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Abstract 

We define the probabilistic planning problem in terms 
of a probability distribution over initial world states, 
a boolean combination of goal propositions, a proba- 
bility threshold, and actions whose effects depend on 
the execution-time state of the world and on random 
chance. Adopting a probabilistic model complicates 
the definition of plan success: instead of demanding 
a plan that proovably achieves the goal, we seek plans 
whose probability of success exceeds the threshold. 

This paper describes a probabilistic semantics for 
planning under uncertainty, and presents a fully im- 
plemented algorithm that generates plans that succeed 
with probability no less than a user-supplied probabil- 
ity threshold. The algorithm is sound (if it terminates 
then the generated plan is sufficiently likely to achieve 
the goal) and complete (the algorithm will generate a 
solution if one exists). 

Introduction 
Classical planning algorithms have traditionally 
adopted stringent certainty assumptions about their 
domains: the planning agent is assumed to have com- 
plete and correct information about the initial state of 
the world and about the effects of its actions. These 
assumptions allow an algorithm to build a plan that 
is provably correct: given an initial world state, a suc- 
cessful plan is a sequence of actions that logically en- 
tails the goal. Our research effort is directed toward 
relaxing the assumptions of complete information and 
a deterministic action model, while exploiting existing 
techniques for symbolic least-commitment plan gener- 
ation. 

This paper presents the BURIDAN' planning algo- 
rithm. BURIDAN is a sound, complete, and fully im- 
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‘Jean Buridan (ba re d&r’), 1300-58, a French philoso- 
pher and logician, has been credited with originating prob- 
ability theory. He seems to have toyed with the idea of 
using his theory to decide among alternative courses of ac- 

plemented least-commitment planner whose underly- 
ing semantics is probabilistic: a probability distribu- 
tion over states captures the agent’s uncertainty about 
the world and a mixed symbolic and probabilistic ac- 
tion representation allows the effects of action to vary 
according to the (modeled) state of the world at exe- 
cution time as well as unmodeled (random) factors. 

Our planner takes as input a probability distribution 
over (initial) states, a goal expression, a set of action 
descriptions, and a probability threshold representing 
the minimum acceptable success probability. The al- 
gorithm produces a plan such that, given a probability 
distribution over initial states, the probability that the 
goal holds after executing the plan is no less than the 
threshold. We have proved that the algorithm is sound 
(any plan it returns is a solution) and complete (if there 
is an acceptable plan the algorithm will find it). 

The work reported here makes several contributions. 
First, we define a symbolic action representation and 
its probabilistic semantics. Second, we describe an im- 
plemented algorithm for probabilistic planning. Third, 
we briefly describe our investigation of alternative plan 
assessment strategies. The paper concludes with a dis- 
cussion of related work. 

This research is described in detail in the long ver- 
sion of this paper (Kushmerick, Hanks, & Weld 1993). 
Example. The following example will be developed 
throughout the paper. Suppose a robot is given the 
goal of holding a block (I-B), making sure it is painted 
(BP)? and simultaneously keeping its gripper clean 
(GC). Initially the gripper is clean, but the block is 
not being held and is not painted, and the gripper is 
dry (GD) with probability 0.7. Suppose further that we 
will accept any plan that achieves the goal with proba- 
bility at least 0.8. Finally, the robot has the following 
actions available: 
e pickup: try to pick up the block. If the gripper is 

dry when the pickup is attempted, executing this 
action will make HB true with probability 0.95. If 
the gripper is not dry, however, HB will become true 
only with probability 0.5. 

tion: the parable of “Buridan’s Ass” is attributed to him, 
in which an ass that lacked the ability to choose starved to 
death when placed between two equidistant piles of hay. 
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* paint: paint the block. This action always makes BP 
true, and if the robot is holding the block when paint 
is executed, there is a 10% chance that the gripper 
will become dirty (m). 

o dry: try to dry the gripper. This action succeeds in 
making GD true 80% of the time. 

A Semantics for Probabilistic Planning 
We begin by defining a planning problem, and what it 
means to solve one. First we defining states and ex- 
pressions, then actions and sequences of actions, then 
the planning problem and its solution. 
States & expressions. A state is a complete descrip- 
tion of the world at a single point in time, and uncer- 
tainty about the world is represented using a random 
variable over states. A state is described using a set 
of propositions in which every proposition appears ex- 
actly once, possibly negated.2 An expression is a set 
(implicit conjunction) of literals. We define the proba- 
bility of an expression Z with respect to a state s as: 

P[&Is] = 
1 ifEss 
0 otherwise (1) 

For our example, the world is initially in one of 
two possible states: s1 = (GD,m, GC,m} and s2 = -m 
(GD, HB, GC, BP}, and the probability distribution over 
these states is characterized by a random variable ‘;lr as 
follows: P[iI = Sl] = 0.7, P[$ = 4 = 0.3. 
Actions & action sequences. Our model of action, 
taken from (Hanks 1990; 1993), combines a symbolic 
model of the changes the action makes to propositions 
with probabilistic parameters that represent chance 
(unmodeled) influences. Fig. 1 is our representation 
of the pickup action: if the gripper is dry (GD holds) 
at execution time, it makes HB true with probability 
0.95, and with probability 0.05 makes no change to 
the world state. But if GD is false at execution time, 
pickup makes HB true only with probability 0.5. Note 
that the propositions in the boxes refer to changes the 
action makes, not to world states. For example, it is 
not correct to say that the HB holds with probability 
0.95 after executing pickup in a state where the grip- 
per is dry, since the probability of HB after pickup is 
executed also depends on the probability of HB before 
execution (as well as the probability of GD before exe- 
cution). 

Formally, an action is a set of consequences 
{(b, Pa, 4, . . . , (to, p?, eV)}. Each t, is an expression 
called the consequence s trigger, pL is a probability, and 
eL is a set of literals called the effects. The representa- 
tion for the pickup action is thus {((GD}, 0.95, {HB)), 

(-iGD),O-05,0), ({GD),O.5,(HB& t~CD),O-5,0)). 

2 We use this rep resentation for expository purposes 
only; an implementation need not manipulate states explic- 
itly. In fact our plan refinement algorithm has no explicit 
representation of state: it reasons directly about the state’s 
component propositions. 

We require that an action’s 
elusive and exhaustive: 

The notation AI,~ refers to consequence L of action Ai, 
and superscripts refer to parts of a particular action: 

Figure 1: The pickup action. 

triggers be mutually ex- 

VL >: p,P[t, Is] = 1 (2) 

vs, L, K L # t, * P[t, u t, 1 s] = 0 (3) 

Ai = {. . . , (ti, p”,, ef), . . .}. 
A consequence defines a (deterministic) transition 

from a state to a state, defined by a function 
RESULT(e, s), where e is a set of effects and s is a 
state. This function is similar to add and delete lists 
in STRIPS; see the long version of this paper for the full 
definition. 

An action A induces a change from a state s to a 
probability distribution over states s’: 

P[+,A]= o 
C 

pLP[tL Is] if (f‘, pL, e,)EA A s’=RJ?XJLT(t?, , s) 
otherwise (4) 

Since an action’s triggers are mutually exclusive and 
exhaustive, we have that C,, PCs’ 1 s, A] = 1 for every 
action A and state s. 

We now define the result of executing actions in se- 
quence. The probability that a state s’ will hold after 
executing a sequence of actions (Ai)EI (given that the 
world was initially in state s) is defined as follows: 

P[s’ls, (Ai):,] = C P[s”ls, AI]P[s’]s”, (Ai)fCg] (5) 
SI’ 

where P[s’ 1 s, ()I = 1 if s’ = s and 0 otherwise. 
Finally, we define the probability that an expression 

g is true after an action sequence is executed begin- 
ning in some state s, and the probability of an expres- 
sion after executing an action sequence given an initial 
probability distribution over states ZI: 

P[Els, (Ai)IN=l] = ~P[s’Is,(A~)~~=~]P~&IS’] (6) 

P[fIG, (Ai>;N=l] = &P[Ejs, (Ai>,“=,]P[G=s] (7) 

Planning problems & solutions. A planning prob- 
lem consists of (1) a probability distribution over ini- 
tial states Sl, (2) a set of actions {Ai}, (3) a goal ex- 
pression G, and (4) a probability threshold r. For 
the problem described in this paper, the initial dis- 
tribution $ was defined earlier, the plan can be con- 
structed from the actions {pickup, paint, dry), the goal 
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is G = {HB, BP, GC}, and the probability threshold is 
r = 0.8. 

A solution to the problem is an action sequence 
(Ai):, if P [s IS., (Ai):,] 2 r. As we’ll see, (dry, 

paint, pickup) is a solution to the example problem. 

The BURIDAN Algorithm 
We now describe BURIDAN, an algorithm that gener- 
ates solutions to planning problems. BURIDAN, like 
SNLP (McAllester & Rosenblitt 1991), searches a space 
of partial plans. Each plan consists of a set of actions 
{Ai} where each Ai is one of the input actions anno- 
tated with a unique index, a partial temporal ordering 
relation “<” over {Ai}, a set of causaZ links, and a set 
of subgoals. The first two items are straightforward, 
but there are important differences between the last 
two items and the analogous SNLP concepts. 

A link caches BURIDAN'S reasoning that a particular 
consequence of a particular action could make a literal 
true for a (later) action in the plan. The link Ai,‘xAj 
records the fact that literal p is a member of the trigger 
of one of action Aj’s consequences (Aj is the link’s con- 
sumer), and the effect set of consequence L of action Ai 

(the link’s producer) contains p. Action Al, threatens 
link A;,$Aj if the effect set of some consequence of AI, 
contains j5, and if Al, can be ordered between Ai and 
Aj. 

A plan’s subgoals consists of the literals in the plan 
that BURIDAN is committed to making true. A subgoal 
is a literal annotated with a particular action, written 
p@Aa . p@Ai is a subgoal if the plan contains a link 
Ai,&IAj and p E tf , The set of subgoals is initialized 
to include all top-level goals. 

BURIDAN begins searching from the null plan, which 
contains only two dummy actions A0 and AG , and the 
ordering constraint A0 < AG. These two actions allow 
BURIDAN to compactly encode the planning problem: 
A0 and AG encode the probability distribution over ini- 
tial states and the goal expression, respectively. Fig. 2 
shows the null plan for the example developed in this 
paper. The initial action A0 has one consequence for 
each state in the initial distribution $1 that has non- 
zero probability. Its triggers are all empty, and the 
effect sets and probabilities are the states and prob- 
abilities defined by $. The goal action AG has one 
consequence triggered by the goal expression G. The 
null plan adopts p@& as a subgoal for each p E g. 

G 

Figure 2: A0 and AG encode the initial probability 
distribution and the goal. 

Starting from the null plan, BURIDAN performs two 
operations: 
1. Plan Assessment: Determine if the probability that 

the current plan will achieve the goal exceeds 7, ter- 
minating successfully if so. 

2. Plan Refinement: Otherwise, try to increase the 
probability of goal satisfaction by refining the cur- 
rent plan. Each refinement generates a new node in 
the space of partial plans. Signal failure if there are 
no possible refinements, otherwise nondeterministi- 
tally choose a new current plan and loop. 
Refining a plan with conditional and probabilistic 

actions differs in two ways from classical causal-link 
refinement algorithms (e.g. SNLP). First, SNLP estab- 
lishes a single causal link between a producing action 
and a consuming action, and that link alone ensures 
that the link’s literal will be true when the consuming 
action is executed. Our planner links one of an action’s 
consequences to a later action. An action can have sev- 
eral consequences, though only one will actually occur. 
Furthermore, a single link Ai,‘JAj ensures that p will 
be true at action Aj only if trigger tt holds with prob- 
ability one. Therefore multiple links may be needed 
to support a literal: even if no single link makes the 
literal sufficiently likely, their combination might. We 
lose SNLP's clean distinction between an “open condi- 
tion” (a trigger that is not supported by a link) and 
a “supported condition” that is guaranteed to be true. 
Causal support in a probabilistic plan is a cumulative 
concept: the more links supporting a literal, the more 
likely it is that the literal will be true. 

The concept of a threatened link is different when 
actions have conditional effects. Recall that Arc threat- 
ens Ai,‘JAj if some consequence of AI, asserts F and 
if Ak can be ordered between Ai and Aj. BURIDAN re- 
solves threats in the same way that classical planners 
do: by ordering the threatening action either before 
the producer or after the consumer. But a plan can be 
sufficiently likely to succeed even if there is a threat, 
as long as the threat is sufficiently unlikely to occur. 
We can therefore resolve a threat in an additional way, 
by confrontation: if action Ak threatens link Ai,‘JAj, 
plan for the occurrence of some consequence of Ak that 
does not make p false. BURIDAN does so by adopting 
that consequence’s triggers as additional subgoals. 

Plan Refinement 
BURIDAN'S plan refinement step generates all possible 
refinements of a partial plan. A plan can be refined in 
two ways: either resolving a threat to a causal link, or 
adding a link to increase the probability that a subgoal 
will be true. BURIDAN chooses a threat or subgoal, and 
then generates possible refinements as follows: 
1. If the choice is to add a link to the subgoal p@Aj , 

BURIDAN considers all new and existing actions Ai 

that have an effect set ei containing p, adds a link 
Ai,LJAj, and orders Ai < Aj. 
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2. If the choice is to resolve a threat by action Al, to 

link Ai,h&Aj, BURIDAN resolves the threat in one of 
three ways: demotion (order Ak < Ai if it is con- 
sistent to do so), promotion (order Aj < Ah if con- 
sistent), and confrontation (plan for the occurrence 
of a consequence of action Ak that does not make p 

(as described below), which is less than r = 0.8, so 
BURIDAN continues to refine the plan. Eventually the 
plan shown in Fig. 4 is generated; it has success prob- 
ability 0.804, so BURIDAN terminates: 

lan Assessment 
false). 

Link creation, promotion, and demotion are analo- 
gous to refinement in SNLP-like planners, and we will 
not discuss them further. 3 Confrontation has no ana- 
logue in SNLP, however. The probability that link 
Ai b&Aj succeeds in producing p for Aj is the proba- 
bility that executing action Ag actually realizes conse- 
quence L and that each action representing a confronted 
threat realizes a consequence that does not make p 
false. Since the consequences of action are mutually 
exclusive, making a non-threatening consequence more 
likely makes the threat less likely. BURIDAN therefore 
confronts a threat by choosing a non-threatening con- 
sequence of the threatening step, and adopts its trig- 
gers as subgoals. We explain confrontation in detail in 
the longer version of this paper. 
Example. We now demonstrate how the planner con- 
structs a plan that will achieve the goal (holding a 
painted block with a clean gripper) with probability at 
least 0.8. We simplify the presentation by presenting 
a sequence of refinement choices that lead directly to 
a solution plan. 

Planning starts with the null plan (Fig. 2). The sub- 
goals for the null plan are {HB@AG, BP@‘AG, GC@AG}. 
BURIDAN supports the first subgoal, HB@AG, by adding 
a pickup action, Al, and creating a link from its a! con- 
sequence: A1 ,a BAG. Consequence Q of A1 has GD as 
a trigger, so BURIDAN adopts GD@Al a subgoal. Sup- 
port for this subgoal is then provided by a link from 
the initial action: Ao,,%A,. 

BURIDAN next supports the subgoal of having the 
block painted, BP@A G, by adding a new paint action, 
AZ, creating a link A,,p EAG, and adopting As,p’s 

trigger HBQA~ as a subgoal. A link Ao,, HBA 2 is added 
to support m@A 2. Notice that pickup and paint are un- 
ordered, thus pickup threatens the new link: if pickup 
is executed before paint, then the block will be in the 
gripper when paint is executed, making false the trig- 
ger HB of paint’s 0 consequence. BURIDAN resolves 
this threat by promoting pickup, adding the ordering 
constraint A2 < Al. Finally, BURIDAN supports the 
subgoal GC@AG with the link A~,,%AG, and resolves 
the threat posed by paint by confrontation: since con- 
sequence p of A2 does not cause GC, BURIDAN adopts 
its trigger i%bA2 as a subgoal The resulting plan is 
shown in Fig. 3. 

The assessed probability of Fig. 3’s plan is 0.7335 

3We ignore SNLP’s separc4tion 
only to actions with variables. 

refinement, since it applies 

The plan assessment algorithm decides whether a 
plan’s probability of success exceeds the threshold 
r. The FORWARD assessment algorithm is a straight- 
forward implementation of the definition of action 
execution4 FORWARD computes the probability dis- 
tribution over states produced by “executing” each ac- 
tion in sequence, pruning zero-probability states from 
the distribution for the sake of efficiency. 

Complicating assessment is the fact that a solution 
is defined in terms of a totally ordered sequence of ac- 
tions, whereas a plan’s actions might be only partially 
ordered. We can still compute a lower bound on the 
plan’s success, however, by considering the minimum 
over all total orders consistent with the plan’s order- 
ings. This policy is conservative in that it computes 
the best probability that can be expected from every 
total order. The long version of this paper discusses 
these issues in more detail. 
Example. We now illustrate how the FORWARD plan 
assessment algorithm computes the success probabil- 
ity for the plan in Fig. 3. FORWARD starts with 
the input distribution over initial states, Sl, and com- 
putes the following distribution over final states 
A = (paint, pick up is the plan’s action ) 

P[{GD, HB, GC, BP} I B, A] 

P 
C- 
{ GD, HB, GC, BP} 1 gz, A 

P {GD, HB, GC, BP} Isz,d 

P {GD, HB, GC, BP} I iz, A 

P { GD, HB, GC, BP} 18, A 
.m- 

P {GD, HB, GC, BP) 1 gz, d 
-- 

P (GD, HB, GC, BP} 1 sz, A 
I--- 

P {GD, HB, GC, BP} I gz, A 

1 = 0.5985 
= 0.135 
= 0.0665 
= 0.015 
= 0.0315 
= 0.135 
= 0.0035 
= 0.015 

The probability of the goal expression is then com- 
puted by summing over those states in which the goal 
holds. G = {HB, GC, BP) is true in the first two states, 
so we have P[G 151, d] = 0.5985 + 0.135 = 0.7335. 

Formal Properties 

A least-commitment planner produces as output a par- 
tial order over actions. Such a planner is sound if every 
consistent total order of these actions is a solution to 
the input problem. The planner is complete if it al- 
ways returns a solution plan if such a plan exists. In 
the longer paper we prove that BURIDAN is both sound 
and complete. 

41n this section we discuss one simple assessment strat- 
egy; later we introduce a variety of more complicated 
algorithms. 
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Figure 3: An partial solution to the example problem. Gray arrows indicate threats resolved by confrontation. . 

a 

Figure 4: A plan that is sufficiently likely to succeed. 

Efficient Plan Assessment 

The FORWARD assessment strategy, while simple, can 
be quite inefficient, since the number of states with 
nonzero probability can grow exponentially with the 
length of the plan. This inefficiency motivates a 
second focus of our research, an exploration of al- 
ternative assessment algorithms. Since the general 
plan assessment problem is NP-hard (Chapman 1987; 
Cooper 1990) we cannot expect to produce an assess- 
ment algorithm that runs, efficiently on every problem 
in every domain. However, by exploiting the structure 
of the actions, goals and state space, we can sometimes 
realize tremendous efficiency gains. We have imple- 
mented three alternative plan assessment algorithms. 

While the size of the state distribution may grow 
exponentially, in general not all of the distinctions be- 
tween the different states will be relevant to whether 
the goal is true. So one alternative assessment strat- 
egy, called QUERY, tries to divide states into subsets 
based on the truth of the goal. At best QUERY needs 
to reason about only two subsets of states: those in 
which the goal is true and those in which it is false. 

Rather than manipulating states explicitly, assess- 
ment algorithms can reason directly about the propo- 

sitions that comprise the states. Thus the third as- 
sessment algorithm, NETWORK, translates the action 
descriptions into a probabilistic network, each node of 
which corresponds to a single proposition at some point 
during the execution of the plan. NETWORK then solves 
this network using standard propagation techniques. 

The resulting network tends to be more complicated 
than necessary, however, since it explicitly includes 
“persistence” links encoding the fact that a literal re- 
mains unchanged across the execution of an action that 
neither adds nor deletes it. But recall that persis- 
tence assumptions are already stored in a plan’s causal- 
link structures: an unthreatened link is a guarantee 
that the link’s proposition will persist from the time 
it is produced until it is consumed. This motivates 
a fourth algorithm, REVERSE, that computes a plan’s 
success probability by manipulating the plan’s causal 
link structure directly. 

The longer version of this paper describes these al- 
gorithms in detail. Analysis of these algorithms shows 
no clear winner: in each case we can construct domains 
and problems in which one algorithm consistently out- 
performs the other. 
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Related Work and Conclusions 

(Manse11 1993) and (Goldman & Boddy 1994) offer 
alternative approaches to applying classical planning 
algorithms to probabilistic action and state models. 

(Dean et al. 1993), (Farley 1983), and (Koenig 
1992) use fully observable Markov processes to model 
the planning problem. These systems generate an 
execution policy, a specification of what action the 
agent should perform in every world state, and as- 
sume that the agent is provided with complete and 
accurate information about the world state. BURIDAN 
produces a plan, a sequence of steps that is executed 
without examining the world at execution time, and 
assumes the agent will be provided with no addi- 
tional information at execution time. A recent ex- 
tension to BURIDAN, (Draper, Hanks, & Weld 1994a; 
1994b), strikes a middle ground: the representation al- 
lows actions that provide possibly inaccurate informa- 
tion about the world at execution time, and actions in 
a plan can be executed contingent on the information 
provided by previous steps. 

Work in decision science has dealt with planning 
problems (see (Dean & Wellman 1991, Chap. 7) for 
an introduction), but it has focused on solving a 
given probabilistic model whereas our algorithm in- 
terleaves the process of constructing and evaluating 
solutions. But see (Breese 1992) for recent work on 
model-building issues. 

(Haddawy & Hanks 1992; 1993) motivate building 
a planner like BURIDAN, exploring the connection be- 
tween building plans that probably satisfy goals and 
plans that are optimal in the sense of maximizing ex- 
pected utility. 

Although planning with conditional effects is not the 
primary focus of our work, BURIDAN also generalizes 
work on planning with deterministic conditional ef- 
fects, e.g. in (Collins & Pryor 1992; Penberthy & Weld 
1992). A deterministic form of confrontation is used in 
UCPOP (Penberthy & Weld 1992). 

The BURIDAN planner integrates a probabilistic seman- 
tics for action with classical least-commitment plan- 
ning techniques. BURIDAN accepts probabilistic infor- 
mation about the problem’s initial state, and manipu- 
lates actions with conditional and probabilistic effects. 

Our planner is fully implemented in Common Lisp 
and has been tested on many examples. BURIDAN 
takes about 4.5 seconds to find a solution to the 
problem presented in this paper. Send mail to 
bug- buridan@cs. Washington. edu for information about 
BURIDAN source code. 

References 
Breese, J. 1992. Construction of belief and decision net- 
works. Computational Intelligence 8(4). 

Chapman, D. 1987. Planning for conjunctive goals. Arti- 
ficial Intelligence 32(3):333-377. 

Collins, G., and Pryor, L. 1992. Achieving the functional- 
ity of filter conditions in a partial order planner. In Proc. 
10th Nat. Conf. on A.I. 

Cooper, G. 1990. The computational complexity of proba- 
bilistic inference using bayesian belief networks. ArtijXaZ 
Intelligence 42. 

Dean, T., and Wellman, M. 1991. Planning and Control. 
Morgan Kaufmann. 

Dean, T., Kaelbling, L., Kirman, J., and Nicholson, A. 
1993. Planning with deadlines in stochastic domains. In 
Proc. 11 th Nat. Conf. on A.I. 

Draper, D., Hanks, S., and Weld, D. 1994a. A prob- 
abilistic model of action for least-commitment planning 
with information gathering. In Proc., Uncertainty in AI. 
Submitted. 

Draper, D., Hanks, S., and Weld, D. 1994b. Probabilistic 
planning with information gathering and contingent exe- 
cution. In Proc. .2nd Int. Conf. on A.I. Planning Systems. 

Farley, A. 1983. A Probabilistic Model for Uncertain 
Problem Solving. IEEE Transactions on Systems, Man, 
and Cybernetics 13(4). 

Goldman, R. P., and Boddy, M. S. 1994. Epsilon-safe 
planning. forthcoming. 

Haddawy, P., and Hanks, S. 1992. Representations 
for Decision-Theoretic Planning: Utility Functions for 
Dealine Goals. In Proc. 3rd Int. Conf. on Principles of 
Knowledge Representation and Reasoning. 

Haddawy, P., and Hanks, S. 1993. Utility Models for Goal- 
Directed Decision-Theoretic Planners. Technical Report 
93-06-04, Univ. of Washington, Dept. of Computer Sci- 
ence and Engineering. Submitted to Artificial Intelligence. 
Available via FTP from pub/ai/ at cs. Washington. edu. 

Hanks, S. 1990. Practical temporal projection. In Proc. 
8th Nat. Conf. on A.I., 158-163. 

Hanks, S. 1993. Modeling a Dynamic and Uncertain 
World II: Action Representation and Plan Evaluation. 
Technical report, Univ. of Washington, Dept. of Computer 
Science and Engineering. 

Koenig, S. 1992. Optimal probabilistic and decision- 
theoretic planning using markovian decision theory. 
UCB/CSD 92/685, Berkeley. 

Kushmerick, N., Hanks, S., and Weld, D. 1993. An Algo- 
rithm for Probabilistic Planning. Technical Report 93-06- 
03, Univ. of Washington, Dept. of Computer Science and 
Engineering. To appear in Artificial Intelligence. Avail- 
able via FTP from pub/ai/ at cs. Washington. edu. 

Mansell, T. 1993. A method for planning given uncer- 
tain and incomplete information. In Proc. 9th Conf. on 
Uncertainty in A rtijical Intelligence. 

McAllester, D., and Rosenblitt, D. 1991. Systematic non- 
linear planning. In Proc. 9th Nat. Conf. on A.I., 634-639. 

Penberthy, J., and Weld, D. 1992. UCPOP: A sound, 
complete, partial order planner for ADL. In Proc. 3rd 
Int. Conf. on Principles of Knowledge Representation and 
Reasoning, 103-114. Available via FTP from pub/ai/ at 
cs . Washington. edu. 

1078 Planning and Scheduling 


