Golden, Rex Jacobovits, Oren Etzioni, Neal
Lesh, Judea Pearl, and Mike Williamson. This research was
funded in part by National Science Foundation Grants IRI-
9206733 and IRI-8957302, Office of Naval Research Grant
90-J-1904, and the Xerox Corporation.

‘Jean Buridan (ba re d&r’), 1300-58, a French philoso-
pher and logician, has been credited with originating prob-
ability theory. He seems to have toyed with the idea of
using his theory to decide among alternative courses of ac-

plemented least-commitment planner whose underly-
ing semantics is probabilistic: a probability distribu-
tion over states captures the agent’s uncertainty about
the world and a mixed symbolic and probabilistic ac-
tion representation allows the effects of action to vary
according to the (modeled) state of the world at exe-
cution time as well as unmodeled (random) factors.

Our planner takes as input a probability distribution
over (initial) states, a goal expression, a set of action
descriptions, and a probability threshold representing
the minimum acceptable success probability. The al-
gorithm produces a plan such that, given a probability
distribution over initial states, the probability that the
goal holds after executing the plan is no less than the
threshold. We have proved that the algorithm is sound
(any plan it returns is a solution) and complete (if there
is an acceptable plan the algorithm will find it).

The work reported here makes several contributions.
First, we define a symbolic action representation and
its probabilistic semantics. Second, we describe an im-
plemented algorithm for probabilistic planning. Third,
we briefly describe our investigation of alternative plan
assessment strategies. The paper concludes with a dis-
cussion of related work.

This research is described in detail in the long ver-
sion of this paper (Kushmerick, Hanks, & Weld 1993).
Example. The following example will be developed
throughout the paper. Suppose a robot is given the
goal of holding a block (I-B), making sure it is painted
(BP)? and simultaneously keeping its gripper clean
(GC). Initially the gripper is clean, but the block is
not being held and is not painted, and the gripper is
dry (GD) with probability 0.7. Suppose further that we
will accept any plan that achieves the goal with proba-
bility at least 0.8. Finally, the robot has the following
actions available:
e pickup: try to pick up the block. If the gripper is

dry when the pickup is attempted, executing this
action will make HB true with probability 0.95. If
the gripper is not dry, however, HB will become true
only with probability 0.5.

tion: the parable of “Buridan’s Ass” is attributed to him,
in which an ass that lacked the ability to choose starved to
death when placed between two equidistant piles of hay.

Planning Under Uncertainty 1073

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

* paint: paint the block. This action always makes BP
true, and if the robot is holding the block when paint
is executed, there is a 10% chance that the gripper
will become dirty (m).

o dry: try to dry the gripper. This action succeeds in
making GD true 80% of the time.

A Semantics for Probabilistic Planning
We begin by defining a planning problem, and what it
means to solve one. First we defining states and ex-
pressions, then actions and sequences of actions, then
the planning problem and its solution.
States & expressions. A state is a complete descrip-
tion of the world at a single point in time, and uncer-
tainty about the world is represented using a random
variable over states. A state is described using a set
of propositions in which every proposition appears ex-
actly once, possibly negated.2 An expression is a set
(implicit conjunction) of literals. We define the proba-
bility of an expression Z with respect to a state s as:

P[&Is] =
1 ifEss
0 otherwise (1)

For our example, the world is initially in one of
two possible states: s1 = (GD,m, GC,m} and s2 = -m
(GD, HB, GC, BP}, and the probability distribution over
these states is characterized by a random variable ‘;lr as
follows: P[iI = Sl] = 0.7, P[$ = 4 = 0.3.
Actions & action sequences. Our model of action,
taken from (Hanks 1990; 1993), combines a symbolic
model of the changes the action makes to propositions
with probabilistic parameters that represent chance
(unmodeled) influences. Fig. 1 is our representation
of the pickup action: if the gripper is dry (GD holds)
at execution time, it makes HB true with probability
0.95, and with probability 0.05 makes no change to
the world state. But if GD is false at execution time,
pickup makes HB true only with probability 0.5. Note
that the propositions in the boxes refer to changes the
action makes, not to world states. For example, it is
not correct to say that the HB holds with probability
0.95 after executing pickup in a state where the grip-
per is dry, since the probability of HB after pickup is
executed also depends on the probability of HB before
execution (as well as the probability of GD before exe-
cution).

Formally, an action is a set of consequences
{(b, Pa, 4, . . . , (to, p?, eV)}. Each t, is an expression
called the consequence s trigger, pL is a probability, and
eL is a set of literals called the effects. The representa-
tion for the pickup action is thus {((GD}, 0.95, {HB)),

(-iGD),O-05,0), ({GD),O.5,(HB& t~CD),O-5,0)).

2 We use this rep resentation for expository purposes
only; an implementation need not manipulate states explic-
itly. In fact our plan refinement algorithm has no explicit
representation of state: it reasons directly about the state’s
component propositions.

We require that an action’s
elusive and exhaustive:

The notation AI,~ refers to consequence L of action Ai,
and superscripts refer to parts of a particular action:

Figure 1: The pickup action.

triggers be mutually ex-

VL >: p,P[t, Is] = 1 (2)

vs, L, K L # t, * P[t, u t, 1 s] = 0 (3)

Ai = {. . . , (ti, p”,, ef), . . .}.
A consequence defines a (deterministic) transition

from a state to a state, defined by a function
RESULT(e, s), where e is a set of effects and s is a
state. This function is similar to add and delete lists
in STRIPS; see the long version of this paper for the full
definition.

An action A induces a change from a state s to a
probability distribution over states s’:

P[+,A]= o
C

pLP[tL Is] if (f‘, pL, e,)EA A s’=RJ?XJLT(t?, , s)
otherwise (4)

Since an action’s triggers are mutually exclusive and
exhaustive, we have that C,, PCs’ 1 s, A] = 1 for every
action A and state s.

We now define the result of executing actions in se-
quence. The probability that a state s’ will hold after
executing a sequence of actions (Ai)EI (given that the
world was initially in state s) is defined as follows:

P[s’ls, (Ai):,] = C P[s”ls, AI]P[s’]s”, (Ai)fCg] (5)
SI’

where P[s’ 1 s, ()I = 1 if s’ = s and 0 otherwise.
Finally, we define the probability that an expression

g is true after an action sequence is executed begin-
ning in some state s, and the probability of an expres-
sion after executing an action sequence given an initial
probability distribution over states ZI:

P[Els, (Ai)IN=l] = ~P[s’Is,(A~)~~=~]P~&IS’] (6)

P[fIG, (Ai>;N=l] = &P[Ejs, (Ai>,“=,]P[G=s] (7)

Planning problems & solutions. A planning prob-
lem consists of (1) a probability distribution over ini-
tial states Sl, (2) a set of actions {Ai}, (3) a goal ex-
pression G, and (4) a probability threshold r. For
the problem described in this paper, the initial dis-
tribution $ was defined earlier, the plan can be con-
structed from the actions {pickup, paint, dry), the goal

1074 Planning and Scheduling

is G = {HB, BP, GC}, and the probability threshold is
r = 0.8.

A solution to the problem is an action sequence
(Ai):, if P [s IS., (Ai):,] 2 r. As we’ll see, (dry,

paint, pickup) is a solution to the example problem.

The BURIDAN Algorithm
We now describe BURIDAN, an algorithm that gener-
ates solutions to planning problems. BURIDAN, like
SNLP (McAllester & Rosenblitt 1991), searches a space
of partial plans. Each plan consists of a set of actions
{Ai} where each Ai is one of the input actions anno-
tated with a unique index, a partial temporal ordering
relation “<” over {Ai}, a set of causaZ links, and a set
of subgoals. The first two items are straightforward,
but there are important differences between the last
two items and the analogous SNLP concepts.

A link caches BURIDAN'S reasoning that a particular
consequence of a particular action could make a literal
true for a (later) action in the plan. The link Ai,‘xAj
records the fact that literal p is a member of the trigger
of one of action Aj’s consequences (Aj is the link’s con-
sumer), and the effect set of consequence L of action Ai

(the link’s producer) contains p. Action Al, threatens
link A;,$Aj if the effect set of some consequence of AI,
contains j5, and if Al, can be ordered between Ai and
Aj.

A plan’s subgoals consists of the literals in the plan
that BURIDAN is committed to making true. A subgoal
is a literal annotated with a particular action, written
p@Aa . p@Ai is a subgoal if the plan contains a link
Ai,&IAj and p E tf , The set of subgoals is initialized
to include all top-level goals.

BURIDAN begins searching from the null plan, which
contains only two dummy actions A0 and AG , and the
ordering constraint A0 < AG. These two actions allow
BURIDAN to compactly encode the planning problem:
A0 and AG encode the probability distribution over ini-
tial states and the goal expression, respectively. Fig. 2
shows the null plan for the example developed in this
paper. The initial action A0 has one consequence for
each state in the initial distribution $1 that has non-
zero probability. Its triggers are all empty, and the
effect sets and probabilities are the states and prob-
abilities defined by $. The goal action AG has one
consequence triggered by the goal expression G. The
null plan adopts p@& as a subgoal for each p E g.

G

Figure 2: A0 and AG encode the initial probability
distribution and the goal.

Starting from the null plan, BURIDAN performs two
operations:
1. Plan Assessment: Determine if the probability that

the current plan will achieve the goal exceeds 7, ter-
minating successfully if so.

2. Plan Refinement: Otherwise, try to increase the
probability of goal satisfaction by refining the cur-
rent plan. Each refinement generates a new node in
the space of partial plans. Signal failure if there are
no possible refinements, otherwise nondeterministi-
tally choose a new current plan and loop.
Refining a plan with conditional and probabilistic

actions differs in two ways from classical causal-link
refinement algorithms (e.g. SNLP). First, SNLP estab-
lishes a single causal link between a producing action
and a consuming action, and that link alone ensures
that the link’s literal will be true when the consuming
action is executed. Our planner links one of an action’s
consequences to a later action. An action can have sev-
eral consequences, though only one will actually occur.
Furthermore, a single link Ai,‘JAj ensures that p will
be true at action Aj only if trigger tt holds with prob-
ability one. Therefore multiple links may be needed
to support a literal: even if no single link makes the
literal sufficiently likely, their combination might. We
lose SNLP's clean distinction between an “open condi-
tion” (a trigger that is not supported by a link) and
a “supported condition” that is guaranteed to be true.
Causal support in a probabilistic plan is a cumulative
concept: the more links supporting a literal, the more
likely it is that the literal will be true.

The concept of a threatened link is different when
actions have conditional effects. Recall that Arc threat-
ens Ai,‘JAj if some consequence of AI, asserts F and
if Ak can be ordered between Ai and Aj. BURIDAN re-
solves threats in the same way that classical planners
do: by ordering the threatening action either before
the producer or after the consumer. But a plan can be
sufficiently likely to succeed even if there is a threat,
as long as the threat is sufficiently unlikely to occur.
We can therefore resolve a threat in an additional way,
by confrontation: if action Ak threatens link Ai,‘JAj,
plan for the occurrence of some consequence of Ak that
does not make p false. BURIDAN does so by adopting
that consequence’s triggers as additional subgoals.

Plan Refinement
BURIDAN'S plan refinement step generates all possible
refinements of a partial plan. A plan can be refined in
two ways: either resolving a threat to a causal link, or
adding a link to increase the probability that a subgoal
will be true. BURIDAN chooses a threat or subgoal, and
then generates possible refinements as follows:
1. If the choice is to add a link to the subgoal p@Aj ,

BURIDAN considers all new and existing actions Ai

that have an effect set ei containing p, adds a link
Ai,LJAj, and orders Ai < Aj.

planning Under Uncertainty 1075

2. If the choice is to resolve a threat by action Al, to

link Ai,h&Aj, BURIDAN resolves the threat in one of
three ways: demotion (order Ak < Ai if it is con-
sistent to do so), promotion (order Aj < Ah if con-
sistent), and confrontation (plan for the occurrence
of a consequence of action Ak that does not make p

(as described below), which is less than r = 0.8, so
BURIDAN continues to refine the plan. Eventually the
plan shown in Fig. 4 is generated; it has success prob-
ability 0.804, so BURIDAN terminates:

lan Assessment
false).

Link creation, promotion, and demotion are analo-
gous to refinement in SNLP-like planners, and we will
not discuss them further. 3 Confrontation has no ana-
logue in SNLP, however. The probability that link
Ai b&Aj succeeds in producing p for Aj is the proba-
bility that executing action Ag actually realizes conse-
quence L and that each action representing a confronted
threat realizes a consequence that does not make p
false. Since the consequences of action are mutually
exclusive, making a non-threatening consequence more
likely makes the threat less likely. BURIDAN therefore
confronts a threat by choosing a non-threatening con-
sequence of the threatening step, and adopts its trig-
gers as subgoals. We explain confrontation in detail in
the longer version of this paper.
Example. We now demonstrate how the planner con-
structs a plan that will achieve the goal (holding a
painted block with a clean gripper) with probability at
least 0.8. We simplify the presentation by presenting
a sequence of refinement choices that lead directly to
a solution plan.

Planning starts with the null plan (Fig. 2). The sub-
goals for the null plan are {HB@AG, BP@‘AG, GC@AG}.
BURIDAN supports the first subgoal, HB@AG, by adding
a pickup action, Al, and creating a link from its a! con-
sequence: A1 ,a BAG. Consequence Q of A1 has GD as
a trigger, so BURIDAN adopts GD@Al a subgoal. Sup-
port for this subgoal is then provided by a link from
the initial action: Ao,,%A,.

BURIDAN next supports the subgoal of having the
block painted, BP@A G, by adding a new paint action,
AZ, creating a link A,,p EAG, and adopting As,p’s

trigger HBQA~ as a subgoal. A link Ao,, HBA 2 is added
to support m@A 2. Notice that pickup and paint are un-
ordered, thus pickup threatens the new link: if pickup
is executed before paint, then the block will be in the
gripper when paint is executed, making false the trig-
ger HB of paint’s 0 consequence. BURIDAN resolves
this threat by promoting pickup, adding the ordering
constraint A2 < Al. Finally, BURIDAN supports the
subgoal GC@AG with the link A~,,%AG, and resolves
the threat posed by paint by confrontation: since con-
sequence p of A2 does not cause GC, BURIDAN adopts
its trigger i%bA2 as a subgoal The resulting plan is
shown in Fig. 3.

The assessed probability of Fig. 3’s plan is 0.7335

3We ignore SNLP’s separc4tion
only to actions with variables.

refinement, since it applies

The plan assessment algorithm decides whether a
plan’s probability of success exceeds the threshold
r. The FORWARD assessment algorithm is a straight-
forward implementation of the definition of action
execution4 FORWARD computes the probability dis-
tribution over states produced by “executing” each ac-
tion in sequence, pruning zero-probability states from
the distribution for the sake of efficiency.

Complicating assessment is the fact that a solution
is defined in terms of a totally ordered sequence of ac-
tions, whereas a plan’s actions might be only partially
ordered. We can still compute a lower bound on the
plan’s success, however, by considering the minimum
over all total orders consistent with the plan’s order-
ings. This policy is conservative in that it computes
the best probability that can be expected from every
total order. The long version of this paper discusses
these issues in more detail.
Example. We now illustrate how the FORWARD plan
assessment algorithm computes the success probabil-
ity for the plan in Fig. 3. FORWARD starts with
the input distribution over initial states, Sl, and com-
putes the following distribution over final states
A = (paint, pick up is the plan’s action)

P[{GD, HB, GC, BP} I B, A]

P
C-
{ GD, HB, GC, BP} 1 gz, A

P {GD, HB, GC, BP} Isz,d

P {GD, HB, GC, BP} I iz, A

P { GD, HB, GC, BP} 18, A
.m-

P {GD, HB, GC, BP) 1 gz, d
--

P (GD, HB, GC, BP} 1 sz, A
I---

P {GD, HB, GC, BP} I gz, A

1 = 0.5985
= 0.135
= 0.0665
= 0.015
= 0.0315
= 0.135
= 0.0035
= 0.015

The probability of the goal expression is then com-
puted by summing over those states in which the goal
holds. G = {HB, GC, BP) is true in the first two states,
so we have P[G 151, d] = 0.5985 + 0.135 = 0.7335.

Formal Properties

A least-commitment planner produces as output a par-
tial order over actions. Such a planner is sound if every
consistent total order of these actions is a solution to
the input problem. The planner is complete if it al-
ways returns a solution plan if such a plan exists. In
the longer paper we prove that BURIDAN is both sound
and complete.

41n this section we discuss one simple assessment strat-
egy; later we introduce a variety of more complicated
algorithms.

1076 Pianning and Scheduling

Figure 3: An partial solution to the example problem. Gray arrows indicate threats resolved by confrontation. .

a

Figure 4: A plan that is sufficiently likely to succeed.

Efficient Plan Assessment

The FORWARD assessment strategy, while simple, can
be quite inefficient, since the number of states with
nonzero probability can grow exponentially with the
length of the plan. This inefficiency motivates a
second focus of our research, an exploration of al-
ternative assessment algorithms. Since the general
plan assessment problem is NP-hard (Chapman 1987;
Cooper 1990) we cannot expect to produce an assess-
ment algorithm that runs, efficiently on every problem
in every domain. However, by exploiting the structure
of the actions, goals and state space, we can sometimes
realize tremendous efficiency gains. We have imple-
mented three alternative plan assessment algorithms.

While the size of the state distribution may grow
exponentially, in general not all of the distinctions be-
tween the different states will be relevant to whether
the goal is true. So one alternative assessment strat-
egy, called QUERY, tries to divide states into subsets
based on the truth of the goal. At best QUERY needs
to reason about only two subsets of states: those in
which the goal is true and those in which it is false.

Rather than manipulating states explicitly, assess-
ment algorithms can reason directly about the propo-

sitions that comprise the states. Thus the third as-
sessment algorithm, NETWORK, translates the action
descriptions into a probabilistic network, each node of
which corresponds to a single proposition at some point
during the execution of the plan. NETWORK then solves
this network using standard propagation techniques.

The resulting network tends to be more complicated
than necessary, however, since it explicitly includes
“persistence” links encoding the fact that a literal re-
mains unchanged across the execution of an action that
neither adds nor deletes it. But recall that persis-
tence assumptions are already stored in a plan’s causal-
link structures: an unthreatened link is a guarantee
that the link’s proposition will persist from the time
it is produced until it is consumed. This motivates
a fourth algorithm, REVERSE, that computes a plan’s
success probability by manipulating the plan’s causal
link structure directly.

The longer version of this paper describes these al-
gorithms in detail. Analysis of these algorithms shows
no clear winner: in each case we can construct domains
and problems in which one algorithm consistently out-
performs the other.

Planning Under Uncertainty 1077

Related Work and Conclusions

(Manse11 1993) and (Goldman & Boddy 1994) offer
alternative approaches to applying classical planning
algorithms to probabilistic action and state models.

(Dean et al. 1993), (Farley 1983), and (Koenig
1992) use fully observable Markov processes to model
the planning problem. These systems generate an
execution policy, a specification of what action the
agent should perform in every world state, and as-
sume that the agent is provided with complete and
accurate information about the world state. BURIDAN
produces a plan, a sequence of steps that is executed
without examining the world at execution time, and
assumes the agent will be provided with no addi-
tional information at execution time. A recent ex-
tension to BURIDAN, (Draper, Hanks, & Weld 1994a;
1994b), strikes a middle ground: the representation al-
lows actions that provide possibly inaccurate informa-
tion about the world at execution time, and actions in
a plan can be executed contingent on the information
provided by previous steps.

Work in decision science has dealt with planning
problems (see (Dean & Wellman 1991, Chap. 7) for
an introduction), but it has focused on solving a
given probabilistic model whereas our algorithm in-
terleaves the process of constructing and evaluating
solutions. But see (Breese 1992) for recent work on
model-building issues.

(Haddawy & Hanks 1992; 1993) motivate building
a planner like BURIDAN, exploring the connection be-
tween building plans that probably satisfy goals and
plans that are optimal in the sense of maximizing ex-
pected utility.

Although planning with conditional effects is not the
primary focus of our work, BURIDAN also generalizes
work on planning with deterministic conditional ef-
fects, e.g. in (Collins & Pryor 1992; Penberthy & Weld
1992). A deterministic form of confrontation is used in
UCPOP (Penberthy & Weld 1992).

The BURIDAN planner integrates a probabilistic seman-
tics for action with classical least-commitment plan-
ning techniques. BURIDAN accepts probabilistic infor-
mation about the problem’s initial state, and manipu-
lates actions with conditional and probabilistic effects.

Our planner is fully implemented in Common Lisp
and has been tested on many examples. BURIDAN
takes about 4.5 seconds to find a solution to the
problem presented in this paper. Send mail to
bug- buridan@cs. Washington. edu for information about
BURIDAN source code.

References
Breese, J. 1992. Construction of belief and decision net-
works. Computational Intelligence 8(4).

Chapman, D. 1987. Planning for conjunctive goals. Arti-
ficial Intelligence 32(3):333-377.

Collins, G., and Pryor, L. 1992. Achieving the functional-
ity of filter conditions in a partial order planner. In Proc.
10th Nat. Conf. on A.I.

Cooper, G. 1990. The computational complexity of proba-
bilistic inference using bayesian belief networks. ArtijXaZ
Intelligence 42.

Dean, T., and Wellman, M. 1991. Planning and Control.
Morgan Kaufmann.

Dean, T., Kaelbling, L., Kirman, J., and Nicholson, A.
1993. Planning with deadlines in stochastic domains. In
Proc. 11 th Nat. Conf. on A.I.

Draper, D., Hanks, S., and Weld, D. 1994a. A prob-
abilistic model of action for least-commitment planning
with information gathering. In Proc., Uncertainty in AI.
Submitted.

Draper, D., Hanks, S., and Weld, D. 1994b. Probabilistic
planning with information gathering and contingent exe-
cution. In Proc. .2nd Int. Conf. on A.I. Planning Systems.

Farley, A. 1983. A Probabilistic Model for Uncertain
Problem Solving. IEEE Transactions on Systems, Man,
and Cybernetics 13(4).

Goldman, R. P., and Boddy, M. S. 1994. Epsilon-safe
planning. forthcoming.

Haddawy, P., and Hanks, S. 1992. Representations
for Decision-Theoretic Planning: Utility Functions for
Dealine Goals. In Proc. 3rd Int. Conf. on Principles of
Knowledge Representation and Reasoning.

Haddawy, P., and Hanks, S. 1993. Utility Models for Goal-
Directed Decision-Theoretic Planners. Technical Report
93-06-04, Univ. of Washington, Dept. of Computer Sci-
ence and Engineering. Submitted to Artificial Intelligence.
Available via FTP from pub/ai/ at cs. Washington. edu.

Hanks, S. 1990. Practical temporal projection. In Proc.
8th Nat. Conf. on A.I., 158-163.

Hanks, S. 1993. Modeling a Dynamic and Uncertain
World II: Action Representation and Plan Evaluation.
Technical report, Univ. of Washington, Dept. of Computer
Science and Engineering.

Koenig, S. 1992. Optimal probabilistic and decision-
theoretic planning using markovian decision theory.
UCB/CSD 92/685, Berkeley.

Kushmerick, N., Hanks, S., and Weld, D. 1993. An Algo-
rithm for Probabilistic Planning. Technical Report 93-06-
03, Univ. of Washington, Dept. of Computer Science and
Engineering. To appear in Artificial Intelligence. Avail-
able via FTP from pub/ai/ at cs. Washington. edu.

Mansell, T. 1993. A method for planning given uncer-
tain and incomplete information. In Proc. 9th Conf. on
Uncertainty in A rtijical Intelligence.

McAllester, D., and Rosenblitt, D. 1991. Systematic non-
linear planning. In Proc. 9th Nat. Conf. on A.I., 634-639.

Penberthy, J., and Weld, D. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Proc. 3rd
Int. Conf. on Principles of Knowledge Representation and
Reasoning, 103-114. Available via FTP from pub/ai/ at
cs . Washington. edu.

1078 Planning and Scheduling

