
Shortest Path Discovery Problems:
A Framework, Algorithms and Experimental Results

Csaba Szepesv́ari
Computer and Automation Research Institute of the Hungarian Academy of Sciences

1111 Budapest XI. Kende u. 13-17.
e-mail: szcsaba@sztaki.hu

Abstract

In this paper we introduce and study Shortest Path Dis-
covery (SPD) problems, a generalization of shortest
path problems: In SPD one is given a directed edge-
weighted graph and the task is to find a the shortest
path for fixed source and target nodes such that initially
the edge-weights are unknown, but they can be queried.
Querying the cost of an edge is expensive and hence the
goal is to minimize the total number of edge cost queries
executed. In this article we characterize some common
properties of sound SPD algorithms, propose a partic-
ular algorithm that is shown to be sound and effective.
Experimental results on real-world OCR task demon-
strate the usefulness of the approach whereas the pro-
posed algorithm is shown to yield a substantial speed-up
of the recognition process.

Introduction
Shortest path problem appear in many subproblems of artifi-
cial intelligence, e.g. in symbolic planning, parsing, vision,
or speech recognition. Depending on the nature of additional
assumptions made on the underlying search graph one gets
fundamentally different problem types: the graph may be
finite or infinite, or one might have additional initial knowl-
edge about the solutions in the form of estimates of the cost-
to-go function like in heuristic search, or the search might
be interleaved with execution like in real-time search, etc.
Recently there has been a growing interest in incremental
search (or dynamic search) where one considers a sequence
of related search problems and the goal is to speed up the
overall process by reusing solutions to previous instances
(Ramalingam & Reps 1996).

Less attention have been paid to another important aspect
of search, namely that obtaining the costs of the edges might
be a non-trivial process and the cost of this process may
dominate the total cost of the algorithm. As an example con-
sider segmentation lattice based character recognition sys-
tems when a path from the source node to the target node in
the segmentation lattice represents a possible segmentation,
the edges of the lattice are associated with certain segments
(parts) of the image to be recognized and where the edge
costs are e.g. proportional to the negated log-likelihood of a

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

given segment representing some (any) character. Provided
that one has upper and lower bounds on the widths of charac-
ters the segmentation lattice will have a particularly simple
structure with the number of its edges growing at most lin-
early with the width of the image area to be recognized. The
number of edges in such a graph is typically in the range of
1.5-5.0 times the number of characters on the image. When
the recognizer must work even with degraded quality images
or images that contain heavy clutter then the OCR compo-
nent often needs to check many alternative interpretations of
a single input image corresponding to alternative “binariza-
tions”. In such a case the time needed to recognize a single
character for a difficult input can be substantially more ex-
pensive than to solve the full shortest path problem. In such
cases the cost of finding the shortest path is clearly domi-
nated by the cost of obtaining the costs associated with the
edges.

In segmentation based speech recognition the situation is
entirely analogous. Another example comes from hierarchi-
cal (symbolic or non-symbolic) planning when calculating
the cost associated with an “edge” requires the solution of a
subproblem. Thus, hierarchical planning algorithms might
also benefit from minimizing the total number of edge-cost
evaluations. A related example is the exploration of un-
safe environments where one is interested in minimizing the
number of dangerous exploration steps. One particular case
is when robots are used to explore a minefield. In this case it
is not the computational cost, but the probability of loosing
the robot that is to be minimized. This example can again be
casted as a SPD problem.

The article is organized as follows: In the next section we
introduce the algorithmic framework and derive some com-
mon properties of SPD algorithms. Next we present an al-
gorithm that we call “Greedy SPD” that in each step queries
the cost of edges along the shortest path found using the cur-
rent best estimate of the cost function. It is shown that this
algorithm is sound and that it is not possible to uniformly im-
prove the performance of this algorithm. In Section results
of some experiments are presented on the task of recogniz-
ing vehicle license plates, where the proposed algorithm is
shown to yield substantial savings in the total running time
of recognition. Relation to previous work is discussed in
Section , whilst conclusions are drawn in Section .

550 PLANNING & SCHEDULING

Shortest Path Discovery Problems
Framework
Consider the shortest path problemP = (V, E, c, s, t),
whereG = (V, E) is a finite directed graph,V , E are the
set of vertices and edges, respectively,c : E → R is a func-
tion assigning costs (weights) to the edges ofG, and where
s, t ∈ V are the source and target nodes, respectively. We
further assume that the graphG has at least one directed path
from s to t.

In the classical shortest path problem we are interested in
finding the path connectings andt with the least cost, where
the cost of a pathπ = (π1, . . . , πn) is measured as the sum
of the costs of the edges of the path:

c(π) =
∑

i

c(πi), πi ∈ E.

We shall denote byΠ(V, E, s, t) the set of paths inG con-
nectings andt, whilst Π∗(V,E, c, s, t) shall denote the set
of solutions of the shortest-path problem(V,E, c, s, t).

In the case of SPDs one is given a shortest path problem
instanceP and it is assumed that the costs of edges are ini-
tially unknown, but there exists a methodquery that can
be used to query the cost of edges ofG. The goal is to ob-
tain a solution ofP with the least number of query calls.
Algorithms that solve SPDs take a SPD problem instance
(possibly extended with additional information) and return
solution candidates.

Definition 1 An algorithmA for solving SPDs iscorrectif
for all shortest path problem instancesP whenA terminates
then it returns a solution ofP . If an algorithm is correct and
terminates in finite time for all problem instances then we
call it sound.

We shall call an edgeknownwhen its cost have been queried
previously. The set of known edges is uniquely determined
by the corresponding characteristic functionk : E → {0, 1}
that assigns1 (0) to known (resp. unknown) edges. In what
follows we shall refer to functions mapping the set of edges
into the set{0, 1} asknowledge-functions.

In what follows we shall assume that one is given an ini-
tial estimate of the edge costs,c0 and a pair(P, c0) shall be
called an SPD problem instance. The hope is that whenc0

is a good approximation ofc then it may be used in place
of c to guess optimal paths and ultimately to avoid querying
the cost of some edges. Whenc0 ≤ c we say thatc0 is an
admissibleestimate ofc.1

From the point of view of input-output behavior an SPD
algorithm may be represented as a function mapping SPD
instances(P, c0) into paths of the graph underlyingP . With
a slight abuse of notation we shall use the same symbol to
denote the algorithm and the function that it implements.
Given a shortest path problemP and an initial cost estimate
c0 we letkA(P, c0) denote the knowledge function that cor-
responding to the set of known edges at the time when algo-
rithmA terminates.

1Here and in what follows≤ will be used to denote the usual
partial ordering of functions, too:f ≤ g iff f(x) ≤ g(x) holds for
all x from the common domain off andg.

The optimization criterion we are interested in can be de-
fined as follows:

Definition 2 LetA be a sound algorithm and let(P, c0) be
an SPD instance. Letk = kA(P, c0) and define‖k‖1 =∑

e∈E k(e). We say thatA is optimally effectiveon the SPD
instance(P, c0) if for any other sound algorithmA′ it holds
that ‖k‖1 ≤ ‖k′‖1, wherek′ = kA′(P, c0), i.e., the number
of edges queried byA′ is not smaller than the number of
edges queried byA.

We say that an SPD algorithmA is optimally effective
if it is sound and if it is optimally effective on all problem
instances(P, c0), wherec0 is any admissible initial cost es-
timate for the problemP .

The Fundamental Property of Correct SPD
Algorithms
Fix a problem instanceP . Let k : E → {0, 1} be an arbi-
trary knowledge function and defineck : E → R by

ck(e) =
{

c(e), if k(e) = 1;
c0(e), if k(e) = 0.

(1)

Note thatck gives the “best” available estimate of the cost
of edges given the knowledge functionk.

Before giving the main result of this section we shall need
one more definition. LetP be a shortest path problem. We
call an edgee of P abottleneckif all paths connectings and
t go through it. A graph is bottleneck free when it has no
bottleneck edges.In what follows we always assume that
the graphs that we work with are bottleneck free.Note that
the cost of bottleneck edges need never be queried. Fur-
ther, the identification of bottleneck edges does not require
the knowledge of edge costs. Hence, the above assumption
yields in no loss generality.

It should be fairly clear that a correct algorithm must
query the cost of edges of the path that it returns. Further,
it is also clear that a correct algorithm must return a shortest
path given its best current estimate of the costs. The fol-
lowing theorem formalizes these observations and further it
shows that the reverse statement holds as well:

Theorem 1 (Fundamental property of SPD problems)
LetA be an SPD algorithm that is designed to work with
admissible initial cost estimates. The following statements
are equivalent:

1. A is correct.
2. For all shortest path problemsP = (V, E, c, s, t) and ad-

missible initial cost estimatesc0 if k represents the state
of edge-cost knowledge at the time when the algorithm
stops andπ is the path returned byA thenk(e) = 1 for
all edgese of π andπ ∈ Π∗(V, E, ck, s, t).

Proof. Assume that (1) holds, but (2) does not hold. If (2)
does not hold then either (i)k(e) = 0 for somee ∈ π, or
(ii) π 6∈ Π∗(V, E, ck, s, t). In case (i) consider a modified
problemP ′ that is equal toP in all respects except thatc(e)
is replaced by some sufficiently large costg. Since algorithm
A has no knowledge ofc(e) it will return the same solution
π. It should be clear that ifg > maxπ c(π) thenπ cannot be
optimal inP ′. Hence algorithmA cannot be correct, which

PLANNING & SCHEDULING 551

is a contradiction. Therefore we may assume that (i) does
not hold, i.e.,k(e) = 1 for all edges ofπ. Now assume that
case (ii) holds true. Letπ′ ∈ Π∗(V,E, ck, s, t). Let us now
define a problem instanceP ′ equivalent toP in all respects
except thatc(e) is redefined such that it is equal toc0(e) for
all edgese of π′ such thatk(e) = 0. If no such edges exist
then we letP ′ = P . Again, algorithmA will still return π
on P ′. Therefore, by (i) we may assume thatk|π ≡ 1 (i.e.
k(e) = 1 for all e ∈ π). Thenc(π′) = ck(π′) < ck(π) =
c(π), which is a contradiction. This finishes the proof of
(1)⇒(2).

Let us now consider the case (2)⇒(1): assume that (2)
holds and letπ be the path returned byA on P . Take any
other pathπ′ of P . Thenc(π′) ≥ ck(π′) ≥ ck(π) = c(π)
sincek|π ≡ 1. This shows thatπ is indeed an optimal path
of P . ¤

The importance of this theorem is that it shows that an
optimally effective algorithm can and should stop when the
shortest path w.r.t. the best estimate of the cost has no un-
known edges. This observation motivates the following def-
inition:

Definition 3 Fix an SPD instance(P, c0). Then a knowl-
edge functionk : E → {0, 1} is calledterminatingif there
exists a shortest pathπ for the problem(V, E, ck, s, t) such
thatk|π ≡ 1.

It should be clear that ifk is terminating then for anyk′ :
E → {0, 1} satisfyingk′ ≥ k, k′ is also terminating.

A Greedy Algorithm for Solving SPD Problems
Any SPD algorithm uniquely determines a sequence of
knowledge functions. Naturally, the sequence of knowl-
edge functions{kn} that an algorithm produces satisfies
kn ≤ kn+1. Actually, any reasonable algorithm would pro-
duce functions such thatkn(e) < kn+1(e) holds for at least
one edgee, i.e., in each stage the algorithm queries the cost
of at least one edge. Also, ifkn is terminating it does not
make any sense to query some more edges, hence reason-
able SPD algorithms should terminate whenever they reach
any terminating knowledge function. Therefore the behav-
ior of reasonable SPD algorithms can be represented as a
walk on the directed acyclic graphGK = (VK , EK , k0, T),
whereVK is the set of all knowledge functions (VK = 2E),
(k1, k2) ∈ EK iff k1 < k2, k0 is the source node that
satisfiesk0 ≡ 0 and T is the set of terminating knowl-
edge functions associated with(P, c0). The walk starts at
k0 and finishes whenever a node ofT is reached. It fol-
lows that any algorithm that constructs such a walk onGK

is sound (termination within|E| time steps follows since
kn < kn+1 and the graphG is assumed to be finite). The
cost associated with an SPD algorithm that constructs the
walk k0, k1, . . . , kn is ‖kn‖1. Hence, the performance of
SPD algorithms can be lower bounded bymink∈T ‖k‖1.

Now, let us consider Algorithm 1 given below: In each it-
eration it computes a shortest path (ties should be broken in a
deterministic manner) given its current knowledge and then
queries the cost of all unknown edges along this path. Ter-
mination happens when the number of unknown edges be-
longing to the current shortest path equals to zero. It follows

Algorithm 1 The Greedy SPD Algorithm
1: Input: (V, E, c0, s, t)
2: for all e ∈ E do
3: k(e) := 0
4: end for
5: repeat
6: Let π ∈ Π∗(V, E, ck, s, t).
7: u := 0
8: for all e ∈ π do
9: if k(e) = 0 then

10: Call query(e), k(e) := 1
11: u := u + 1
12: end if
13: end for
14: until u = 0
15: Return π

immediately from Theorem 1 that this algorithm is sound.
The algorithm is greedy as it queriesall the unknown edges.
As an alternative one might decide to query edges along the
best path one by one, hoping that querying the cost of some
of these edges would already prove that the current solution
is suboptimal. Then the ordering at which edges are queried
becomes critical. In this article we focus only on the basic
algorithm, leaving the study of its variants for further work.
In what follows we shall call the set of edges that lie on some
best path of(V,E, ck, s, t) theset of critical edges givenk.
The rest of the edges are called non-critical.

We now show that the performance of sound algorithms
that query the cost of non-critical edges cannot uniformly
dominate the performance of (sound) algorithms that query
the cost of critical edges only. In order to see this consider
a sound algorithmA that is known to query non-critical
edges and in order to derive a contradiction assume thatA
dominates all sound algorithms that query the cost of crit-
ical edges only. We may assume thatA always stops as
soon as possible. LetE∗ = E∗(V, E, ck, s, t) denote the
set of critical edges givenk, P = (V, E, c, s, t) and c0.
By assumption, for some SPD instance(P, c0) algorithm
A chooses to query edges outside ofE∗(V,E, ck, s, t) at
some stage of its execution. Let(P, c0) be such an SPD
instance and letn be the first stage whenA queries some
non-critical edges. Let the set of queried non-critical edges
be Un. Further, letπ ∈ Π∗(V,E, ckn , s, t) be a path such
thatk|π 6≡ 0. (By our assumption onA and Theorem 1 no
path inΠ∗(V,E, ckn , s, t) can have all of its edges known at
stagen.) Now defineP ′ = (V, E, c′, s, t) such that

c′(e) =

c(e), if kn(e) = 1;
c0(e), if e ∈ π and kn(e) = 0;
max(c(e), c(π) + 1), otherwise.

It should be clear then thatπ ∈ Π∗(V,E, c′, s, t) ∩
Π∗(V, E, c′kn

, s, t) andπ is the unique optimal path ofP ′.
Now let us consider the behavior ofA on(P ′, c0). It is clear
that at stagen the state of algorithmA will be identical to
its state when it was run on(P, c0). Therefore in time step
n algorithmA will still decide to query the edges inUn.
However, the unique optimal path inP ′ is π which has no

552 PLANNING & SCHEDULING

edges inUn, henceA queries edges ofUn superfluously.
Now, consider an algorithmA′ that queries the cost of criti-
cal edges only. We may further assume thatA′ is such that
it queries exactly the same set of edges up to stagen as al-
gorithmA (such an algorithm indeed exists sincen was the
first time whenA picked some non-critical edges). With-
out the loss of generality, we may assume that at stagen A′
chooses to query all the unknown edges along the pathπ.
It follows then by the construction ofc′ thatA′ terminates
after the costs of these edges have been queried. Hence the
cost of runningA′ on (P ′, c0) will be strictly less than that
of A. This shows that it is not possible to give a ”clever”
(and sound) algorithm that queries non-critical edges and
which would uniformly dominate those (sound) algorithms
that query only critical edges. This result is summarized in
the following proposition:

Proposition 1 If A is a sound algorithm with a prop-
erty such that for some SPD instances(P, c0) A queries
non-critical edges during its execution then there exist a
sound algorithmA′ and an SPD instance(P ′, c0) such
that A′ queries only critical edges and‖kA′(P ′, c0)‖1 <
‖kA(P ′, c0)‖1.

Our next aim is to relax the conditionc0 ≤ c. The next
proposition shows that this can be done by appropriately re-
defining ck when a lower bound on the smallest non-zero
difference of the cost of paths is known:

Proposition 2 Let (P, c0) be an SPD instance and letk :
E → {0, 1}. Assume thatc is such that

min
π,π′∈Π(V,E,s,t)

{|c(π)− c(π′)| : c(π)− c(π′) 6= 0 } ≥ 1.

(2)
Further, assume thatc0(e) > 0 holds for all e ∈ E
and definec+

k (e) = c0(e) + k(e)c(e)L0, e ∈ E, where
L0 ≥ argmaxπ∈Π(V,E,s,t)c0(π). Assume that for some

π ∈ Π∗(V,E, c+
k , s, t), k|π ≡ 1 holds true. Thenπ is the

solution of the SP problem(V, E, c, s, t).
Proof. Let P, c0, π, k, L0 be as defined above. Further, let
π′ be an arbitrary path froms to t in G = (V, E). Then
c0(π) + c(π)L0 = c+

k (π) ≤ c+
k (π′) ≤ c0(π′) + c(π′)L0.

Rearranging the terms yields(c(π)− c(π′))L0 ≤ c0(π′)−
c0(π) < L0, where we have used thatc0(π′) ≤ L0 and that
c0(e) > 0 holds for all edgese ∈ E. Dividing both sides
of this inequality byL0 givesc(π) − c(π′) < 1 or c(π) <
c(π′) + 1. Hence from (2) we conclude thatc(π) ≤ c(π′),
which finishes the proof.¤

Although the requirement thatc0 is a lower bound forc is
dropped, we still have condition (2) which might be hard to
ensure unless e.g. the set of possible costs is discrete which
is the case when e.g. the costs are integer valued. The propo-
sition below shows a way to overcome this difficulty. The
price we pay is that the solutions returned will not be opti-
mal anymore:

Proposition 3 Fix an arbitrary ε > 0. Let (P, c0) be an
SPD instance and letk : E → {0, 1}. Assume that
c0(e) > 0 holds for all e ∈ E and let c+

k (e) = c0(e) +
L0k(e)c(e)/ε, e ∈ E, whereL0 is as before. Assume that
for someπ ∈ Π∗(V, E, c+

k , s, t), k|π ≡ 1. Thenπ is an

Figure 1:Original license plate image (with the detected license
plate subimage framed) and the narrowest components found by
the segmentation algorithm. Components are plotted in alternating
colors/patterns. The segmentation boundaries are defined by the
left and right edges of the narrowest components. Note that the
segmentation algorithm successfully separated the letters ’H’ and
’P’. However, the price is that it also cuts the stamp between the
letters ’Z’ and ’H’ into two parts.

ε-optimal solution of the SP problem(V,E, c, s, t), i.e., for
any pathπ′ ∈ Π(V,E, s, t), c(π) < c(π′) + ε.

Proof. Let π, π′ be as in the conditions of the propo-
sition. Analogously to the previous result we obtain
(c(π)− c(π′)) L0/ε ≤ c0(π′)− c0(π) < L0. Dividing both
sides byL0 and rearranging the terms yields the desired in-
equality.¤

Experiments
The validity of the approach suggested, as well as the ef-
ficiency of the proposed algorithm was tested on a specific
optical character recognition (OCR) problem, namely, the
problem of recognizing the character strings on vehicle li-
cense plates. The proposed algorithm was built into a com-
mercial system. Here we report experiments with this sys-
tem.

Assume that the license plate was already found by a de-
tector algorithm and the task is to decipher the characters
on the “straightened”, height and orientation normalized and
cleaned plate. The segmentation lattice is produced as fol-
lows: A segmentation algorithm that considers various fea-
tures measured on the image such as the peak to valley ratio
identifies the boundaries that may separate characters. Any
position between two neighboring pixel columns is a poten-
tial candidate for such a boundary. The exact description of
this algorithm is out of the scope of the present paper, how-
ever we note that this algorithm typically yields an overseg-
mentation of the image. An example output of this algorithm
for a license plate image is given in Figure 1.

The next step is to build the segmentation lattice (or
graph) that will be the input of our algorithms. This graph is
built as follows: We shall distinguish two types of vertices
of the graph that we shall call ‘white’ and ‘black’. White
vertices correspond to boundaries on the image identified by
the segmentation algorithm, whilst a black vertex is added
for each candidate character region. First the skeleton of the

PLANNING & SCHEDULING 553

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.5 1 1.5 2 2.5 3

Figure 2: Histogram of the average number of black nodes
per boundaries.

graph is built by adding all white vertices corresponding to
all potential boundary points identified by the segmentation
algorithm. No edges are added at this point. The source
node, representing the0th boundary position, and the target
node representing the very last boundary position on the im-
age are added in this step (they are white nodes). Next, all
boundary point pairs that satisfy certain width constraints
are considered. For a boundary pair whose corresponding
vertices arev1 andv2, a black node,v, and the edges(v1, v)
and(v, v2) are added to the graph. The reason of adding two
edges instead of a single one is to separate the costs associ-
ated with the character region and that of the regions sepa-
rating neighboring character regions. The distribution of the
average number of black nodes per white nodes measured
over a set of example images is shown below in figure 2.

The cost associated with character separating regions is
obtained by means of some simple and quick calculations
(the cost depends on e.g. the saturation of the corresponding
region, if there exists a path from the top of the region to the
bottom that does not cross any black pixels on the binarized
image, etc.). The initial costc0 of a character region is set to
1 + c(R), wherec(R) depends on some other simple mea-
sures (e.g. width, aspect ratio, stroke width, existence of a
white strip through the region, etc.). The idea is to penalize
regions that have obviously ’wrong’ features as opposed to
regions that have no such trivial problems. Hence this esti-
mate of the cost is undoubtedly a crude estimate of the true
cost, but the hope is that it still should be able to guide the
search process. Note that calculating this crude cost estimate
is also cheap.

The solution of the recognition problem is defined as the
path from the source to the target node that gives the minimal
total cost, where costs are now defined as a function of the
output of an optical character recognition component. In our
case the OCR is built to recognize all the characters of the
fonts of European license plates plus some special symbols
(flags, arms, etc.). It is also capable of tolerating position-
ing errors up to the extent of a few pixels in all directions.
The recognition component works on an appropriately bi-
narized and cleaned image, but if the underlying imgae is

highly cluttered and/or noise then the running time of the
OCR component can increase substantially as it will con-
sider alternative binarizations. This is the price that one has
to pay to make the OCR component robust against substan-
tial image noise and clutter. The cost of running the OCR
component can be particularly high when many alternative
”interpretations” (alignments, binarizations) exist. As a re-
sult, when due to some bad luck a non-license plate image
is sent to the recognizer then the whole system may slow
down. Hence the goal in this particular application is not
merely to achieve a good average running time, but rather to
achieve a good worst-case running time.

In our experiments we compared the performance of the
Greedy SPD algorithm of the previous section with that of
the algorithm that queries the costs of all the edges before
starting the search for the shortest path. We shall call this al-
gorithm the ALLCOSTS algorithm. The experiments were
run on a Pentium IV 2.4GHz computer. Greedy SPD was
run in the ”approximate” mode withε = 1E − 5.2 For the
purposes of these measurements we selected a one of our test
sets of images that were used in assessing the performance
of the various components of the system. This set consisted
of 300 images that present both easy and difficult to recog-
nize cases. We have measured factors like the number of
vertices and edges of the segmentation graph, the total time
to process the plate candidate, the time spent on calculating
the costs, the number of queried edges and the number of
iterations required by the Greedy SPD algorithm to return a
solution.

Exploiting that the graph is acyclic, shortest path com-
putations were implemented by the standard DAG shortest
path algorithm that visits edges of the graph in reverse topo-
logical order. In the case of the Greedy SPD algorithm the
topological ordering was obtained in the initialization phase
since the structure of the graph is kept fixed in the process.
Since the graphs are typically very small (typically having
less than 50 vertices) we did not implement any further op-
timizations here (for larger graphs incremental search algo-
rithms could prove to be useful). The ALLCOSTS algorithm
used the same shortest path subroutines.

Figure 3 shows the scatter plot of the running time of
the Greedy SPD algorithm plotted against that of the ALL-
COSTS algorithm. It should be evident from the figure
that Greedy SPD performs better in almost all cases than
ALLCOSTS and it performs substantially better than ALL-
COSTS in those situations when the running-time of ALL-
COSTS is large (note the log scaling of the axes on the fig-
ure). As mentioned before the observed slow-down is due to
the increased effort of the OCR component when it needs to
process difficult to interpret regions. It can be concluded that
in these cases Greedy SPD successfully cuts down the worst-
case processing time, causing speed-ups in the order of 500-
4000%. On the average the speed-up factor was found to be
260% on this set of images (it should be clear that all these
numbers depend heavily on the set of images used). The
cases when no speed-up was measured correspond to seg-
mentation lattices that has a single path or just a very few

2The algorithm was not sensitive to the particular value ofε.

554 PLANNING & SCHEDULING

 10

 100

 1000

 10 100 1000

G
re

ed
y

S
P

D
 r

un
ni

ng
 ti

m
e

[m
s]

ALLCOSTS running time [ms]

Figure 3: Scatter plot of the running time ALLCOSTS vs.
the running time Greedy SPD. Note that both axis have log-
scale.

paths from the source to the target. Note that the running
time of the OCR component on a given region was found to
be 3 ms on average, whilst the average running time of the
shortest path algorithm was found to be less than 0.3 ms on
average. On the average 80% of the edge cost were evalu-
ated, with this percentage decreasing for the more difficult
cases. Note that due to the choice ofc0, Greedy SPD will
typically succeed at avoiding to send the most difficult to
analyze characters to the OCR system – that can take longer
time to process. Indeed it turned out that the average recog-
nition time per region for those regions that were not sent
to the OCR component when Greedy SPD was running then
was 8.3ms, almost 3 times the time required by the OCR
component to process ’normal’ regions.3

We have also tried the version of the Greedy SPD algo-
rithm that queries only the cost of the last unknown edge
of the optimal path obtained. We have found no significant
differences between the performances of these two versions.

Related Work
Two recent branches of search research, real-time search and
incremental search consider related, but still radically dif-
ferent aspects of search. Real-time (heuristic) search meth-
ods (e.g.(Korf 1990; Furcy & Koenig 2000)) interleave plan-
ning and plan execution. They are based on agent-centered
search: the set of states considered in the search is restricted
to those states that can be reached from the current state of
the agent within a few number of action execution steps.
Real-time search methods, like LRTA* (Korf 1990) itera-
tively refine their heuristic function that is used in the search.
Their main advantage is that they can amortize the cost
of obtaining the optimal cost-to-go functions over several
search episodes and are thus capable of making decisions in
“real-time” whilst still converging to optimality in the long
run. Real-time search is similar to shortest path discovery
in that both use heuristic functions to guide search and both

3Hence the cost assigned to evaluating an edge is not uniform as
it was assumed in the previous sections. Extending the algorithms
to such non-uniform cases looks like an important next step.

can learn the true costs as the search proceeds. However, the
optimality criterion used in SPD is radically different from
that of used in real-time search (the total number of edge-
costs queried vs. the number of suboptimal actions exe-
cuted). Incremental search, e.g. (Ramalingam & Reps 1996;
Frigioni, Marchetti-Spaccamela, & Nanni 2000) concerns
the solution of a sequence of related search problems that
are only slightly different from each other in ways that are
communicated to the search algorithms. The SPD prob-
lem naturally gives rise to such a sequence of related search
problems. However, in incremental search one is interested
in quickly solving the actual search problem by reusing as
much of the previous solutions as it is possible. Thus the op-
timality criteria of the two search problems are again rather
different. It should be obvious that SPD algorithms might
use incremental search algorithms as their subroutines when
they need to recalculate the shortest path after the cost of
some edges have been observed.

Conclusions
We have introduced a new class of search problems, called
Shortest Path Discovery Problems. An SPD instance is
given by an underlying shortest path problem and an initial
estimate of the costs of edges. Algorithms may query the
cost of edges at any time in any order. The goal is to execute
the least possible number of queries and return an optimal
solution to the original shortest path problem. We have given
necessary and sufficient conditions for an algorithm to be a
sound SPD algorithm. We proposed an algorithm, Greedy
SPD, that greedily explores all the edges of the current best
path. It was shown that this algorithm is sound and we have
argued that it is not possible to design a sound algorithm that
would explore ‘non-critical’ edges and which would domi-
nate the performance of algorithms that explore only ‘criti-
cal’ edges. Greedy SPD was extended to use non-admissible
initial estimates at the price of returning only approximately
optimal solutions. The utility of the approach was shown in
a real-world experiment where Greedy SPD was shown to
provide a speed-up of ca. 250%. In the particular example
studied larger speed-up factors were measured in the more
difficult cases.

References
Frigioni, D.; Marchetti-Spaccamela, A.; and Nanni, U. 2000.
Fully dynamic algorithms for maintaining shortest paths trees.
Journal of Algorithms34(2):251–281.

Furcy, D., and Koenig, S. 2000. Speeding up the convergence of
real-time search. InProceedings of the National Conference on
Artificial Intelligence, 891–897.

Korf, R. 1990. Real-time heuristic search.Artificial Intelligence
42:189–211.

Ramalingam, G., and Reps, T. 1996. An incremental algorithm
for a generalization of the shortest-path problem.Journal of Al-
gorithms21(2):267–305.

PLANNING & SCHEDULING 555

