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Abstract

There has been substantial recent interest in two new
families of search techniques. One family consists
of nonsystematic methods such as GSAT; the other
contoi-~ systematic approaches that use a polyno-
mial amount of justification information to prune the
search space. This paper introduces a new technique
that combines these two approaches. The algorithm
allows substantial freedom of movement in the search
space but enough information is retained to ensure the
systematicity of the resulting analysis. The size of the
justification database is guaranteed to be polynomial
in the size of the problem in question.

1 INTRODUCTION

The past few years have seen rapid progress in
the development of algorithms for solving constraint-
satisfaction problems, or csPs. CsPs arise naturally in
subfields of AI from planning to vision, and examples
include propositional theorem proving, map coloring
and scheduling problems. The problems are difficult
because they involve search; there is never a guarantee
that (for example) a successful coloring of a portion 
a large map can be extended to a coloring of the map
in its entirety.

The algorithms developed recently have been of two
types. Systematic algorithms determine whether a so-
lution exists by searching the entire space. Local algo-
rithms use hill-climbing techniques to find a solution
quickly but are nonsystematic in that they search the
entire space in only a probabilistic sense.

The empirical effectiveness of these nonsystematic
algorithms appears to be a result of their ability to
follow local gradients in the search space. Traditional
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systematic procedures explore the space in a fixed or-
der that is independent of local gradients; the fixed
order makes following local gradients impossible but is
needed to ensure that no node is examined twice and
that the search remains systematic.

Dynamic backtracking [Ginsberg,1993] attempts to
overcome this problem by retaining specific infor-
mation about those portions of the search space
that have been eliminated and then following lo-
cal gradients in the remainder. Unlike previ-
ous algorithms that recorded such elimination in-
formation, such as dependency-directed backtracking
[Stallman and Sussman,1977~, dynamic backtracking
is selective about the information it caches so that only
a polynomial amount of memory is required. These
earlier techniques cached a new result with every back-
track, using an amount of memory that was linear in
the run time and thus exponential in the size of the
problem being solved.

Unfortunately, neither dynamic nor dependency-
directed backtracking (or any other known similar
method) is truly effective at local maneuvering within
the search space, since the basic underlying method-
ology remains simple chronological backtracking. New
techniques are included to make the search more effi-
cient, but an exponential number of nodes in the search
space must still be examined before early choices can
be retracted. No existing search technique is able to
both move freely within the search space and keep
track of what has been searched and what hasn’t.

The second class of algorithms developed recently
presume that freedom of movement is of greater im-
portance than systematicity. Algorithms in this class
achieve their freedom of movement by abandoning the
conventional description of the search space as a tree
of partial solutions, instead thinking of it as a space of
total assignments of values to variables. Motion is per-
mitted between any two assignments that differ on a
single value, and a hill-climbing procedure is employed
to try to minimize the number of constraints violated

Ginsberg 143

From: ARPI 1996 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



by the overall assignment. The best-known algorithms
in this class are min-conflicts [Minton et al.,1990] and
GSAT [Selman et al.,1992].

Min-conflicts has been applied to the schedul-
ing domain specifcally and used to schedule tasks
on the Hubble space telescope. GSAT is re-
stricted to Boolean satisfiability problems (where
every variable is assigned simply true or false),
and has led to remarkable progress in the solu-
tion of randomly generated problems of this type;
its performance is reported [Selman and Kautz,1993,
Selman et al.,1992, Selman et al.,1993] as surpass-
ing that of other techniques such as simulated
annealing [Kirkpatrick et al,1982] and systematic
techniques based on tile Davis-Putnam procedure
[Davis and Putnam,1960].

GSAT is not a panacea, however; there are many
problems on which it performs fairly poorly. If a prob-
lem has no solution, for example, GSAT will never be
able to report this with confidence. Even if a solution
does exist, there appear to be at least two possible
difficulties that GSAT nlay encounter.

First, the GSAT search space may contain so many lo-
cal minima that it is not clear how GSAT can move so as
to reduce the number of constraints violated by a given
assignment. As an example, consider the csP of gen-
erating crossword puzzles by filling words from a fixed
dictionary into an empty frame [Ginsberg et al,1990].
The constraints indicate that there must be no conflict
in each of the squares; thus two words that begin on the
same square must also begin with the same letter. In
this domain, getting "close" is not necessarily any indi-
cation that the problem is nearly solved, since correct-
ing a conflict at a single square may involve modifying
nmch of the current solution. Konolige has recently
reported that GSAT specifically has difficulty solving
problems of this sort [Konolige,1994].

Second, GSAT does no forward propagation. In the
crossword domain once again, selecting one word may
well force the selection of a variety of subsequent words.
In a Boolean satisfiability problem, assigning one vari-
able the value true may cause an immediate cascade
of values to be assigned to other ~ariables via a tech-
nique known as unit resolution. It seems plausible
that forward propagation will be more common on
realistic problems than on randomly generated ones;
the most difficult random problems appear to be tan-
gles of closely related individual variables while nat-
urally occurring problems tend to bc tangles of se-
quences of related ~ariables. Furthermore, it appears
that GSAT’S performance degrades (relative to system-
atic approaches) as these sequences of variables arise
[Crawford and Baker,1994].

Our aim in this paper is to describe a new search
procedure that appears to combine the benefits of both
of the earlier approaches; in some very loose sense, it
can be thought of as a systematic version of GSAT.

The next three sections summarize the original dy-
namic backtracking algorithm [Ginsberg,1993], pre-
senting it from the perspective of local search. The
termination proof is omitted here but ea~l be found
in earlier papers [Ginsberg,1993: McAllester,1993].
Section 5 present a modification of dynamic back-
tracking called partial-order dynamic backtracking, or
PDB. This algorithm builds on work of McAllester’s
[McAllester,1993]. Partial-order dynamic backtracking
provides greater flexibility in the allowed set of search
directions while preserving systematicity and polyno-
mial worst case space usage. Section 6 presents some
empirical results comparing PDB with other well known
algorithms on a class of "local" randomly generated 3-
SAT problems. Concluding remarks are contained in
Section ?.

2 CONSTRAINTS AND NOGOODS

We begin with a slightly nonstandard definition of a
CSP.

Definition 2.1 By a constraint satisfaction problem
(I, ~ ~.) we will mean a finite set I of variables; for
each x E I, there, is a finite set Vz of possible values
/or the variable z. ~ is a set of constraints each of the
foF’[tt "[(Zl = Vl) A--" A k = Vk) ] where ea ch :r j is

a variable in I and each vj is an element of V.~j. A
solution to the csP is an assi.qnment P of vah,.es to
variables that satisfies evm~j constraint. For each vari-
able z we require that P(z) E iG and for each con-
straint -~[(xi = vj) ^..- ^ (xk = vk)] we require that
P(zi) # vi /or sortie xi.

By the size of a constraint-satisfaction problem
(I, V, ~), we will mean the product of the domain sizes
ol the various variables, I-L ]~].

The technical convenience of the above definition of
a constraint will be clear shortly. For the moment, we
merely note that the above description is clearly equiv-
alent to the conventional one; rather than represent the
constraints in terms of allowed value combinations for
various variables, we write axioms that disallow sp~
cific value combinations one at a time. The size of a
c:sP is the mm~ber of possible assigmncnts of values to
variables.

Systematic algorithms attempting to find a solution
to a csP typically work with partial solutions that are
then discovered to be inextensible or to violate the
given constraints; when this happens, a backtrack oc-
curs and the partial solution under consideration is
modified. Such a procedure will, of course, need to
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record information that guarantees that the same par-
tial solution not be considered again as the search pro-
ceeds. This information might be recorded in the struc-
ture of the search itself; depth-first search with chrono-
logical backtracking is an example. More sophisticated
methods maintain a database of some form indicat-
ing explicitly which choices have been eliminated and
which have not. In this paper, we will use a database
consisting of a set of nogoods [de Kleer,1986].

Definition 2.2 A nogood/8 an ezpression of the form

(Xl -- vl) ^..- n x (1)

A nogood can be used to represent a constraint as an
implication; (1) is logically equivalent to the constraint

= A-.. A (xh = A (x 

There are clearly many different ways of representing
a given constraint as a nogood.

One special nogood is the empty nogood, which is
tautologically false. We will denote the empty nogood
by 1; if J_ can be derived from the given set of con-
straints, it follows that no solution exists for the prob-
lem being attempted.

The typical way in which new nogoods are obtained
is by resolving together old ones. As an example, sup-
pose we have derived the following:

(z----a)A(y=b) --~ U~Vl

(x -- a) ̂  (z -- -*
(y----b) --~ u~vs

where vl, v2 and vs are the only values in the domain
of u. It follows that we can combine these nogoods to
conclude that there is no solution with

(x = a) ^ (y = b) A (z-- (2)

Moving z to the conclusion of (2) gives 

(x--a) A (y=b)~z~c

In general, suppose we have a collection of nogoods
of theform

as i varies, where the same variable appears in the
conclusions of all the nogoods. Suppose further that
the antecedents all agree as to the value of the z~’s, so
that any time zi appears in the antecedent of one of
the nogoods, it is in a term zi --- vi for a fixed vi. If the
nogoods collectively eliminate all of the possible values

Denmark

=, , Albani&-x-~/
NN~Bulgaria

Czechoslovakia

England

Figure 1: A small map-coloring problem

for z, we can conclude that Aj(xj = vj) is inconsistent;
moving one specific zk to the conclusion gives us

A(x =vj)-,xk (3)
jgk

As before, note the freedom in our choice of variable
appearing in the conclusion of the nogood. Since the
next step in our search algorithm will presumably sat-
isfy (3) by changing the value for z~, the selection 
consequent variable corresponds to the choice of vari-
able to "flip" in the terms used by GSAT or other hill-
climbing algorithms.

As we have remarked, dynamic backtracking accu-
mulates information in a set of nogoods. To see how
this is done, consider the map coloring problem in Fig-
ure 1, repeated from [Ginsberg,1993]. The map con-
sists of five countries: Albania, Bulgaria, Czechoslo-
vakia, Denmark and England. We assume - wrongly
- that the countries border each other as shown in the
figure, where countries are denoted by nodes and bor-
der one another if and only if there is aa arc connecting
them.

In coloring the map, we can use the three colors red,
green and blue. We will typically abbreviate the col-
ors and country names to single letters in the obvious
way. The following table gives a trace of how a conven-
tional dependency-directed backtracking scheme might
attack this problem; each row shows a state of the pro-
cedure in the middle of a backtrack step, after a new
nogood has been identified but before colors are erased
to reflect the new conclusion. The coloring that is
about to be removed appears in boldface. The "drop"
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cohlmn will be discussed shortly.

A B C D E add drop
r g r A=r~C#r 1
r g b r A=r--rD#r 2
r g b g B=g-~D#g 3
r g b b r A=r--cE#r 4
r g b b g B---g-rE#g 5
r g b b b D=b--+E#b 6
r g b b (A=r) A(B=g) 7

---r D#b
r g b A=r-~B#g 8

6

3,5,7

We begin by coloring Albania red and Bulgaria
green, and then try to color Czechoslovakia red ms
well. Since this violates the constraint that Albania
and Czechoslovakia be different colors, nogood (1) 
the above table is t)roduced.

We change Czechoslovakia’s color to blue and then
turn to Denmark. Since Denmark cannot be colored
red or green, nogoods (2) mid (3) appear; the 
remaining color for Denmark is blue.

Unfortunately, having colored Denmark blue, we
cannot color England. The three nogoods generated
are (4), (5) and (6), and we can resolve these together
because the three conclusions eliminate all of the pos-
sible colors for England. The result is that there is no
solution with (A = r) A (B = g) A (D = b), which 
rewrite as (7) above. This can in turn be resolved with
(2) and (3) to get (8), correctly indicating that 
color of red for Albania is inconsistent with the choice
of green for Bulgaria. The analysis can continue at this
point to gradually determine that Bulgaria has to be
red, Denmark can be green or bhm, and England must
then be the color not chosen for Denmark.

As we mentioned in the introduction, the problem
with this approach is that, the set F of nogoods grows
monotonically, with a new nogood being added at ev-
ery step. The number of nogoods stored therefore
grows linearly with the run time and thus (presumably)
exponentially with the size of the problem. A related
problem is that. it may become increasingly difficult to
extend the partial solution P without violating one of
the nogoods in F.

Dynamic backtracking deals with this by discarding
nogoods when they become "irrele~ant’: in thc sense
that their antecedents no longer match the partial so-
lution in question. In the cxanlple above, nogoods can
be eliminated as indicated in the final column of the
trace. When we derive (7), we remove (6) because 
mark is no longer colored blue. When we derive (8),
we remove all of the nogoods with B = g in their an-
tecedents. Thus the only information we retain is that
Albania’s red color precludes red for Czechoslovakia,

Denmark and England (1, 2 and 4) and alr¢~ green for
Bulgaria (8).

3 DYNAMIC BACKTRACKING

Dynamic backtracking uses the set of nogoods to both
record information about the portion of the search
space that has been eliminated and to record the cur-
rent partial assignment being considered by the proce-
dure. The current partial assignment is encoded in the
antecedents of the currcnt nogood set. More fornmlly:

Definition 3.1 An acceptable next assignment for a
nogood set r is an assignment P satisflfing every no-
good in r and every antecedent of every such nogood.
We will call a set of nogoods F acceptable if no two no-
goods in r have the same conclusion and either .l_ G F
or there exists an acceptable next assi.qnment for r.

If F is ~ceptable, the antecedents of the nogoods in
r induce a partial assignment of values to variables;
any acceptable next assignment must be an extension
of this partial assignment. In the above table, for ex-
anxple, nogoods (1) through (6) encode the partial 
signment given by A = r, B = g, and D = b. Nogoods
(1) though (7) fail to encode a partial assignnlent 
(’ause the seventh nogood is inconsistent with the par-
tial assignnmnt encoded in nogoods (1) through (6).
This is why the sixth nogood is removed when the sev-
enth nogood is added.

Procedure 3.2 (Dynamic backtracking) 3b solve
a CSP:

P := any complete assignment of values to variables
r:=o
until either P is a solution or _l_ E F:

7 := any constraint violated by P
r := simp(F U 7)
P := any acceptable next a.~signment for F

To simplify the discussion we assunle a fixed total or-
der on the w~riables. Versions of dynanlic backtr~:king
with dynamic rearrangement of tim variable order can
be found elsewhere [Ginsberg,1993, McAllester,1993].
Whenever a new nogood is added, the fixed variable
ordering is used to select the variable that appears in
the conclusion of the nogood - the latest variable M-
ways appears in the conclusion. The subroutine simp
closes the set of nogoods under the resolution inference
rule discussed in the previous section and removes all
nogoods which have an antecedent x = v such that.
x # v appears in the conclusion of sortie other nogood.
Without giving a detailed analysis, we note that sim-
plification ensures that F remains azceptable. To prove
termination we introduce the following notation:
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Definition 3.3 For any acceptable r and variable x,
we define the live domain of x to be those values v
such that x ~ v does not appear in the conclusion of
any nogood in F. We will denote the size of the live
domain of x by Ixlr, and will denote by re(r) the tuple
(Ixllr,..., IXnlr) where zl,... ,xn are the variables in
the csP in their specified order.

Given an acceptable F, we define the size of r to be

Informally, the size of r is the size of the remaining
search space given the live domains for the variables
and assuming that all information about xi will be lost
when we change the value for any variable xj < x~.

The following result is obvious:

Lenluma 3.4 Suppose that F and r’ are such that re(r)
is lexicographicaUy less than m(r’). Then size(U) 
size(F’), 

The termination proof (which we do not repeat here)
is based on the observation that every simplification
lexicographically reduces re(F). Assuming that F = 
initially, since

si=e(O) = IV=l

it follows that the running time of dynamic backtrack-
ing is bounded by the size of the problem being solved.

Proposition 3.5 Any acceptable set of nogoods can be
stored in o(n2v) space where n is the number of vari-
ables and v is the maximum domain size of any single
variable.

It is worth considering the behavior of Procedure 3.2
when applied to a csP that is the union of two disjoint
csPs that do not share variables or constraints. If each
of the two subproblems is unsatisflable and the variable
ordering interleaves the variables of the two subprob-
lems, a classical backtracking search will take time pro-
portional to the product of the times required to search
each assigmment space separately} In contrast, Proce-
dure 3.2 works on the two problems independently, and
the time taken to solve the union of problems is there-
fore the sum of the times needed for the individual
subproblems. It follows that Procedure 3.2 is funda-
mentally different from classical backtracking or back-
jumping procedures; Procedure 3.2 is in fact what has
been called a polynomial space aggressive backtracking
procedure [McAllester,1993].

1This observation remains true even if backjumping
techniques are used.

4 DYNAMIC BACKTRACKING AS
LOCAL SEARCH

Before proceeding, let us highlight the obvious similar-
ities between Procedure 3.2 and Selman’s description
of GSAT [Selman et al.,1992]:

Procedure 4.1 (GSAT) To solve a CSP:

for i := i to MAX-TRIES
P := a randomly generated truth assignment
for j := 1 to MAX-FLIPS

if P is a solution, then return it
else flip any variable in P that results in

the greatest decrease in the number
of unsatisfied clauses

end if
end for

end for
return failure

The inner loop of the above procedure makes a local
move in the search space in a direction consistent with
the goal of satisfying a maximum number of clauses;
we will say that CSAT follows the local gradient of a
"maxsat" objective function. But local search can get
stuck in local minima; the outer loop provides a par-
tial escape by giving the procedure several independent
chances to find a solution.

Like GSAT, dynamic backtracking examines a se-
quence of total assignments. Initially, dynamic back-
tracking has considerable freedom in selecting the next
assignment; in man), cases, it can update the tot, at as-
signment in a manner identical to GSAT. The nogood
set ultimately both constrains the ailowed directions of
motion and forces the procedure to search systemati-
cally. Dynamic backtracking cannot get stuck in local
minima.

Both systematicity and the ability to follow local
gradients are desirable. The observations of the previ-
ous paragraphs, however, indicate that these two prop-
erties are in conflict - systematic enumeration of the
search space appears incompatible with gradient de-
scent. To better understand the interaction of system-
aticity and local gradients, we need to examine more
closely the structure of the nogoods used in dynamic
backtracking.

We have already discussed the fact that a single con-
straint can be represented as a nogood in a variety of
ways. For example, tim constraint -~(A = r A B = g)
can be represented either as A = r ~ B ¢ g or as
B = g --* A ¢ r. Although these nogoods capture
the same information, they behave differently in the
dynamic backtracking procedure because they encode
different partial truth assignments and represent dif-
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ferent choices of variable ordering. In particular, the
set of acceptable next assignments for A = r -~ B # g
is quite different from the set of acceptable next as-
signments for B --- g --~ A ~k r. In the former case
an acceptable assignment must satisfy A = r; in the
latter case, B -- g must hold. Intuitively, the for-
mer nogood corresponds to changing the value of B
while the latter nogood corresponds to changing that
of A. The manner in which we represent the constraint
-,(A = r A B = g) influences the direction in which
the search is allowed to proceed. In Procedure 3.2,
the choice of representation is forced by the need to
respect the fixed variable ordering and to change the
latest variable in the constraint.2 Similar restrictions
exist in the original presentation of dynamic backtrack-
ing itself [Ginsberg,1993].

5 PARTIAL-ORDER DYNAMIC
BACKTRACKING

Partial-order dynamic backtracking [McAllester,1993]
replaces the fixed variable order with a partial order
that is dynamically modified during the search. When
a new nogood is added, this partial ordering need not
fix a unique representation - there can be consider-
able choice in the selection of the variable to appear
in the conclusion of the nogood. This leads to free-
dom in the selection of the variable whose ,-alue is to
be changed, thereby allowing greater flexibility in the
directions that the procedure can take while traversing
the search space. The locally optimal gradient followcd
by GSAT Call be adhered to more often. The partial
order on variables is represented by a set of ordering
constraints called safety conditions.

Definition 5.1 A safety condition is an assertion of
the form x < y where x and y are variables. Given
a set S of safety conditions, we will denote by <_s the
tTunsitive closure of <, and will require that <_s be anti-
symmetric. We will write x <s Y to mean that x <_s Y
and y ~s x.

In other words, x _< y if there is some (possibly
empty) sequence of safety conditions

x <Zl <...<z, <y

The requirement of antisymmetry means simply that
there are no two distinct x az~d y for which x < y and
y < x; in other words, <s has no "loops" and is a
partial order on the variables.

Definition 5.2 For a nogood 7, we will denote by S~
the set of all safety conditions x < y such that ¯ is in

2Note, however, that there is still considerable freedom
in the choice of the constraint itself. A total assignment
usuaily violates many different constraints.
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the antecedent of 7 and y is the variable in its conclu-
sion.

Informally, we require variables in the antecedent of
nogoods to precede the variables in their conclusions,
since the antecedent variables have been used to con-
strain the live domains of the conclusions.

The state of the partial order dynamic backtrack-
ing procedure is represented by a pair (P, S) consisting
of a set of nogoods and a set of safety conditions. In
many cases, we will be interested in only the ordering
information about variables that can precede a fixed
variable x. To discard the rest of the ordering infor-
mation, we discard all of the safety conditions involving
any variable y that follows x, and then record only that
y does indeed follow x. Somewhat more formally:

Definition 5.3 For any set S of safety conditions and
variable x, we define the weakening of S at x, to be de-
noted W(S, z), to be the set of safety conditions given
by removing from S all safety conditions of the form
z < y where x <s Y and then adding the safety condi-
tion x < y for all such y.

The set W(S, x) is a weakening of S in the sense that
every total ordering consistent with S is "also consistent
with W(S, z). However W(S, x) usually admits more
total orderings than S does; for example, if S specifies a
total order then W(S, x) allows any order which agrees
with S up to and including the variable z. In general,
we have the following:

Lemma 5.4 For any set S of safety conditions, vari-
able x, and total order < consistent with the safety
conditions in W(S,x), there ezists a total order con-
sistent with S that agrees with < through x.

"We now state the PDB procedure.

Procedure 5.5 To solve a csP:

P := any complete assignment of values to variables
r:=o
S:=O
until either P is a solution or _l_ 6 F:

~/:= a constraint violated by P
(r,s) := simp(r, s, 
P := any acceptable next assignment, for F
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Procedure 5.6 To compute simp(F, S, 7):

select the conclusion z of 7 so that S U S~ is acyclic
r -= r u {~}
H := W(S u S~, z)
remove from F each nogood with z in its antecedent
if the conclusions of nogoods in I" rule out all

possible values for z then
p :-- the result of resolving all nogoods in r with x

in their conclusion
<r, s) := simp(r, s, 

end if
return (F, S)

The above simplification procedure maintains the in-
variant that F be acceptable and S be acyclic; in addi-
tion, the time needed for a single call to simp appears
to grow significantly sublinearly with the size of the
problem in question (see Section 6).

Theorem 5.7 Procedure 5.5 terminates. The number
of calls to simp is bounded by the size of the problem
being solved.

As an example, suppose that we return to our map-
coloring problem. We begin by coloring all of the coun-
tries red except Bulgaria, which is green. The follow-
ing table shows the total assignment that existed at
the moment each new nogood was generated.

A B C D E add drop
r g r r r C=r-~A#r 1
b g r r r D:r~E#r 2
b g r r g B=g--+E#g 3
b g r r b A=b--+E~b 4

(A:b) A(B=g) 5 2
-~ D¢r

D<E 6
b g r g r B=g--~Dy£g 7
b g r b r A=b---~D#b 8

A=b-~B#g 9 3,5,7
B<E 10 6
B<D 11

The initial coloring violates a variety of constraints;
suppose that we choose to work on one with Albania
in its conclusion because Albania is involved in three
violated constraints. We choose C = r -4 A # r specif-
ically, and add it as (1) above.

We now modify Albania to be blue. The only con-
straint violated is that Denmark and England be dif-
ferent colors, so we add (2) to r. This suggests that
we change the color for England; we try green, but this
conflicts with Bulgaria. If we write the new nogood as
E = g -~ B ~ g, we will change Bulgaria to blue and
be done. In the table above, however, we have madc

the less optimai choice (3), changing the coloring for
England again.

We are now forced to color England blue. This con-
flicts with Albania, and we continue to leave England
in the conclusion of the nogood as we add (4). This
nogood resolves with (2) and (3) to produce (5), 
we have once again made the worst choice and put D in
the conclusion. We add this nogood to F and remove
nogood (2), which is the only nogood with D in its
antecedent. In (6) we add a safety condition indicat-
ing that D must continue to precede E. (This safety
condition has been present since nogood (2) was dis-
covered, but we have not indicated it explicitly until
the original nogood was dropped from the database.)

We next change Denmark to green; England is forced
to be red once again. But now Bulgaria and Denmark
are both green; ~e have to write this new nogood (7)
with Denmark in the conclusion because of the order-
ing implied by nogood (5) above. Changing Denmark
to blue conflicts with Albania (8), which we have 
write as A = b -~ D ~ b. This new nogood resolves
with (5) and (7) to produce 

We drop (3), (5) and (7) because they involve 
and introduce the two safety conditions (10) and (11).
Since E follows B, we drop the safety condition E < D.
At this point, ~ are finally forced to change the color
for Bulgaria and the search continues.

It is important to note that the added flexibility of
PDB over dynamic backtracking arises from the flexi-
bility in the first step of the simplification procedure
where the conclusion of the new nogood is selected.
This selection corresponds to a selection of a variable
whose value is to be changed.

As with the procedure in the previous section, when
given a CSP that is a union of disjoint cSPs the above
procedure will treat the two subproblems indepen-
dently. The total running time remains the sum of
the times required for the subproblems.

6 EXPERIMENTAL RESULTS
In this section, we present preliminary results regard-
ing the implemented effectiveness of the procedure
we have dcscribed. We compared a search engine
based on this procedure with two others, TABLEAU
[Crawford and Auton,1995] and WSAT, or "walk-sat"
[Selman et al.,1993]. TABLEAU is an efficient imple-
mentation of the Davis-Putnam algorithm and is sys-
tematic; WSAT is a modification to GSAT and is not.
We used WSAT instead of GSAT because WSAT is more
effective on a fairly wide range of problem distributions
[Selman et al.,1993].

The experimental data was not collected using
the random 3-SAT problems that have been the
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target of much recent investigation, since there is
growing evidence that these problems are not rep-
resentative of the difficulties encountered in practice
[Crawford and Baker,1994]. Instead, we generated our
problems so that the clauses they contain involve
groups of locally connected variables as opposed to
variables selected at random.

Somewhat more specifically, we flied azl n x n square
grid with variables, and then required that. the three
variables appearing in any single clause be neighbors
in this grid. We believe that the qualitative properties
of the results reported here hold for a wide class of
distributions where variables are given spatial locations
mid clauses are required to be local.

The experiments were performed at the crossover
point where approximately half of the instances gen-
erated could be expected to be satisfiable, since this
appears to be where the most difficult problems lie
[Crawford and Auton,1995]. Note that not all in-
stances at the crossover point are hard; as an exam-
ple, the local variable interactions in these problems
can lead to short resolution proofs that. no solution ex-
ists in unsatisfiable cases. This is in sharp contrast
with random 3-SAT problems (where no short proofs
appear to exist in general, and it can even be shown
that proof lengths are growing exponentially on av-
erage [Chv~tal and Szemerddi,1988]). Realistic prob-
lems may often have short proof paths: A particular
scheduling problem may be unsatisfiable simply be-
canse there is no way to schedule a specific resource
as opposed to because of global issues involving the
problem in its entirety. Satisfiability problems arising
in VLSI circuit design can also be expected to have
locality properties similar to those we have described.

The problems involved 25, 100, 225, 400 azld 625
variables. For each size, we generated 100 satisfi-
able and 100 unsatisfiable instanccs and then executed
the three procedures to measure their performance.
(WSAT was not tested on the unsatisfiable instances.)
For WSAT, we measured the number of times specific
variable values were flipped. For PDB, we measured
thc number of top-level calls to Procedure 5.6. For
TABLEAU, we measured the number of choice nodes ex-
panded. WSAT and PDB were limited to 100,000 flips;
TABLEAU Was limited to a running time of 150 seconds.

The results for the satisfiable problems were as fol-
lows. For TABLEAU, we give the node count for suc-
cessful runs only; we also indicate parenthetically what
fraction of the problems were solved given the compu-
tational resource limitations. (WSAT and PDB success-
fully solved all instances.)

Variables I PDB WSAT TABLEAU
25 35 89 9 (1.0)
100 210 877 255 (1.0)
225 434 1626 504 (.98)
400 731 2737 856 (.70)
625 816 3121 502 (.68)

For the unsatisfiable instances, the results were:

Variables PDB TABLEAU
25 122 8 (1.0)
100 509 1779 (1.0)
225 988 5682 (.38)
400 1090 558 (.11)
625 1204 114 (.06)

The times required for PDB and WSAT appear to be
growing comparably, although only PDB is able to solve
the unsatisfiable instances. The eventual decrease in
the average time needed by TABLEAU is because it is
only managing to solve the easiest instances in each
class. This causes TABLEAU to become alnmst com-
pletely ineffective in the unsatisfiable case and only
partially effective in the satisfiable case. Even where it
does succeed on large problems, TABLEAU’S run time
is greater than that of the other two methods.

Finally, we collected data on the time needed for
each top-level call to sirap in partial-order dynamic
backtracking. As a function of the number of variables
in the problem, this was:

Number of PDB WSAT
variables (msec) (msec)

25 3.9 0.5
100 5.3 0.3
225 6.7 0.6
400 7.0 {}.7
625 8.4 1.4

All times were measured on a Sparc 10/40 running un-
optimized Allegro Common Lisp. An efficient C imple-
mentation could expect to improve either method by
approximately an order of magnitude. As mentioned
in Section 5, the time per flip is growing sublinearly
with the mlmber of variables in question.

7 CONCLUSION AND FUTURE
WORK

Our aim in this paper has been to make a primar-
ily theoretical contribution, describing a new class of
constraint-satisfaction algorithms that appear to com-
bine mmly of the advantages of previous systematic
and nonsystematic approaches. Since our focus has
been on a description of the algorithms, there is obvi-
ously much that remains to be done.

First, of course, the procedures must be tested
on a variety of problems, both synthetic and nat-
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urally occurring; the results reported in Section 6
only scratch the surface. It is especially important
that realistic problems be included in any experimen-
tal evaluation of these ideas, since these problems
are likely to have performance profiles substantially
different from those of randomly generated problems
[Crawford and Baker,1994]. The experiments of the
previous section need to be extended to include unit
resolution.

Finally, we have left completely untouched the ques-
tion of how the flexibility of Procedure 5.6 is to be ex-
ploited. Given a group of violated constraints, which
should we pick to add to r? Which variable should
be in the conclusion of the constraint? These choices
correspond to choice of backtrack strategy in a more
conventional setting, and it will be important to un-
derstand them in this setting as well.
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