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Abstract

We have defined a simple model of classification
which combines human provided expert knowledge
with probabilistic reasoning. We have developed soft-
ware to implement this model and have applied it to
the problem of classifying proteins into their various
cellular localization sites based on their amino acid se-
quences. Since our system requires no hand tuning to
learn training data, we can now evaluate the predic-
tion accuracy of protein localization sites by a more
objective cross-validation method than earlier studies
using production rule type expert systems. 336 E.coli
proteins were classified into 8 classes with an accuracy
of 81~ while 1484 yeast proteins were classified into
10 classes with an accuracy of 55~0. Additionally we
report empirical results using three different strate-
gies for handling continuously valued variables in our
probabilistic reasoning system.

Keywords: Protein Localization, Probabilistic Rea-
soning, Classification, Yeast, E.coli

Introduction

The field of computational biology has mainly been
characterized by successes in the efficient organization
of biological data into databases and the development
of algorithms, e.g. string algorithms, to manipulate
that data. This research has been of great utility but
it stops short of modeling aspects of biology at the
cellular or higher levels. Any system which does that
must have a language for knowledge representation as
well as a robustness to errors or incomplete knowl-
edge. Expert systems using production rules, which
have been applied to biology (Nakai & Kanehisa 1991;
1992), have a rich language for representing knowledge
but are not well suited for reasoning under uncertainty.
For this reason we believe that probabilistic reasoning
systems are very promising as a tool in computational
biology. Based on probability theory, probabilistic rea-
soning is inherently designed to handle uncertainty,
and has been shown to have a wide range of applica-
tions (Pearl 1992). In this paper we describe a model
for classification which can be viewed either as a prob-
abilistic analog to decision trees or as a restricted form

of Bayesian network.

The localization site of a protein within a cell is pri-
marily determined by its amino acid sequence. Nakai
and Kanehisa have exploited this fact to develop a rule
based expert system for classifying proteins into their
various cellular localization sites, using their amino
acid sequences, in gram-negative bacteria (Nakai 
Kanehisa 1991) and in eukaryotic cells (Nakai & Kane-
hisa 1992). These expert systems can predict the local-
ization sites of protein sequences with good accuracy
once appropriate certainty factors have been given to
each rule. However there is no direct probabilistic in-
terpretation of their certainty factors and for optimal
prediction accuracy they must be hand-tuned for each
dataset.

In order to remedy that shortcoming we have con-
structed a probabilistic reasoning system for the same
classification problem. The reasoning system classifies
objects on the basis of an input vector of real valued
feature variables for each object. The relationship be-
tween the classes and the feature variables is provided
by a human expert, who must organize the relation-
ships into a tree structure.

Model

We define a simple model for probabilistic classification
of objects. The model, consists of a rooted binary tree
of "classification variables" and a "feature variable" as-
sociated with each non-leaf node of the binary tree, as
in figure la. The leaves of the tree represent the pos-
sible classes into which an object can be classified. A
non-leaf node n represents of all the classes which be-
long to leaves that are descendants of n (in this section
we will refer to that set of classes as the class of node
n). When performing inference, each node has a proba-
bility associated with it, the probability of n being true
represents the probability that an object belongs to n’s
class. Thus since the children of a node represent a mu-
tually exclusive partioning of the parent’s class, it fol-
lows that the probability that a node is true must equal
the sum of the probabilities that its children are true.
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For example in figure 1, Pr[C1] = Pr[C10] 4- Pr[C1,].
Each non-leaf node n has a feature variable F,~ and a
conditional probability table (or function) associated
with it. The influence of the features of an object
on whether it should be classified as being a left de-
scendant of n versus being classified as a right de-
scendant of n is assumed to be completely summa-
rized by F,~. In our example, this would imply that
Pr[C111C1, F1] = Pr[CIlIC,,FI, Froot]. This condi-
tional independence allows us to calculate the prob-
ability of each node given a set a values for the feature
variables, and the appropriate conditional probability
tables, with one traversal of the tree. The traversal
starts with the root which always has a probability of
1. Although we did not originally conceptualize this
model as a family of Bayesian networks, it. can be ex-
pressed as such. For readers who prefer to think in
terms of Bayesian networks, the translation of our ex-
anaple to a Bayesian network is shown in figure lb.

Conditional Probabilities

If the feature variables are discrete variables then
the conditional probabilities, e.g. Pr[Cll = 11C1 =
1, F1 = 1] may be estimated by counting the frequency
of tile examples in the training data for which F1 = 1

Cll = 1 and dividing by the frequency of examples
for which F1 = 1 & 61 = 1. However, in this applica-
tion we were generally faced with continuous variables.

We tried three approaches for dealing with continu-
ous variables. The first step of all three methods was
to normalize the variable values to a range of [0, 1]. In
the first two methods we then discretized the values
by dividing [0, I] into intervals and treated each inter-
val as a single value. Tim intervals were chosen such
that a roughly equal number data points (i.e. values
of the feature variable in question for the sequences
in our training data), fell into each interval. Unfor-
tunately, we were not able to derive a well principled
criterion for how many intervals the range [0, 1] should
be divided into. Instead we somewhat arbitrarily tried
making a number of intervals equal to either the log
to the base 2 of the number of relevant examples, or
the square root of the Immber of those examples. IIere
relevant means that the examples belong to the class
of the node whose feature value we are discretizing.

The third method we employed does not discretize the
values but. learns a conditional probability function in
the form of the sigmoid function G(Fi) = 
More specifically suppose that we want to learn the
conditional probability function Pr[C~[F1] from fig-
ure I. Let Fu denote the value of F1 for the ith exam-
ple of the training data. We used gradient descent to
choose values for a~ and bl which minimize

~-~i(G(Fli) -- Cll)2
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where ell equals one when true, i.e. for examples
of class Cll, and zero otherwise. The summation is
over all the examples of class Ct. We subscripted a
and b here to indicate that a separate pair of a and
b parameters are learned for each mapping of a fea-
ture variable to its associated conditional probability
function. This sigmoid function does not have a local
minimum and therefore gradient descent is sufficient
for learning optimal values for a and b. The reader
may observe that this procedure is equivalent to us-
ing a feed-forward neural network with just one input
node and one output node to learn the mapping from
feature variable values to conditional probabilities.

The Classification Tree for E.coli

Sequences

Proteins from E.coli were classified into 8 classes: in-
ner membrane lipoproteins (imL), outer membrane
lipoproteins (omL), inner membrane proteins with 
cleavable signal sequence (imS), other outer membrane
proteins (om), periplasmic proteins (pp), inner 
brane proteins with an uncleavable signal sequence
(imU), inner membrane proteins without a signal se-
quence (im), and cytoplasmic proteins (cp). 7 
tures were calculated from the amino acid sequences
for use in classification: A modification of McGeoch’s
(MeGeoch 1985) signal sequence detection parameter
(meg), the presence or absence of the consensus se-
quence (yon Heijne 1989) for Signal Peptidase II (lip),
the output of a weight matrix method for detecting
cleavable signal sequences (yon Heijne 1986) (gvh),
the output of the ALOM program (Klein, Kanehisa,
& DeLisi 1985) for identifying membrane spanning re-
gions on the whole sequence (alml), and on the se-
quence excluding the region predicted to be a cleavable
signal sequence by yon Heijne’s method (yon IIeijnc
1986) (aim2), the presence of charge on the N-terminus
of predicted mature lipoproteins (chg), and the result
of discriminant analysis on the amino acid content of
outer membrane and periplasmic proteins (aac). The
classification tree used is shown in figure 2. These clas-
sifications and features are discussed in detail by Nakai
and Kanehisa (Nakai & Kanehisa 1991).

The Classification Tree for Yeast
Sequences

Proteins from yeast were classified into l0 classes:
cytoplasmic, including cytoskeletal (CYT);nuc]ear
(NUC);vacuolar (VAC); mitochondrial (MIT); 
isomal (POX); extracellular, including those localized
to the cell wall (EXC); proteins localized t.o the lu-
men of the endoplasmic reticulum (ERL); membrane
proteins with a cleaved signal (ME1); membrane pro-
teins with an uncleared signal (ME2); and membrane
proteins with no N-terminal signM (ME3), where ME1,
ME2, and ME3 proteins may be localized to the plasma
membrane, the endoplasmic reticulum membrane, or
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Figure 1: (a.) An example of a classification tree with its feature variables. The dotted edges represent, feature
variables associated with classification variables. (b.) One possible equivalent Bayesian network; where F1 and
F,.oot are clamped variables.

the membrane of a golgi body. IdeMly those three
membranes would be classified separately, but in this
work we chose to group them together to obtain a
more tractable classification task. The classification
tree used is shown in figure 3. 8 features were calcu-
lated from the amino acid sequences for use in classi-
fication: the presence or absence of an HDEL pattern
(substring) as n signal for retention in the endoplas-
mic reticulum lumen (Pelham 1990) (erl); the result
of discriminant analysis on the amino acid content of
vacuolar and extracellular proteins (vac); the result 
discriminant analysis on the amino acid composition
of the 20-residue N-terminal region of mitochondrial
and non-mitochondrial proteins (mit); the presence 
absence of nuclear localization consensus patterns com-
bined with a term reflecting the frequency of basic
residues (nuc); and some combination of the presence
of a short sequence motif and the result of discriminant
analysis of the amino acid composition of the protein
sequence (pox). Several versions of the pox variable
were tried (see discussion). The feature variables mcg,
gvh, and alto described in the E.coli section were also
used for classifying yeast proteins. The classes and
feature variables are discussed in detail by Nakai and
Kanehisa (Nakai & Kanehisa 1992).

Software

We have developed a C program to implement the com-
putations necessary to perform the probabilistic infer-
ence described in the model section. The program also
learns the conditional probability tables (function) us-
ing any of the three methods described in the section on

Results of E.coli Protein Classification Using
Sigmoid Conditional Probability Functions

Examples Class High Top2
77 iii1 77.9% 89.6%
143 cp 96.5% 100%

2 imL 50.0% 50.0%
5 omL 100% 100%

35 imU 71.4% 91.4%
2 imS o.o% o.o%

20 om 65.0%85.0%
52 PP 78.9% 94.2%

Table I: The accuracy of classification of E.coli pro-
teins is displayed for each class when all of the data
was used for training. For each class the number of
examples in the training data, the percentage of se-
quences for which the correct class matched the class
with the highest computed probability and the per-
centage which matched one of the classes with the 2
highest computed probabilities is shown.

conditional probabilities. Alternatively the program
can read in conditional probability tables from a file
and use them when doing the inference. The program
inputs a file which describes the topology and feature
variables of the classification tree in a simple language
and another file which contains the values of the fea-
ture variables for the objects. The output of the pro-
gram is the probability of each leaf class for each input
object. This program is available upon request from
paulh@cs.berkeley.edu.
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Results of E.coli Protein Classification Using 3
Strategies

I [ sigmoid I log
all data 84.2% 79.8%
X-valid 81.1%, 7.7 79.1%, 10.1

square root
82.7%
80.6%, 7.1

Table 2: The accuracy of classifying E.coli proteins by
three different strategies for defining and learning con-
ditional probabilities. The cross-validation row gives
the average accuracy and its standard deviation for
each strategy.

Results of Yeast Protein Classification Using
Sigmoid Conditional Probability Functions

Examples Class High Top2
44 ME1 63.6%, 81.8%

5 ERL 60.0%80.0%
30 VA C 10.0% 13.3%
35 EXC 45.7% 60.0%
51 ME2 15.7% 52.9%

244 MIT 47.1% 56.6%
429 NUC 35.7% 90.2%
20 POX o.o% 0.0%

163 ME3 85.3% 92.0%
463 CYT 74.3% 93.1%

Table 3: The accuracy of classification of yeast pro-
teins is displayed for each class when all of the data
was used for training. For each class the percentage
of sequences for which the correct class matched the
class with the highest computed probability and the
percentage which matched one of the classes with the
2 highest computed probabilities is shown.

Results

E.eoli

We gathered a dataset of 336 E.coli sequences from
SWISS-PROT. The results with this dataset using sig-
mold conditional probability functions are shown in
table I. Actually the lip and chg feature variables had
only two values in the data set used. Our program au-
tomatically detects this and treats those variables as
discrete variables.

We performed a cross-validation test by randomly par-
tioning the data into 10 equally sized (+1) subsets and
training on the remaining data (the reported accu-
racy is the average over the 10 subsets). The cross-
valide~tion set was used to evaluate the generalization
ability of the three different strategies for computing
conditional probabilities. The results of comparing
these three strategies are shown in table 2.

Results of

all data
X-valid
non-red.
X-valid

Yeast Protein Classification Using 3
Strategies

sigmoid log
54.5% 54.2%
54.9%, 4.9 53.9%, 4.1
54.4% 55.6%
54.1%, 4.9 53.9%, 5.0

square root
56.5%
54.3%, 4.4
55.9%
55.0%, 4.2

Table 4: The accuracy of classifying yeast proteins by
three different strategies for defining and learning con-
ditional probabilities. The ttfird line reports the accu-
racy for training on all of the non-redundant dataset
(described in the text), and the fourth line reports the
cross-validation accuracy for that dataset. The cross-
validation rows show the average accuracy and its stan-
dard deviation for each strategy.

Yeast

We gathercd a dataset of 1484 yeast sequences from
SWISS-PROT using the annotations from YPD. The
results of training all of the 1484 yeast sequences in our
database, using sigmoid conditional probability func-
tions is shown in table 3. The only two-valued feature
variable for the yeast data was the erl variable, which
was recognized as such and treated as a discrete vari-
able by the program.

hi addition to the 1484 sequence dataset we also cre-
ated a "non-redundant" dataset of size 1368 by remov-
ing sequences until no pair of sequences in the dataset
had over 50%, residue identity. As in the E.coli re-
sults we performed a cross-validation test by randomly
partitioning the datasets into 10 equally sized subsets.
The classification accuracies for both datasets with
the three different strategies for computing coxlditional
probabilities described above is shown in table 4.

Discussion
T’he most common class of protein represents 4 l% and
32% of the E.coli and yeast data respectively. Thus
the classification accuracies of 81.1% and 54.9% are
dramatically superior than that obtained by simply
choosing the most common class. A direct compari-
son of the classification accuracies of this system and
the expert system of Nakai and Kanehisa (Nakai ~c
Kanehisa 1991; 1992) is impossible because the diffi-
culty of tuning the certainty factors of the rules makes
cross-validation with their system infeasible. Itowever
the classification accuracy of our probabilistic system
appears roughly comparable to theirs. The reason for
the difficulty of this comparison however~ underscores
the utility of our method. Given a classification tree,
our program computes everything it. needs from the
training data.

Although we failed to derive a well-principh’d method
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Figure 2: The classification tree used for E.coli protein localization. The leaf nodes are labeled with the class that
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of treating continuously valued variables, we empiri-
cally evaluated three strategies. Of these three, the
sigmoid conditional probability function appeared to
be slightly better at generalizing than the square root
number of intervals when discretizing, which in turn
appeared to be slightly better than using the log num-
ber of intervals. This can be seen in the data in tables 2
and 4. In fact the sigmoid function actually showed
a higher accuracy on the cross-validation test for the
complete yeast dataset then when trained on all of the
data. While this is surprising, it is not a contradic-
tion because the sigmoid functions were fit to minimize
the root mean squared error between the function and
the data points rather then to directly minimize the
number of misclassified sequences. We did not expect
the sigmoid function to do as well as it did because it
cannot model many distributions, for example bimodal
ones. However when one considers that the sequence
features used for our classification are fuzzy measures
of essentially binary conditions (e.g. either a signal is
cleaved or it is not), then one would expect the prob-
ability distribution to basically look like a fuzzy step
function. The sigmoid function is well suited for use
as a fuzzy step function and, apparently, therefore also
well suited for this application.

Although we were generally happy with the classifi-
cation results we were disappointed by the fact that
none of the 20 POX (peroxisomal) proteins were pre-
dicted correctly. In addition to the pox feature variable
used when generating table 3, we also tried two other
variations, neither of which enabled the program to
correctly predict any of the POX proteins. This failure
can partially be explained by noticing the severe under-
representation of POX examples in the training data.
In the yeast classification tree of figure 3 the POX,
ME3, and CYT classes, with 20, 163, and 463 exam-
ples respectively, are in the same subtree. If the system
chooses to ignore the POX feature variable and always
predict that an object that belongs in that subtree is of
the class ME3 or CYT rather then POX then the sys-
tem will be correct (163+463)/(20+163+463) = 96.9%
of the time. Thus, unless the POX feature variable dis-
tinguishes the data extremely well the system will do
better just to ignore it and never classify any object as
POX.

In conclusion we have made a system which imple-
ments a simple model for the probabilistic classification
of objects. We have successfully applied this model to
the problem of classifying protein sequences into their
various localization sites.
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