Shortest Path Discovery Problems:
A Framework, Algorithms and Experimental Results

Csaba Szepesari
Computer and Automation Research Institute of the Hungarian Academy of Sciences

1111 Budapest XI.

Kende u. 13-17.

e-mail: szcsaba@sztaki.hu

Abstract

In this paper we introduce and study Shortest Path Dis-
covery (SPD) problems, a generalization of shortest
path problems: In SPD one is given a directed edge-
weighted graph and the task is to find a the shortest
path for fixed source and target nodes such that initially
the edge-weights are unknown, but they can be queried.
Querying the cost of an edge is expensive and hence the
goal is to minimize the total number of edge cost queries
executed. In this article we characterize some common
properties of sound SPD algorithms, propose a partic-
ular algorithm that is shown to be sound and effective.
Experimental results on real-world OCR task demon-
strate the usefulness of the approach whereas the pro-
posed algorithm is shown to yield a substantial speed-up
of the recognition process.

Introduction
Shortest path problem appear in many subproblems of artifi-
cial intelligence, e.g. in symbolic planning, parsing, vision,
or speech recognition. Depending on the nature of additional

given segment representing some (any) character. Provided
that one has upper and lower bounds on the widths of charac-
ters the segmentation lattice will have a particularly simple
structure with the number of its edges growing at most lin-
early with the width of the image area to be recognized. The
number of edges in such a graph is typically in the range of
1.5-5.0 times the number of characters on the image. When
the recognizer must work even with degraded quality images
or images that contain heavy clutter then the OCR compo-
nent often needs to check many alternative interpretations of
a single input image corresponding to alternative “binariza-
tions”. In such a case the time needed to recognize a single
character for a difficult input can be substantially more ex-
pensive than to solve the full shortest path problem. In such
cases the cost of finding the shortest path is clearly domi-
nated by the cost of obtaining the costs associated with the
edges.

In segmentation based speech recognition the situation is
entirely analogous. Another example comes from hierarchi-
cal (symbolic or non-symbolic) planning when calculating

fundamentally different problem types: the graph may be
finite or infinite, or one might have additional initial knowl-

edge about the solutions in the form of estimates of the cost-
to-go function like in heuristic search, or the search might
be interleaved with execution like in real-time search, etc.
Recently there has been a growing interest in incremental

subproblem. Thus, hierarchical planning algorithms might
also benefit from minimizing the total number of edge-cost
evaluations. A related example is the exploration of un-
safe environments where one is interested in minimizing the
number of dangerous exploration steps. One particular case
is when robots are used to explore a minefield. In this case it

search (or dynamic search) where one considers a sequencdS Not the computational cost, but the probability of loosing
of related search problems and the goal is to speed up the the robot that is to be minimized. This example can again be
overall process by reusing solutions to previous instances ¢asted as a SPD problem.

(Ramalingam & Reps 1996).

Less attention have been paid to another important aspect
of search, namely that obtaining the costs of the edges might
be a non-trivial process and the cost of this process may

dominate the total cost of the algorithm. As an example con-

sider segmentation lattice based character recognition sys-

The article is organized as follows: In the next section we
introduce the algorithmic framework and derive some com-
mon properties of SPD algorithms. Next we present an al-
gorithm that we call “Greedy SPD” that in each step queries
the cost of edges along the shortest path found using the cur-
rent best estimate of the cost function. It is shown that this

:ﬁms Wrrfnn? E[)iatr? Ifrtotim tr;e srourcr(]et node to itgle targ(rar: nr(l)tdfi "; algorithm is sound and that it is not possible to uniformly im-
€ segmentation 1atlice represents a possible segmentatio prove the performance of this algorithm. In Section results

the edges of the lattice are assomated with certain segments ¢ oo experiments are presented on the task of recogniz-
(parts) of the image to be recognized and where the edge

costs are e.g. proportional to the negated log-likelihood of a

Copyright © 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

550 PLANNING & SCHEDULING

ing vehicle license plates, where the proposed algorithm is
shown to yield substantial savings in the total running time
of recognition. Relation to previous work is discussed in

Section , whilst conclusions are drawn in Section .

Shortest Path Discovery Problems The optimization criterion we are interested in can be de-
Framework fined as follows:

Consider the shortest path problef = (V,E,c,s,t), Definition 2 Let.4 be a sound algorithm and I¢1, co) be
whereG = (V, E) is a finite directed graphy, E are the an SPD instance. Let = ka(P,c)) and define|[k|, =
set of vertices and edges, respectively,E — R is a func- Y_cep k(e). We say that is optimally effectiveon the SPD
tion assigning costs (weights) to the edgegiofand where instance(P, co) if for any other sound algorithmt” it holds
s,t € V are the source and target nodes, respectively. We that|[k[l1 < [[¥’[l1, wherek’ = k.4 (P, co), i.e., the number
further assume that the graphhas at least one directed path ~ Of edges queried byl is not smaller than the number of
from s to t. edges queried by.

In the classical shortest path problem we are interested in _ We say that an SPD algorithm is optimally effective
finding the path connectingandt with the least cost, where if it is sound and if it is optimally effective on all problem

the cost of a path = (..., ,) is measured as the sum instanceg P, ¢y), wherec, is any admissible initial cost es-
of the costs of the edges of the path: timate for the problen®.
c(m) = e(m), mi€E. The Fundamental Property of Correct SPD
: Algorithms

Fix a problem instanc®. Letk : £ — {0,1} be an arbi-

We shall denote byI(V, E, s, t) the set of paths id con- trary knowledge function and defing : £ — R by

nectings andt, whilst IT*(V, E, ¢, s, t) shall denote the set

of solutions of the shortest-path probléii F, ¢, s, t). cle), if k(e) = 1;

In the case of SPDs one is given a shortest path problem cr(e) = {C (e), if k(e) =0 (1)
instanceP and it is assumed that the costs of edges are ini- 0\ '
tially unknown, but there exists a methgdery that can Note thatc; gives the “best” available estimate of the cost
be used to query the cost of edge<hf The goal is to ob- of edges given the knowledge functién
tain a solution ofP with the least number of query calls. Before giving the main result of this section we shall need

Algorithms that solve SPDs take a SPD problem instance one more definition. LeP be a shortest path problem. We
(possibly extended with additional information) and return call an edge: of P abottleneckf all paths connecting and
solution candidates. t go through it. A graph is bottleneck free when it has no
Definition 1 An algorithm.A4 for solving SPDs igorrectif bottleneck edgesin what follows we always assume that
for all shortest path problem instanc&swhenA terminates e graphs that we work with are bottleneck frééte that
then it returns a solution . If an algorithm is correctand 1€ cost of bottleneck edges need never be queried. Fur-

terminates in finite time for all problem instances then we ther, the identification of bottleneck edges does not require
the knowledge of edge costs. Hence, the above assumption

call it sound . . X

_ _ yields in no loss generality.
We shall call an edgenownwhen its cost have been queried ~ |t should be fairly clear that a correct algorithm must
previously. The set of known edges is uniquely determined query the cost of edges of the path that it returns. Further,
by the corresponding characteristic functionE — {0, 1} it is also clear that a correct algorithm must return a shortest

that assigns (0) to known (resp. unknown) edges. In what path given its best current estimate of the costs. The fol-
follows we shall refer to functions mapping the set of edges |owing theorem formalizes these observations and further it
into the se{0, 1} asknowledge-functions shows that the reverse statement holds as well:

In what follows we shall assume that one is given an ini- Theorem 1 (Fundamental property of SPD problems)

tial estimate of the edge costs, and a pair(P, ¢y) shall be !) } ,
called an SPD problem instance. The hope is that when LetA b.e an SPD aIgonthm that is desngned to work with
admissible initial cost estimates. The following statements

is a good approximation af then it may be used in place :)

of ¢ to guess optimal paths and ultimately to avoid querying are equivalent:

the cost of some edges. When < ¢ we say that, is an 1. Ais correct.

admissibleestimate of:. 2. For all shortest path problemB = (V, E, ¢, s, t) and ad-
From the point of view of input-output behavior an SPD missible initial cost estimates, if k& represents the state

algorithm may be represented as a function mapping SPD of edge-cost knowledge at the time when the algorithm

instanceg P, cy) into paths of the graph underlying. With stops andr is the path returned byl thenk(e) = 1 for

a slight abuse of notation we shall use the same symbol to all edgese of 7 andr € IT*(V, E, ¢y, s, t).

denote the algorithm and the function that it implements. py,q¢ Assume that (1) holds, but (2) does not hold. If (2)
Given a shortest path problemand an initial cost estimate jes not hold then either @(e) = 0 for somee € 7, or

co We IepkA(P, ¢p) denote the knowledge funqtion that cor- (i) = ¢ I*(V, B, cp, 5,1). In case (i) consider a modified

r_espondlng to the set of known edges at the time when algo- problemP”’ that is equal td” in all respects except thate)

rithm A terminates. is replaced by some sufficiently large cgsSince algorithm
Here and in what follows< will be used to denote the usual A has no knowledge af(e) it will return the same solution

partial ordering of functions, toof < g iff f(z) < g(z) holds for 7. It should be clear that § > max, ¢(7) thenw cannot be
all z from the common domain of andg. optimal in P’. Hence algorithm4 cannot be correct, which

PLANNING & SCHEDULING 551

is a contradiction. Therefore we may assume that (i) does
not hold, i.e.k(e) = 1 for all edges ofr. Now assume that
case (ii) holds true. Let’ € II*(V, E, ¢, s, t). Let us now
define a problem instand®’ equivalent toP in all respects
except that(e) is redefined such that it is equaldg(e) for

all edges of 7’ such that:(e) = 0. If no such edges exist
then we letP’ = P. Again, algorithmA will still return =

on P’. Therefore, by (i) we may assume thdf = 1 (i.e.

k(e) = 1foralle €). Thence(n') = ¢p(7') < ()
c(m), which is a contradiction. This finishes the proof of
(1)=(2).

Let us now consider the case £2J1): assume that (2)
holds and letr be the path returned byt on P. Take any
other pathr’ of P. Thenc(n') > cp(n’) > cr(m) = e(m)
sincek|, = 1. This shows thatr is indeed an optimal path
of P.OJ

The importance of this theorem is that it shows that an
optimally effective algorithm can and should stop when the

shortest path w.r.t. the best estimate of the cost has no un-

known edges. This observation motivates the following def-
inition:

Definition 3 Fix an SPD instanc€P, cy). Then a knowl-
edge functiork : E — {0, 1} is calledterminatingif there
exists a shortest path for the problemV, E, ¢, s,t) such
thatk|, = 1.

It should be clear that i is terminating then for any’ :
E — {0, 1} satisfyingk’ > k, k' is also terminating.

A Greedy Algorithm for Solving SPD Problems

Any SPD algorithm uniquely determines a sequence of
knowledge functions. Naturally, the sequence of knowl-
edge functions{k,,} that an algorithm produces satisfies
kn < kny1. Actually, any reasonable algorithm would pro-
duce functions such thét,(e) < k,+1(e) holds for at least
one edge, i.e., in each stage the algorithm queries the cost
of at least one edge. Also, i, is terminating it does not

Algorithm 1 The Greedy SPD Algorithm

> Input: (V, E, co, s,t)
: forall e € E do
k(e):=0
end for
repeat
Letm € II*(V, E, ¢k, s, t).
u:=0
forall e e m do
if k(e) = 0then
Call queryg), k(e) :=1
u:=u+1
end if
13: endfor
14: until u =0
15: Return «

oINoaRWONMRE

10:

11:
12:

immediately from Theorem 1 that this algorithm is sound.
The algorithm is greedy as it querial the unknown edges.

As an alternative one might decide to query edges along the
best path one by one, hoping that querying the cost of some
of these edges would already prove that the current solution
is suboptimal. Then the ordering at which edges are queried
becomes critical. In this article we focus only on the basic
algorithm, leaving the study of its variants for further work.
In what follows we shall call the set of edges that lie on some
best path of V| E, ¢, s, t) the set of critical edges giveh.

The rest of the edges are called non-critical.

We now show that the performance of sound algorithms
that query the cost of non-critical edges cannot uniformly
dominate the performance of (sound) algorithms that query
the cost of critical edges only. In order to see this consider
a sound algorithmA that is known to query non-critical
edges and in order to derive a contradiction assume4hat
dominates all sound algorithms that query the cost of crit-
ical edges only. We may assume thétalways stops as
soon as possible. Let* = E*(V, E, ¢, s,t) denote the

make any sense to query some more edges, hence reasonset of critical edges givek, P = (V, E,c,s,t) andc.

able SPD algorithms should terminate whenever they reach By assumption, for some SPD instan@®, c,) algorithm
any terminating knowledge function. Therefore the behav- A chooses to query edges outside I6f(V, E, ¢y, s, t) at
ior of reasonable SPD algorithms can be represented as asome stage of its execution. LeP,cy) be such an SPD
walk on the directed acyclic graghix = (Vi, Ex, ko, T), instance and let be the first stage whed queries some
whereVy is the set of all knowledge function¥ = 2%), non-critical edges. Let the set of queried non-critical edges
(k1,ks) € Eg iff ki < ko, ko is the source node that beU,. Further, letr € IT*(V, E, ¢, , s, t) be a path such
satisfiesk 0 and T is the set of terminating knowl- thatk|, # 0. (By our assumption ol and Theorem 1 no
edge functions associated wit®, c;). The walk starts at ~ path inll*(V, E, ¢z, , s, t) can have all of its edges known at
ko and finishes whenever a node Bfis reached. It fol- stagen.) Now defineP’ = (V, E, ¢, s, t) such that

lows that any algorithm that constructs such a walkhn

is sound (termination withinE| time steps follows since c(e), if kn(e) = 1;
kn < kny1 and the graphG is assumed to be finite). The ¢(e) = ¢ co(e), if e € m and ky,(e) = 0;
cost associated with an SPD algorithm that constructs the max(c(e), c(m) + 1), otherwise.

walk ko, k1,...,k, is ||kn]l1. Hence, the performance of
SPD algorithms can be lower boundedrhinc7 ||k||1. It should be clear then that < II*(V,E,d,s,t) N
Now, let us consider Algorithm 1 given below: In eachit- II*(V, E, ¢}, ,s,t) and~ is the unique optimal path o’
eration it computes a shortest path (ties should be broken in a Now let us consider the behavior dfon (P’, ¢y). Itis clear
deterministic manner) given its current knowledge and then that at stage: the state of algorithrod will be identical to
queries the cost of all unknown edges along this path. Ter- its state when it was run of, ¢o). Therefore in time step
mination happens when the number of unknown edges be- n algorithm A will still decide to query the edges if,,.
longing to the current shortest path equals to zero. It follows However, the unique optimal path i is = which has no

552 PLANNING & SCHEDULING

edges inU,, henceA queries edges adf/,, superfluously.
Now, consider an algorithrd’ that queries the cost of criti-
cal edges only. We may further assume tHais such that
it queries exactly the same set of edges up to stags al-
gorithm A (such an algorithm indeed exists sincavas the
first time whenA picked some non-critical edges). With-
out the loss of generality, we may assume that at stagé
chooses to query all the unknown edges along the path
It follows then by the construction af that A’ terminates

after the costs of these edges have been queried. Hence the

cost of runningA’ on (P’, ¢o) will be strictly less than that

of A. This shows that it is not possible to give a "clever”
(and sound) algorithm that queries non-critical edges and
which would uniformly dominate those (sound) algorithms
that query only critical edges. This result is summarized in
the following proposition:

Proposition 1 If 4 is a sound algorithm with a prop-
erty such that for some SPD instancg3 ¢y) A queries
non-critical edges during its execution then there exist a
sound algorithmA’” and an SPD instancéP’,c;) such
that A’ queries only critical edges anfilc4- (P, co)ll1 <
k(P co)llr.

Our next aim is to relax the conditiary < c. The next
proposition shows that this can be done by appropriately re-
defining ¢, when a lower bound on the smallest non-zero
difference of the cost of paths is known:

Proposition 2 Let (P, ¢y) be an SPD instance and lét :
E — {0,1}. Assume that is such that

{le(m) - e(x)| : e(x) —e(x') # 0} > 1.
)

Further, assume thaty(e) > 0 holds for alle € E
and definec) (e) = co(e) + k(e)c(e)Ly, e € E, where
Lo > argmax,cpv,g s Co(m). Assume that for some
m € II"(V,E,cf,s,t), k|- = 1 holds true. Thenr is the
solution of the SP probleitV, E, ¢, s, t).

Proof. Let P, ¢y, 7, k, Lo be as defined above. Further, let
7' be an arbitrary path from to ¢t in G = (V, E). Then
co(m) + c(m)Lo = ¢ (m) < ¢f (7') < co(n') + c(n') Lo.
Rearranging the terms yields(w) — c¢(7’)) Lo < ¢o(7’) —
¢co(m) < Lo, where we have used that(r') < L, and that
¢o(e) > 0 holds for all edges € E. Dividing both sides
of this inequality byL, givesc(r) — ¢(n’) < 1 ore(m) <
c(n’") + 1. Hence from (2) we conclude thatr) < c(n’),
which finishes the proof]

Although the requirement thag is a lower bound for: is
dropped, we still have condition (2) which might be hard to
ensure unless e.g. the set of possible costs is discrete which

min
7,m' €Il(V,E,s,t)

is the case when e.g. the costs are integer valued. The propo-

sition below shows a way to overcome this difficulty. The
price we pay is that the solutions returned will not be opti-
mal anymore:

Proposition 3 Fix an arbitrary ¢ > 0. Let (P,¢y) be an
SPD instance and lek : E — {0,1}. Assume that
co(e) > 0 holds for alle € E and letc; (e) = co(e) +
Lok(e)c(e)/e, e € E,whereLg is as before. Assume that
for somer € II*(V,E,cf,s,t), k|l = 1. Thenr is an

sMZSHP 632

Figure 1:Original license plate image (with the detected license
plate subimage framed) and the narrowest components found by
the segmentation algorithm. Components are plotted in alternating
colors/patterns. The segmentation boundaries are defined by the
left and right edges of the narrowest components. Note that the
segmentation algorithm successfully separated the letters 'H’ and
'P’. However, the price is that it also cuts the stamp between the
letters 'Z’ and 'H’ into two parts.

e-optimal solution of the SP proble(W, E, ¢, s, t), i.e., for
any pathr’ € IV, E, s,t), c(7) < ¢(n') + €.

Proof. Let m, 7’ be as in the conditions of the propo-
sition. Analogously to the previous result we obtain
(c(m) —e(n")) Lo /e < co(m") — co(m) < Lyg. Dividing both
sides byL, and rearranging the terms yields the desired in-
equality.[]

Experiments

The validity of the approach suggested, as well as the ef-
ficiency of the proposed algorithm was tested on a specific
optical character recognition (OCR) problem, namely, the
problem of recognizing the character strings on vehicle li-
cense plates. The proposed algorithm was built into a com-
mercial system. Here we report experiments with this sys-
tem.

Assume that the license plate was already found by a de-
tector algorithm and the task is to decipher the characters
on the “straightened”, height and orientation normalized and
cleaned plate. The segmentation lattice is produced as fol-
lows: A segmentation algorithm that considers various fea-
tures measured on the image such as the peak to valley ratio
identifies the boundaries that may separate characters. Any
position between two neighboring pixel columns is a poten-
tial candidate for such a boundary. The exact description of
this algorithm is out of the scope of the present paper, how-
ever we note that this algorithm typically yields an overseg-
mentation of the image. An example output of this algorithm
for a license plate image is given in Figure 1.

The next step is to build the segmentation lattice (or
graph) that will be the input of our algorithms. This graph is
built as follows: We shall distinguish two types of vertices
of the graph that we shall call ‘white’ and ‘black’. White
vertices correspond to boundaries on the image identified by
the segmentation algorithm, whilst a black vertex is added
for each candidate character region. First the skeleton of the

PLANNING & SCHEDULING 553

highly cluttered and/or noise then the running time of the
sl ‘ ‘ OCR component can increase substantially as it will con-
sider alternative binarizations. This is the price that one has
to pay to make the OCR component robust against substan-
- tial image noise and clutter. The cost of running the OCR
008 |- 1 component can be particularly high when many alternative
"interpretations” (alignments, binarizations) exist. As a re-
006 - 1 sult, when due to some bad luck a non-license plate image
is sent to the recognizer then the whole system may slow
004 - 1 down. Hence the goal in this particular application is not
merely to achieve a good average running time, but rather to
ooz |] achieve a good worst-case running time.
In our experiments we compared the performance of the
0 : \ \ \ - Greedy SPD algorithm of the previous section with that of
o ' " ’ 2’5 ? the algorithm that queries the costs of all the edges before
Figure 2: Histogram of the average number of black nodes Starting the search for the shortest path. We shall call this al-
per boundaries. gorithm the ALLCOSTS algorithm. The experiments were
run on a Pentium IV 2.4GHz computer. Greedy SPD was
run in the "approximate” mode with = 1E — 5.2 For the
graph is built by adding all white vertices corresponding to purposes of these measurements we selected a one of our test
all potential boundary points identified by the segmentation Sets of images that were used in assessing the performance
algorithm. No edges are added at this point. The source Of the various components of the system. This set consisted
node, representing ttigh boundary position, and the target of 300 images that present both easy and difficult to recog-
node representing the very last boundary position on the im- nize cases. We have measured factors like the number of
age are added in this step (they are white nodes). Next, all vertices and edges of the segmentation graph, the total time
boundary point pairs that satisfy certain width constraints to process the plate candidate, the time spent on calculating
are considered. For a boundary pair whose corresponding the costs, the number of queried edges and the number of
vertices arey; andv,, a black nodey, and the edgeg;, v) iterations required by the Greedy SPD algorithm to return a
and(v, v;) are added to the graph. The reason of adding two solution.
edges instead of a single one is to separate the costs associ- Exploiting that the graph is acyclic, shortest path com-
ated with the character region and that of the regions sepa- putations were implemented by the standard DAG shortest
rating neighboring character regions. The distribution of the path algorithm that visits edges of the graph in reverse topo-
average number of black nodes per white nodes measuredlogical order. In the case of the Greedy SPD algorithm the
over a set of example images is shown below in figure 2. topological ordering was obtained in the initialization phase
The cost associated with character separating regions is since the structure of the graph is kept fixed in the process.
obtained by means of some simple and quick calculations Since the graphs are typically very small (typically having
(the cost depends on e.g. the saturation of the correspondingless than 50 vertices) we did not implement any further op-
region, if there exists a path from the top of the region to the timizations here (for larger graphs incremental search algo-
bottom that does not cross any black pixels on the binarized rithms could prove to be useful). The ALLCOSTS algorithm
image, etc.). The initial cost, of a character regionis setto used the same shortest path subroutines.
1 4+ ¢(R), wherec(R) depends on some other simple mea- Figure 3 shows the scatter plot of the running time of
sures (e.g. width, aspect ratio, stroke width, existence of a the Greedy SPD algorithm plotted against that of the ALL-
white strip through the region, etc.). The idea is to penalize COSTS algorithm. It should be evident from the figure
regions that have obviously 'wrong’ features as opposed to that Greedy SPD performs better in almost all cases than
regions that have no such trivial problems. Hence this esti- ALLCOSTS and it performs substantially better than ALL-
mate of the cost is undoubtedly a crude estimate of the true COSTS in those situations when the running-time of ALL-
cost, but the hope is that it still should be able to guide the COSTS is large (note the log scaling of the axes on the fig-
search process. Note that calculating this crude cost estimateure). As mentioned before the observed slow-down is due to
is also cheap. the increased effort of the OCR component when it needs to
The solution of the recognition problem is defined as the process difficult to interpret regions. It can be concluded that
path from the source to the target node that gives the minimal in these cases Greedy SPD successfully cuts down the worst-
total cost, where costs are now defined as a function of the case processing time, causing speed-ups in the order of 500-
output of an optical character recognition component. In our 4000%. On the average the speed-up factor was found to be
case the OCR is built to recognize all the characters of the 260% on this set of images (it should be clear that all these
fonts of European license plates plus some special symbols numbers depend heavily on the set of images used). The
(flags, arms, etc.). It is also capable of tolerating position- cases when no speed-up was measured correspond to seg-
ing errors up to the extent of a few pixels in all directions. mentation lattices that has a single path or just a very few
The recognition component works on an appropriately bi-
narized and cleaned image, but if the underlying imgae is The algorithm was not sensitive to the particular value. of

01

554 PLANNING & SCHEDULING

1000 can learn the true costs as the search proceeds. However, the
optimality criterion used in SPD is radically different from
that of used in real-time search (the total number of edge-
costs queried vs. the number of suboptimal actions exe-
cuted). Incremental search, e.g. (Ramalingam & Reps 1996;
PREE Frigioni, Marchetti-Spaccamela, & Nanni 2000) concerns
100 e the solution of a sequence of related search problems that
et . are only slightly different from each other in ways that are
communicated to the search algorithms. The SPD prob-
lem naturally gives rise to such a sequence of related search
problems. However, in incremental search one is interested
in quickly solving the actual search problem by reusing as
much of the previous solutions as it is possible. Thus the op-
0 ALLCOSTS rong e] 1000 timality criteria of the two search problems are again rather
) .) different. It should be obvious that SPD algorithms might
Figure 3: Scatter plot of the running time ALLCOSTS vs. se incremental search algorithms as their subroutines when
the running time Greedy SPD. Note that both axis have 10g- they need to recalculate the shortest path after the cost of
scale. some edges have been observed.

Greedy SPD running time [ms]

10

paths from the source to the target. Note that the running Conclusions
time of the OCR component on a given region was found to We have introduced a new class of search problems, called
be 3 ms on average, whilst the average running time of the Shortest Path Discovery Problems. An SPD instance is
shortest path algorithm was found to be less than 0.3 ms on given by an underlying shortest path problem and an initial
average. On the average 80% of the edge cost were evalu-estimate of the costs of edges. Algorithms may query the
ated, with this percentage decreasing for the more difficult cost of edges at any time in any order. The goal is to execute
cases. Note that due to the choicecgf Greedy SPD will the least possible number of queries and return an optimal
typically succeed at avoiding to send the most difficult to solution to the original shortest path problem. We have given
analyze characters to the OCR system — that can take longernecessary and sufficient conditions for an algorithm to be a
time to process. Indeed it turned out that the average recog- sound SPD algorithm. We proposed an algorithm, Greedy
nition time per region for those regions that were not sent SPD, that greedily explores all the edges of the current best
to the OCR component when Greedy SPD was running then path. It was shown that this algorithm is sound and we have
was 8.3ms, almost 3 times the time required by the OCR argued that it is not possible to design a sound algorithm that
component to process 'normal’ regiohs. would explore ‘non-critical’ edges and which would domi-
We have also tried the version of the Greedy SPD algo- nate the performance of algorithms that explore only ‘criti-
rithm that queries only the cost of the last unknown edge cal’ edges. Greedy SPD was extended to use non-admissible
of the optimal path obtained. We have found no significant initial estimates at the price of returning only approximately
differences between the performances of these two versions. optimal solutions. The utility of the approach was shown in
a real-world experiment where Greedy SPD was shown to
Related Work provide a speed-up of ca. 250%. In the particular example

Two recent branches of search research, real-time search andtudied larger speed-up factors were measured in the more
incremental search consider related, but still radically dif- difficult cases.
ferent aspects of search. Real-time (heuristic) search meth-

ods (e.g.(Korf 1990; Furcy & Koenig 2000)) interleave plan- References

ning and plan execution. They are based on agent-centered Frigioni, D.; Marchetti-Spaccamela, A.; and Nanni, U. 2000.
search: the set of states considered in the search is restricted Fully dynamic algorithms for maintaining shortest paths trees.
to those states that can be reached from the current state of Journal of Algorithms34(2):251-281.

the agent within a few number of action execution steps. Furcy, D., and Koenig, S. 2000. Speeding up the convergence of
Real-time search methods, like LRTA* (Korf 1990) itera- rea_l-_tl_me sea_rch. IProceedings of the National Conference on
tively refine their heuristic function that is used in the search. Artificial Intelligence 891-897.

Their main advantage is that they can amortize the cost Korf, R. 1990. Real-time heuristic searchrtificial Intelligence

of obtaining the optimal cost-to-go functions over several —42:189-211.

search episodes and are thus capable of making decisions in Ramalingam, G., and Reps, T. 1996. An incremental algorithm
“real-time” whilst still converging to optimality in the long for a generalization of the shortest-path problefournal of Al-

run. Real-time search is similar to shortest path discovery 90rithms21(2):267-305.

in that both use heuristic functions to guide search and both

3Hence the cost assigned to evaluating an edge is not uniform as

it was assumed in the previous sections. Extending the algorithms
to such non-uniform cases looks like an important next step.

PLANNING & SCHEDULING 555

