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Abstract

We present a statistical model of genes in DNA.
A Generalized Hidden Markov Model (GHMM)
provides the framework for describing the gram-
mar of a legal parse of a DNA sequence (Stormo
& Haussler 1994). Probabilities are assigned to
transitions between states in the GHMM and to
the generation of each nucleotide base given a
particular state. Machine learning techniques are
applied to optimize these probabilities using a
standardized training set. Given a new candi-
date sequence, the best parse is deduced from the
model using a dynamic programiming algorithm
to identify the path through the model with max-
imum probability. The GHMM is flexible and
modular, so new sensors and additional states
can be inserted easily. In addition, it provides
simple solutions for integrating cardinality con-
straints, reading frame constraints, “indels”, and
homology searching.

The description and results of an implementation
of such a gene-finding model, called Genie, is pre-
sented. The exon sensor is a codon frequency
model conditioned on windowed nuclectide fre-
quency and the preceding codon. Two neural
networks are used, as in (Brunak, Engelbrecht,
& Knudsen 1991), for splice site prediction.
We show that this simple model performs quite
well. For a cross-validated standard test set of
304 genes [ftp://www-hgc.lbl.gov/pub/genesets)
in human DNA, our gene-finding system identi-
fied up to 85% of protein-coding bases correctly
with a specificity of 80%. 58% of exons were ex-
actly identified with a specificity of 51%. Genie is
shown to perform favorably compared with sev-
eral other gene-finding systems.

Introduction

Genomic DNA from human and model organisms is
being sequenced at an exponentially increasing rate,
making it all the more important to have the right tools
for analyzing and annotating such sequences. It is par-
ticularly useful to identify coding regions from which
one can deduce the structure of genes and the result-
ing proteins. Over the past decade, a large body of re-
search has accumulated that deals with the recognition
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of translational and transcriptional features. Func-
tional sites and regions include promoter, start codon,
splice sites, stop codon, 3’ and 5’ untranslated regions,
introns, and initial, internal and terminal exons. Re-
search historically could be categorized as either sta-
tistical or homology based, and most research until re-
cently aimed to characterize a single feature. Fick-
ett(Fickett & Tung 1992) provides an overview and
evaluation of many statistical measures for signal and
content sensors. Recently, gene-finding systems have
been developed that employ many of the known recog-
nition techniques in concert. Current state-of-the-art
gene-finding methods combine multiple statistical mea-
sures with database homology searching to identify
gene features (see, for example, FGENEH (Solovyev,
A., & Lawrence 1994), GRAILII (Xu et al. 1994), Gen-
Lang (Dong & Searls 1994), GENMARK (Borodovsky
& MeclIninch 1993), and GenelD (Guigo et al. 1992)).
The development of gene-finding systems raises re-
search questions regarding the effective and efficient
implementation of the system separate from the effi-
cacy of its components. In this paper, we present the
results of the implementation of a gene-finding system
as a Generalized Hidden Markov Model. Our system
is similar in design to GeneParser (Snyder & Stormo
1993), but is based on a rigorous probabilistic frame-
work. We show how a GHMM offers a simple elegant
model of genes in eukaryotic DNA. The probabilistic
framework provides meaningful answers (in a proba-
bilistic sense) to the problem of predicting a complete
gene structure or individual components. We present
an implementation that is efficient in both time and
space, and is general and flexible enough so as to fa-
cilitate a modular approach to the use of sensors. We
show that an implementation with fairly simple sensors
performs as well as the better published gene-finding
systems when compared against a standard test set.

Methods
System Framework

Hidden Markov Models have been used for decades in
pattern recognition (Rabiner & Juang 1986). More
recently, their applicability to computational biology



has gained recognition, see e.g. (Krogh et al. 1994). In
(Krogh, Mian, & Haussler 1994), an HMM was built
for identifying gene structure in E. coli. HMMs have
been generalized to allow one state in the model to
generate more than one symbol (Stormo & Haussler
1994). This generalized framework separates the over-
all structure of the HMM from the embedded compo-
nent submodels. Generalized HMMs provide an intu-
itive framework for representing genes with their vari-
ous functional features, and efficient algorithms can be
built to use such models to recognize genes.

Figure 1 shows a simplified GHMM for multiple exon
genes. Arcs correspond to states in the state machine
and the nodes represent transitions between states.
The labeled states are J5° - 5’ untranslated region; J3*
- 3’ non-coding, EI - Initial Exon; E - Internal Exon;
I - Intron; EF - Final Exon; ES - Single Exon. Nodes
correspond to signals: D - Donor site, A — Acceptor
site, S — Start Translation; T - Terminate Translation.
B (Begin) and F (Finish) are special source and sink
nodes, respectively, for the entire graph. We concep-
tualize the GHMM as a machine in which each state
generates zero or more symbols. Given a candidate
DNA sequence, X, we define the predicted gene struc-
ture as the ordered set of states, ¢, called the parse,
such that the probability of generating .X according to
¢ is maximal over all possible parses.

To formalize these concepts, we first define a stan-
dard hidden Markov model in which each state gener-
ates a single symbol. We then generalize this model to
accommodate multiple symbols per state. Let

M = model (1)
X ={X[1],..., X[n]} (2)
¢={41|92,---a‘1n} (3)

where X[i] is the ith base in the sequence X of length
n and g¢; is the ith state in the parse ¢. We require q;
to be an arc leaving the Begin node B and and ¢, to be
an arc leading to the Finish node F. The parameters of
M specify for each node a probability distribution over
the arcs leaving that node, and for each arc (state), a
probability distribution over strings that are generated
by that state.

To parse X we find ¢ to maximize P(X,¢|M). In
a standard hidden Markov model, we can write this
probability as the independent joint probabilities of
transitioning to each state and generating the base X{]
in state ¢;. It is implicitly conditional on M. So, we
have (see Rabiner (Rabiner & Juang 1986))

P(X,$) = P(q:[B) (H P(X[i]Iq.)) (1’[ Plgis1lnode(g:)

=1 =]
(4)
where node(g;) is the node that the arc ¢; leads to.
The generalization of HMMs to accommodate the gen-
eration of multiple symbols per state just introduces

an ordered set of subsequences of X, {z,,z2,...,zs},
such that

X = z1z2...z¢ (the concatenation of subsequences)

and a redefinition of the parse as an ordered set of
state/sequence pairs:

¢ = {(q1, z1), (421 32)1 oo (g zk)}'

Then equation 4 can be generalized (Fong 1995; Auger
& Lawrence 1989; Sankoff 1992; Bengio 1996) as

k k—1
P(X,$) = P(:[B) (II P(r.-lqs)) (H Plgiss |node(q.-))) :

i=1 i=1 (5)

Each term P(z;|q;) can be further decomposed using
P(zilg:) = P(z:ll(z:), ¢:) P(I(=:)1gi)

where I(z;) is the length of the subsequence z;.

Each term, P(zi|l(z:i),q:)P(I(zi)l¢i), can be de-
scribed conceptually as a “content sensor” that returns
a probability of generating z; according to the model
of state ¢;. Note that a state’s model can be arbitrar-
ily complex and might be, itself, an HMM or GHMM.
Our framework allows us to define an abstract system-
level relationship independent of sensor implementa-
tion details. The “optimal” parse of X is defined as the
parse ¢ that maximizes P(X,¢). GHMMs are strictly
more powerful than standard HMMs. For example,
in a GHMM the length distribution P(/(z;)}g:) can be
defined by arbitrary histograms, whereas in standard
HMMs they are simple geometric distributions.

Gene Structure Constraints

Cardinality Constraints By generalizing HMMs
as described in the previous section, we are able to re-
place the implicit geometric distribution on the lengths
of features with an arbitrary distribution. We wish to
describe the distribution of occurrences of a feature in
a similar manner. For example, given the simplified
GHMM in figure 1, and a fixed probability for P(E|A)
- l.e., the transition probability from an acceptor to
an internal exon — then the distribution of the num-
ber of internal exons is geometric over P(E|A). Ex-
perimental evidence indicates that the number of ex-
ons in a gene is not geometric (Hawkins 1988)(Smith
1988). Hence we would like to impose an arbitrary dis-
tribution constraint on the “cardinality” of exons (Wu
1995). The solution requires the removal of all cycles
in the GHMM by virtually “unspooling” the graph.
Figure 2 shows the unspooled version of figure 1. The
transition probabilities P(E;41|A;) can be arbitrarily
assigned to each state transition i either through a
learning process or from experimental evidence such
as frequency counts.
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Figure 1: A simple GHMM for a sequence containing a multiple exon gene. The arcs represent multi-symbol states
and nodes represent transitions between states. The arrows imply a generation of bases from 5’ to 3°.

(B ¥]

Figure 2: Shows the virtual model of an unspooled GHMM. Transition probabilities can be assigned at each
transition node. An arbitrary number of internal exon and intron states can be added.

Figure 3: A GHMM including frame constraints. The additional acceptor and donor transition nodes ensure that
only syntactically correct parses are considered.
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Frame Constraints The problem of maintaining a
correct reading frame can be solved by adding addi-
tional states to the GHMM. Thirteen states are added
to the state machine such that no legal parse is allowed
that does not maintain a correct reading frame. Fig-
ure 3 shows a modified version of figure 1 that ensures
correct reading frame. Three donor sites and three ac-
ceptor sites represent the nine possible ORFs. We can
say that introns retain frame, and so there is only one
intron state exiting from each of the three donor site
nodes. But, an exon can change frame depending on
the length of the exon, and so there are three possi-
ble exon states exiting from each of the three acceptor
sites. Note, however, that the first base of the initial
exon and the last base of the final exon must always
be in the same reading frame. Therefore, there is an
effective source and sink at the S (Start Translation)
and F (Terminate Translation) transitions. By placing
reading frame length restrictions on each exon state,
we ensure that only valid parses can be generated. For
example, the states Ely, El;, and EJ; require that
the subsequence must be of a length equal to 0, 1, and
2, modulo 3, respectively. That is, the content sen-
sor associated with each state would return a non-zero
probability only if this condition is met. In this way,
frame constraint is built into the system framework.
No additional mechanism is needed to selectively elim-
inate parses with incorrect reading frames.

Signal Sensors and Consensus Counstraints A
signal sensor is usually implemented as a statistical
discriminant function or a neural network that returns
a posterior probability of a functional site given a fixed-
length subsequence at or surrounding the site. Within
a parse, for each z; and z;;, we define a transition ¢;
between the two states ¢; and g¢;4;. The transition ¢;
represents a signal, e.g. a donor site between an exon
z; and an intron z;4;. The location of the fixed-length
functional site z} partially overlaps zero or more bases
of z; and z;4; as shown in figure 4. A signal sensor
returns a posterior probability of the form P(¢;|z}). A
consensus constraint is a restriction imposed by the
model on the allowable symbols at relative positions
with respect to a particular state. The dinucleotide
consensus found at acceptor and donor sites is an ex-
ample of a consensus constraint. Such constraints are
often part of the model of the signal sensors of funec-
tional sites. These constraints are implemented within
the probabilistic framework by ensuring that non-zero
posterior probabilities are returned only for those sites
that agree with consensus constraints. The simplest
signal sensor returns the frequency of the signal in the
training set for all sites that agree with the consensus.

Integrating Signal Sensors Figure 4 shows the re-
gions and sensors corresponding to two adjacent sub-
sequences z; and z;4+;. In order to correctly compute
the value of equation 5, it is necessary to convert the
posterior probability P(¢;|z!) returned by the signal

sensor into the likelihood P(zi|t;). By Bayes Rule, we
have

P(zift:) = P(t:|=)) P(2;)/ P(t:) (6)

Let —t; be the “local null model” for a transition site

used when the signal sensor was trained to discriminate

true signals from non-signals. Using equation 6 twice
we have the ratio

P(zilt:) _ P(tilzi)P(-ti) _ P(ti|z)(1 — P(t:))
P(zi|-t;) ~ P(-tilz)P(ti)  (1- P(tilfi-))P(tazn

Hence,
P(t:|z7)(1 — P(t:))
(1= P(t:[=0))P(t:)

Here, P(t;|z}) is the posterior probability output
from a signal sensor, and P(t;) can be interpreted as
the observed frequency of {; in the training set used to
train the signal sensor. The term P(z}|-t;) is some-
times problematic, since it is often not clear what null
model is being implicitly used in many discriminative
training methods, such as neural network methods. In
these cases it must be estimated. For example, for
donor sites we use a simple model in which all let-
ters of z; are independent and distributed according
to the frequencies of nucleotides in a local window,
except the consensus pattern ‘GT’ which is required.
This is because the neural network we use to recog-
nize donor sites was trained with negative examples
with the consensus ‘GT’, but were otherwise random
non-donor sites.

Once we have computed the likelihood P(z}|t;), we
need to integrate this value into the calculation of the
overall joint likelihood P(X, ¢). Referring to figure 4,
we see that in the absence of the signal sensor for ¢;, the
likelihood for this part of the parse would contain the
term P(zi|gi)P(zi+1lgi+1). With the output P(zi|t;)
from the signal sensor, this part of the likelihood can
be refined to

P(taalq;)P(xflt,-)P(zde|q,-+1)

where 2,3 and z4. are the parts of «; and z;41, respec-
tively, not overlapped by z;.

Note, in the extreme case the signal sensor returns
probability 0 for the transition ¢; from state g¢; to ¢i41,
P(zi|t;) = 0, and hence the refined likelihood of the
parse drops to zero. This is how consensus constraints
are enforced by the probabilistic mechanism.

P(z;|t;) = P(zi|-t:)  (8)

Correcting for Insertions and Deletions

Insertion and deletion of nucleotides (“indels”) intro-
duced by sequencing errors need to be corrected before
applying the frame constraint. The system described
in this paper does not explicitly address these errors
at the GHMM level; rather this is left to the exon con-
tent sensors, where the problem can be dealt with using
varying degrees of sophistication. As discussed in the
previous section, the frame constraint places absolute
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Figure 4: The location of two hypothetical content sensor regions, z; and z;4;, and the signal sensor region z}
representing the transition ¢;. The transition occurs at position ¢ with overlap from position b to d.

length restrictions on exons. Alternatively, probabil-
ities can be assigned to subsequences whose length,
modulo 3, do not match the required frame for a par-
ticular state. These probabilities can be easily derived
from statistical estimation of indel frequencies. A more
complicated approach models an exon as a GHMM.
This model includes an insertion and/or deletion state
with a small probability of transitioning into this state,
as in the codon models of Krogh et al (Krogh et al.
1994).

Dynamic Program for Optimizing Parse

The Viterbi algorithm is used to maximize equation 5
for ¢. This approach is well described elsewhere includ-
ing (Snyder & Stormo 1993; Gelfand & Roytberg 1993;
Auger & Lawrence 1989; Sankoff 1992; Gelfand &
Roytberg 1995; Bengio 1996). Notable differences from
the standard dynamic programming algorithm relate
to accommodating the GHMM framework. Specifi-
cally, a first pass through the sequence establishes can-
didate transition sites and constructs a graph of the
syntactically legal parses. With the addition of multi-
symbol states, the DP algorithm must iterate through
all transitions ¢;, for 1 < ¢ < k, considering all legal
preceding states from each possible transition t;, for
j < i. This implies that the running time is O(k?)
where k is the number of possible transitions. Exper-
imental evidence shows that k & {75, where n is the
total number of bases. The running time can be fur-
ther reduced by imposing maximum length restrictions
on certain states. For example, no exon region longer
than 3,000 bases is considered in our implementation.
If all states include maximum length restrictions, then
the asymptotic running time becomes linear in k for
large n.

The graph can be stored such that each transition
node requires a number of pointers equal to the (con-
stant) number of possible states that can legally pre-
cede it. As a result, the space required to store the
graph is also linear in £ - the number of nodes in the
graph. The algorithm will scale well to accommodate
large sequences as contiguous DNA on the order of
100Kb become available.

An advantage of the GHMM gene model is the abil-
ity to calculate the probability of a particular feature
by using a dynamic program to sum over all possi-
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ble parses with that feature. Suppose, for example,
we wish to determine the probability that some sub-
sequence z is an exon given the context of the full se-
quence X. As described under “System Framework”,
let E be the exon state, then formally, we wish to
find P((x,E) € ¢|X,M). This requires that we sum
P(#|X, M) over all possible parses, ¢, that contain the
pair (z,E). To efficiently calculate this probability, a
forward-backward algorithm is employed (Stormo &
Haussler 1994). Additionally, the best parse given the
feature, (z,E), i.e. argmax¢P(¢|M,X,(z,E) € ¢),
can be simply deduced by applying a variation of
the Viterbi algorithm which processes the two half-
sequences on either side of = independently.

Implementation

A working system built according to the model and de-
sign described here was implemented and experimen-
tally validated. Genie depends to a large extent on
the quality of its individual content and signal sen-
sors. Each component is designed and trained inde-
pendently, and then combined into a modular system.
More sophisticated training methods, e.g. like those
used with hidden Markov models, can also be em-
ployed (Rabiner & Juang 1986; Stormo & Haussler
1994; Bengio 1996). We describe briefly the key points
in the current implementation of Genie.

Length Distributions In a GHMM individual
states can generate multi-symbol strings based on ar-
bitrary length distributions. In our implementation,
the state-specific length distributions were found by
generating a length histogram for each state. Figure 5
shows the smoothed and normalized distributions de-
rived from the first training set for introns and internal
exons.

Splice Site Model Two neural network recognizers
were developed as described in {Brunak, Engelbrecht,
& Knudsen 1991). We trained a backpropagation feed-
forward neural network with one layer of hidden units
to recognize donor and acceptor sites, respectively. Dif-
ferent from Brunak et al., we only consider genes that
had constraint consensus splice sites, i.e., ‘GT"’ for the
donor and ‘AG’ for the acceptor site. Hence, the neural
network distinguishes between GT donor sites (AG ac-
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Figure 5: Probability distributions of the length of introns and internal exons.

ceptor sites) occurring in the DNA sequence that func-
tion as splice sites and those that do not. To achieve
that goal, the sequence is coded using 4 input units
for each nucleotide and one unit as the output. Em-
pirical experiments similar to (Brunak, Engelbrecht,
& Knudsen 1991) show that sequence window sizes of
15bp for donor sites (-7..4+8) and 41bp for acceptor
sites (-21..420) are optimal. In addition the number of
hidden units was experimentally optimized. The best
results are achieved with 50 hidden units for donor and
40 hidden units for acceptor sites. Additional hidden
layers do not improve the results. [t is interesting to
note that the number of hidden units do not seem to
play an important role. For example, the Correlation
Coefficient for donor site prediction in a network with
50 hidden units is 0.855 whereas in a network with no
hidden units it is 0.81. The output of the two networks
are interpreted as the posterior probabilities for donor
and acceptor sites at a given position in the sequence.

Intron Model The intron modelis essentially a win-
dowed null model. For any base b at position i, the fre-
quency of nucleotides in a window of 300 bases, from
i— 150 to i+ 150 excluding position i, is computed. The
probability of b is assigned according to the computed
frequencies. The current implementation does not in-
clude any sophisticated knowledge of introns, such as
repeat detection. Intuition suggests that those features
peculiar to introns, such as repeats, do not have high
coding potential, so a good exon model will be unlikely
to favor such regions.

Exon Model The exon model uses only two cod-
ing statistics to determine coding potential. First,
GC-content and any other local frequency bias is con-
sidered by computing the frequency of the four nu-

cleotides within a window of 300 bases, similar to the
intron model. The size of the window was chosen ex-
perimentally. For larger window sizes, local variation
in base composition was less evident. Second, a first-
order Markov chain is used to condition the distribu-
tion over the 61 possible codons. These criteria are
combined as feature input into a 2-layer neural network
with 17 hidden units, trained using standard backprop-
agation. (The number of hidden units were experimen-
tally optimized, and hidden units were found to have
only a marginal effect.) Hence, the GC-content, codon
usage, and previous codon are simply integrated in a
single discriminator.

Results

For our studies we built a representative human gene
data set using Genbank, release 89, 1995. The human
gene set was selected from all known human genes in
Genbank. To obtain a representative set we prepro-
cessed the data using several filters. We required a
correct species label, i.e. “Homo sapiens”, and at least
one intron in the sequence. A valid CDS annotation
must exist; coding must begin with “atg” and finish
with one of three consensus stop codons, and splice
sites must conform to the consensus dinucleotides. Se-
quences with alternative splicings and in-frame stop
codons were discarded. Additionally, sequences were
discarded if the sequence identity of the translated pro-
tein was greater than 50% using BLAST. The resultant
data set of 304 genes was divided into seven groups to
be used in cross-validation — one seventh of the data
is used for testing. This data set (in Genbank flatfile
format) is publicly available via anonymous FTP from
www-hge.lbl.gov in directory /pub/genesets/.

For comparison with other gene-finding systems, we
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also tested Genie against a second data set, provided
by Burset and Guigo (Burset & Guigo 1996). This
data set of 570 genes from many different organisms
was used in (Burset & Guigo 1996) to compare the ef-
fectiveness of many different gene-finders. Our system,
like most of those tested in (Burset & Guigo 1996), was
trained on human genes only, but it is still interesting
to compare the relative predictive ability among the
systems.

Table 1 shows statistical results from tests of the
gene-finder against two (arbitrarily chosen) of the
seven test sets using the 304-gene data set. We also
tested Genie against the Burset/Guigo data set; results
comparing our gene-finder with other gene-finding sys-
tems is shown in Table 2. In accordance with the
testing scheme established by Burset and Guigo, we
report sensitivity and specificity with respect to per-
base prediction of coding/non-coding and with respect
to exact prediction of exons. The per-base sensitivity
is the fraction of true coding bases predicted as cod-
ing, and the specificity is the fraction of all predicted
coding bases that were correct. Similarly, the exon sen-
sitivity is the fraction of true exons predicted exactly,
and the specificity is the fraction of predicted exons
that were correct. In these tests, correct exon pre-
diction requires identification of the exact position of
splice sites. Fully or partially overlapping predictions
are not accepted. The approximate coefficient (AC)
is described by (Burset & Guigo 1996) as a preferred
alternative over the correlation coefficient and defined
by

TP TP TN TN
+

1
AC = = -1
2(TP+FN TP+FP + TN+FP + TN+FN)

where TP, FP, TN, and FN are true positives, false
positives, true negatives, and false negatives.

In addition, we also report the fraction of true exons
that were not identified either exactly or overlapping
(Missing Exons) and the fraction of predicted exons
that did not overlap any true exon (Wrong Exons).

Discussion

The predictive ability of our gene-finder is shown to be
as good as other gene-finding systems. In particular, in
comparisons using the Burset/Guigo data set, Genie’s
performance is comparable to that of GenLang (Dong
& Searls 1994), which was the second best program
for predicting exact exons among those tested. This is
encouraging, since Genie is based on a rather simple
probabilistic framework. However, a short-coming of
the current implementation seems to be the proclivity
to predict extraneous exons. Although up to 93% of
true exons are identified, at least 29% of the total pre-
dictions do not overlap any known coding region. Ob-
servations suggest that the length of these predicted
regions were often relatively small. Attempts to imn-
prove the specificity of exon prediction by artificially
adjusting model parameters have not yet shown good

140 ISMB-96

results. In this regard, there is still much room for
improvement.

Our research is currently focused on integrat-
ing homology-based searching into our GHMM gene
model. We consider one of the most important advan-
tages of homology-based discrimination to be the abil-
ity to identify exon pairs, thus implying the exact loca-
tion of splice sites. Therefore, a key feature in our pro-
posed database model is the introduction of a “splice
junction” sensor — a fixed-length sensor that identifies
database matches from a putative splice. The second
component is a new exon sensor as a linear HMM. The
HMM is built on-the-fly for each candidate exon and
includes states for each database match. A database
is interpreted very generally and includes protein mo-
tifs and collections of ¢cDNA, DNA, and amino acid
sequences.

Adding homology searching complicates the prob-
abilistic interpretation of the parse. We consider a
database match in an information theoretic sense as
a bit cost for encoding the unique identification of the
match. The probability of a match can then be de-
rived from the encoding cost and integrated into the
joint probability of the complete parse.

Additional current work includes designing a graphi-
cal interface for use by biologists at large-scale sequenc-
ing centers such as Lawrence Berkeley National Labo-
ratory, incorporating a promoter signal sensor (Reese
1995), and providing multiple gene recognition capa-
bility. We hope to report results regarding these en-
hancements by the time of the conference.
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[[ Data Set Per Base Ezact Ezon

I Sn [Sp [AC |[Sn [Sp [ Avg|[[ ME | WE
Part 1 0.85 1 0.80 1 0.80 [{ 0.58 | 0.51 | 0.54 || 0.07 | 0.29

I Part 2 0.70 | 0.69 | 0.64 || 0.49 | 0.41 | 0.45 |[ 0.23 | 0.39

Table 1: Sensitivity (Sn), Specificity (Sp), Approximate Coefficient (AC), Average of Sensitivity and Specificity
(Avg), Missing Exons (ME), and Wrong Exons (WE) as measured for two parts of a cross-validated test set from
a data set of 304 human genes in DNA.

Gene-finder Per Base FEzxact Exon

Sn |Sp |AC [[Sn [Sp | Avg | ME | WE
Genie 076 1077 1 0.72 || 0.55 ]| 0.48 | 0.51 || 0.17 | 0.33
FGENEH 0.77 1 0.8 | 0.78 jf 0.61 | 0.61 | 0.61 {| 0.15 | 0.11
GenelD 063108110671 044 ]| 045 | 045 (| 0.28 | 0.24
GeneParser2 || 0.66 | 0.79 | 0.66 || 0.35 | 0.39 | 0.37 || 0.29 | 0.17
GenLang 0.72 1 0.75 | 0.69 || 0.50 | 0.49 | 0.50 || 0.21 | 0.21
GRAILII 0.72 1 0.84 | 0.75 || 0.36 | 0.41 ] 0.38 || 0.25 | 0.10
SORFIND 0.71 1 0.85 |1 0.73 || 042 | 0.47 1 0.45 || 0.24 | 0.14
Xpound 061082 | 0681 0.15]0.17] 0.16 |{ 0.32 ] 0.13

Table 2: A comparison of Genie with other gene-finding systems. Tests were run on a set of 570 annotated sequence

from different organisms.
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