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Abstract

We present a new approach for the evaluation of
gene expression data. The basic idea is to gen-
erate biologically possible pathways and to score
them with respect to gene expression measure-
ments. We suggest sample scoring functions for
different problem specifications. We assess the
significance of the scores for the investigated path-
ways by comparison to a number of scores for ran-
dom pathways. We show that simple scoring func-
tions can assign statistically significant scores to
biologically relevant pathways. This suggests that
the combination of appropriate scoring functions
with the systematic generation of pathways can be
used in order to select the most interesting path-
ways based on gene expression measurements.

Introduction

Large scale gene expression measurements can now be
performed by several established techniques, includ-
ing EST (expressed sequence tag) sequencing, cluster-
ing and counting, e.g. (Okubo et al. 1992; Okubo &
Matsubara 1997; Ewing & Claverie 2000); SAGE (se-
rial analysis of gene expression), e.g. (Velculescu 1999);
DNA-chips, e.g. (Lockhart & others 1996; Chee et al.
1996); and micro-arrays, as introduced by Pat Brown’s
Laboratory at Stanford University, e.g. (DeRisi, Iyer,
& Brown 1997). The available techniques are reviewed
in (Ramsay 1998; Gerhold, Rushmore, & Caskey 1999).
Knowledge of the expression of genes is generally be-
lieved to speed up the understanding of living systems
on a molecular level. This is especially important in
order to find target genes and pathways for drug devel-
opment, e.g. by the comparison of diseased cells with
their healthy counterparts.

Several methods have been proposed in order to in-
terpret large amounts of expression measurement data.
The earliest publications focussed on manual inter-
pretation (DeRisi, Iyer, & Brown 1997; Heller et al.
1997). The most important basic automatic analy-
sis technique is clustering, e.g. (Eisen et al. 1998;
Tamayo et al. 1999). Several other methods build
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on this technique: computer visualization (Carr, So-
mogyi, & Michaels 1997; Michaels et al. 1998); semi-
automatical coarse-grain function predictions (Chu et
al. 1998); investigations of promoter sequences for reg-
ulatory elements (Zhu & Zhang 2000); coarse-grain ge-
netic network reconstruction (Mjolsness et al. 2000);
mapping onto metabolic pathways (Fellenberg & Mewes
1999). Methods that do not require clustering include
Fourier analysis of measurements of periodic phenom-
ena, e.g. (Spellman et al. 1998); principal compo-
nent analysis, e.g. (Raychaudhuri, Stuart, & Altman
2000); genetic network reconstruction, e.g., for lin-
ear (D’haeseleer et al. 1999), Boolean (Liang, Fuhrman,
& Somogyi 1998) or Bayesian (Friedman et al. 2000)
models; supervised machine learning techniques, e.g.,
for disease class prediction (Golub et al. 1999) or
coarse-grain gene function prediction (Brown et al.
2000). All of the automatic methods utilize, at best,
a rather broad notion of biological function. To our
knowledge, no method, except for human expertise,
employs detailed knowledge of (parts of) the biologi-
cal networks for the evaluation of gene expression data
in a systematic and automated way. Pure clustering
methods do not exploit prior biological knowledge at
all.

Our work is based on the expectation that the use of
the available knowledge on biological networks is essen-
tial for the development of powerful automatic methods
for the evaluation of gene expression data. Surprisingly,
to our knowledge, there is only one published attempt
to make use of knowledge on biological pathways for the
interpretation of gene expression data: the approach de-
scribed by (Fellenberg & Mewes 1999). They deduce a
structure (the clustering) from the expression data and
impose it onto the reaction network representing the
prior knowledge, resulting in lists of possibly meaning-
ful pathways. However, this method does not provide
any quantitative indication for the validity of the gen-
erated pathways.

In contrast, we propose to follow the opposite direc-
tion. Starting from the known reaction networks, we ex-
tract possible pathways and examine how well they are
supported by the given expression data. This method
can be used to rank candidate solutions. The core idea
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is to define scores for putative pathways and scores for
genes with respect to a given pathway, both based on
gene expression measurements. The scoring function
can be designed to indicate any desired property, as long
as it is reflected in the available gene expression data.
In this paper, we propose scoring functions aiming at
three different properties of putative pathways: first,
general conspicuousness of the expression patterns of
the involved genes; second, synchrony of the expression
patterns among the involved genes; and, finally, a com-
bination of both that is intended to indicate whether the
pathway is realized in one of the examined cell states.
There is a broad range of related questions that can be
addressed with this approach.

Methods

Expression data

In this paper, we consider multiple gene expression mea-
surements of cells. Let G be the set of genes common
to all investigated cells. For the purpose of this pa-
per, we regard each gene expression measurement as a
mapping from each gene g € G to a positive number.
This number represents, as faithfully as current mea-
surement technology permits, the number of mRNA
copies of that gene. Let each different measurement
be labeled by a time point ¢, ¢ € T. In this paper, we
assume that the measurements form a single time se-
ries. A well known example for a time series of length
|T| = 8 for virtually all yeast genes is the diauxic shift
data provided by (DeRisi, Iyer, & Brown 1997). We will
use these data for our sample calculations described in
the results section.

Let l; , denote the expression level measured for gene
g at time point . The micro-array technology devel-
oped in the Brown Lab allows to perform double mea-
surements. Often, the gene expression levels of a dis-
tinguished reference time point ¢y are measured simul-
taneously to the expression levels for each time point ¢.
Thus, the expression level ratios {, /I, ;, can be deter-
mined directly and free from errors resulting from dif-
ferences between chips and probe concentrations. For
each time point ¢, we take the logarithm of the expres-
sion level ratio for each gene g:

l
my , = log (£> : (1)

lto.y

This leads to a representation of gene expression data
that is symmetric with regard to up- and down-
regulation.

Pathway construction

The second essential ingredient of our method is the
set of pathways against which the expression data is
evaluated. In general, a pathway can be any meaning-
ful substructure of a biological interaction network. In
the following, we briefly describe how we obtain such
pathways. A more detailed description can be found
in (Kiiffner, Zimmer, & Lengauer 1999).
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From the metabolic databases BRENDA (Schom-
burg, Salzmann, & Stephan 1990 1995), EN-
ZYME (Bairoch 1999), and KEGG/LENZYME (Ogata
et al. 1999) all reactions are extracted. Since reg-
ulatory and signalling relationships are currently not
sufficiently covered in databases, we restrict ourselves
to metabolic pathways. From the reactions we can
construct both universal (organism-independent) or
organism-specific networks, represented as PETRI nets
that describe all metabolic interactions for which ex-
perimental evidence has been found under some condi-
tion. We extract possible pathways from the respective
network by specifying source- and sink-substrates and
topological constraints.

The generated pathways are closed, i.e. the net pro-
duction and consumption of all substrates other than
source and sink substrates and a definable set of ubig-
uitous molecules is zero. Together with additional user
defined and biologically motivated restrictions, this en-
sures the generation of biologically meaningful entities
and the drastic reduction of the number of generated
pathways. The enumeration still results in a large num-
ber of pathways, which can be used for model construc-
tion or be subject to hypothesis evaluation.

The enzymes performing chemical reactions in path-
ways are usually labeled by EC numbers as indicators
of biological function. Gene expression measurements,
however, refer to ORF identifiers. We map the con-
structed pathways into the space of ORFs according
to the MIPS yeast catalogue, subsection EC numbers!.
Often, there are several proteins for a given EC num-
ber. Thus, we may yield a number of different versions
of a pathway in the space of ORFs.

Method outline

Our method allows to rate putative pathways according
to different properties, examples of which are discussed
below. The method can be summarized as follows:

¢ Given the Input:
— gene expression measurements
— putative pathways

e Answer the Questions:

— Which pathways show the desired property?

— How much support does each gene have to belong
to a given pathway?

e By producing the Output:

~ Pathway scores: For each putative pathway as a
whole, this is a score that measures to which degree
the pathway shows the desired property;

— Gene scores with respect to a given pathway: For
each gene (both included and not included in the
pathway), this is a score that measures how much
the gene shows the desired property with respect
to that pathway.

'http://www.mips .biochem.mpg.de/
proj/yeast/catalogues/EC/index.html



In this paper, we first define the gene scoring func-
tion, which is based directly on the given gene expres-
sion data. Subsequently, a score for the pathway as a
whole is computed from the gene scores of those genes
that form part of the pathway. Alternatively to building
pathway scores on gene scores, it is possible to define
pathway scores directly from the gene expression data.
Then, for any gene g, a score with respect to a given
pathway p can be deduced from those pathway scores.
For example, the gene score could be defined as the
difference of the scores of the original pathway p and
a modified pathway p'. Here, p’ is obtained by either
removing g from the pathway p or adding g to it, de-
pending on whether g belongs to the pathway p or not,
respectively.

In this paper, we derive example pathway scores from
gene scores. All scores are defined in such a way that
higher values indicate more interesting pathways. We
do not claim the presented functions to be optimal in
any respect, on the contrary, we believe that much work
remains to be done in order to develop suitable scoring
systems.

Scoring conspicuousness of expression

First, we construct a scoring function that distinguishes
pathways consisting of genes with conspicuous expres-
sion patterns, i.e. maximum changes. Therefore, we
take advantage of the fact that (DeRisi, Iyer, & Brown
1997) supply a double measurement on the same chip
for the reference time point 3. We calculate, for each
gene g, a log ratio value my, 4 that quantifies pure mea-
surement error. The distribution of these error values
is shown in Figure 1. While the distribution function is
not necessarily normal, it shares some important char-
acteristics with a normal distribution. The distribution
function is sigmoid, and the idealized density function
is unimodal and almost symmetric.

Based on this observation, we model the measure-
ment error by a normal distribution. We call this the
null model for the gene expression values, since it de-
scribes which degree of observed change can be ex-
pected to arise from measurement errors only and does
not indicate biological events. A normal distribution is
fitted to the error values according to their mean e r
and empirical standard deviation s.,.

1
mer'r = = Z Mty ,g (2)
G| &2
1 —
Serr = \/Ij(T~_l Z(mto,g — Mlerr)? (3)
9€G

As expected, there does not seem to be a significant dif-
ference (bias) between two measurements on the same
chip. This is indicated by the small value of the mean
TMerr (0.089) as compared to serr (0.2561). Conse-
quently, we replaced the empirical mean by zero before
performing any other calculations.

A gene is considered the more conspicuous, the
stronger the observed changes of expression are. For
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Figure 1: Histogram of the distribution of log-relative
expression levels for the double measurement at time
point ¢y from (DeRisi, Iyer, & Brown 1997) over all
probed yeast genes, superimposed by the normal den-
sity function parameterized with the mean and the em-
pirical standard deviation of the expression data.

each time point ¢, we estimate the probability P?(g)
of the observed log-relative expression change m; of
gene g to arise from measurement errors only. We use a
two-sided test on the normal distribution @ that is pa-
rameterized with the mean ... = 0 and the standard
deviation s, as calculated for the null model.

P = 20 (- |me0) @

We can compute a conspicuousness score for each
gene g and time point ¢ as follows.

score;(9) = —log P (g) (5)

The overall score for the gene g with respect to the
complete time series can be computed as the average
over the set T'— {0} of time points:

_1 Z score:(g) (6)
T} - teT—{to}
Q0

Since adding the logs is equivalent to multiplying the
probabilities, we implicitly assume independence be-
tween the different measurements. Other definitions
may be more appropriate, e.g. taking the maximum of
the values over the time points. Note that, in either def-
inition, the conspicuousness gene score is independent
from the actual pathway under investigation.

Now we consider a given pathway that shall be char-
acterized by the set p of involved genes. A score for the
complete pathway can be computed, e.g., as the average
over the scores of the genes included in the pathway:

score(p) = 1 Zscore(g) (7)
lpl 4=
Of course, this scoring function does not provide any
information about synchronous regulation of the genes
involved in a pathway.

Serr

score(g)
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Scoring synchrony of expression

We construct a second scoring function that quantifies
synchrony of expression. To that goal, we can employ
any similarity measure for expression time series that
may also be used for clustering. Here, we use the cor-
relation coefficient. By considering the absolute mag-
nitude of the correlation coeflicient, e.g., synchronous
regulation in opposite direction of genes could be taken
into account. Depending on the circumstances, differ-
ent measures of similarity can be optimal.

In order to calculate a score for a gene g with re-
spect to the pathway p, a model of the pathway is con-
structed, called the pathway model. The expression data
of the gene is compared to this model, and a score is
computed that reflects how well the gene fits the path-
way model. Subsequently, a score for the pathway as a
whole is computed from the scores of those genes that
form part of the pathway. We do not make use of the
null model used for the conspicuousness scoring.

Since pathways usually consist of small sets of genes,
each of them has a substantial influence on the pathway
model. In order to avoid gene scores that mostly reflect
self-similarity, each gene from the pathway is scored
against a modified model of the pathway, which is ob-
tained by excluding that particular gene. Consequently,
we define different pathway models for genes involved
in the pathway than for the remaining genes. Let p,
denote the set of genes upon which the pathway model
for gene g is built. From the above considerations it
follows that p, := p — {g} for genes ¢ included in the
pathway and p, := p otherwise.

This gene scoring function simply quantifies the av-
erage similarity, i.e., here, the average correlation co-
efficient, to the genes on the pathway. Formally, we
have:

— Y lg ). ®)

score,(g) —
lp g I hEPg
Here, cc(g, h) denotes the correlation coefficient of the
expression time series (excluding tp which does not con-
tain biological information) that belong to the genes g
and h,
COVy. h
h) = —£ 9
clg,h) = T ©

where s, and s, denote the empirical standard devia-
tions of the sets of values m; , and m¢n, t € T — {to},
and cov,; denotes the empirical covariance of these
sets. For this scoring function, the use of p instead
of the modified pathway p, would lead to an increase of
the score by T%[’ since cc(g, g) = 1. Thus, the correction
eases the comparison of differently sized pathways.

Again, the score for the complete pathway can be
computed as the average over the scores of the genes
included in the pathway:

1

score(p) = il Z scorey(g) (10)
9€p
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This scoring function assigns high scores to path-
ways whenever the involved genes would cluster to-
gether nicely. It also assigns a high score to a pathway if
the genes are similarly expressed but are, nevertheless,
distributed over several clusters. On the other hand,
by only considering putative pathways, our approach
avoids arbitrarily associating any set of genes with sim-
ilar expression patterns.

However, this scoring function exhibits one problem
that it shares with cluster-based methods: It assigns
high scores to pathways consisting of genes with simi-
lar, but inconspicuous expression. This is risky, because
most genes can be expected to exhibit constant expres-
sion during a limited number of measurements, and
thus many biologically unrelated genes may be highly
correlated.

Combined scoring function

In this scoring function, we combine the ideas of the
preceding two functions. In order to do so, we use the
error model employed in the conspicuousness score to
calculate a modified measure of correlation. In the cor-
relation coefficient (cc, Equation 9), the covariance is
scaled with respect to the variances of the two sets of
values to be compared. Thus, perfectly synchronuously
expressed genes yield the same maximum correlation
coefficient of 1, regardless of whether they are signifi-
cantly regulated at all.

By defining the scoring function to be proportional to
the covariance, we achieve scores that reward both syn-
chronuous and strong regulation. We define a modified
correlation coefficient cc* by replacing the denomina-
tor by a term which is independent of the genes under
consideration:

cc*(g,h) = Vgh (11)
SCTTSCTT
By choosing to scale the covariance to units of the vari-
ance arising from measurement errors (s..., Equation
3), the resulting similartity value cc* has an intuitive
meaning: it indicates by which factor the observed co-
variance exceeds what can be expected by chance.

As before, a score for each gene g is computed by
averaging the similarity to the other genes involved in
the pathway. Then, a score for the pathway as a whole
is computed from the scores of those genes that form
part of the pathway.

scorep(g) = ﬁ ch*(g,h) (12)
s hqu

score(p) := |—11;|~Zscore,,(g) (13)
9€p

According to the intuition of this scoring function,
random pathways should show an average score of 1,
which is nicely reproduced by our calculations (Figure
6). This suggests that this kind of score is comparable
among different measurement technologies. This has to
be investigated in future work.



Further improvements on the performance can be ex-
pected with refined scoring functions, e.g. for circum-
venting the restrictions associated with treating mea-
surements independently as done in the versions de-
scribed above.

Results

In order to obtain hints on the efficacy of our procedure,
we investigate the glycolysis pathway in S. cerevisiae.
We do not claim that this is a comprehensive perfor-
mance evaluation. With the currently available data
and knowledge on the realization of pathways in spe-
cific states it is impossible to generate a comprehensive
benchmark for systematic evaluation of our gene ex-
pression data analysis method. For such a benchmark
a sufficiently large set of realized pathways needs to be
available together with many expression measurements
related to the state under investigation. In addition,
another set of pathways known not to be realized in
this state is also required.

For the current evaluation, we relied on published
data as a standard of truth. We analyze the behavior
of our method for the textbook glycolysis and gluconeo-
genesis pathway as described in (DeRisi, Iyer, & Brown
1997). The glycolysis pathway consists of ten proteins
and is shown in Figure 2. For some nodes, alternative
proteins are known that are capable of performing the
respective EC function. It is uncertain which of them
really belong to the pathway. Figure 3 shows the possi-
ble combinations obtained by selecting one protein (or,
equivalently, one ORF) for each node, resulting in a
total of 36 pathways. We would like to be able to iden-
tify (some of) these pathways from the gene expression
data, so they should receive high scores.

‘We make use of the gene expression time series mea-
sured by DeRisi et al. (DeRisi, Iyer, & Brown 1997)
that is publicly available?. For each known yeast gene
g, there are pair measurements of both I; , and I ¢
for eight different time points ¢ (including ¢g). The re-
peated measurement of the reference time point allows
for the compensation of certain types of measurement
errors. The time series is optimally suited for the in-
vestigation of the glycolysis pathway, as the time points
correspond to decreasing concentrations of glucose and
a regulation of the glucose processing glycolysis path-
way is expected. In fact, the data measured confirm this
expectation (DeRisi, Iyer, & Brown 1997), as demon-
strated by a manual analysis by the original authors.

Using the pathway generation method described
above (Kiiffner, Zimmer, & Lengauer 1999), we gen-
erate all pathways consuming glucose and producing
pyruvate. These pathways are characterized by the
types of reactions needed to produce pyruvate from glu-
cose in a number of steps and by the graph structure
that these reactions impose on the enzymes and the in-
termediate substrates. With appropriate constraints,
this process results in 541 different pathways on the

2http://cmgn. stanford.edu/pbrown/explore/index. html

level of EC numbers. For the computation of scores
from expression data, it is necessary to translate the
EC numbers into ORFs. Using the assignment of EC
numbers to ORFs provided by MIPS, 540 of the 541
pathways contain at least one EC number to which no
yeast ORF is assigned, and only one pathway can be
mapped into the space of yeast ORFs without gaps.
Figure 2 shows this pathway, together with one out of
the 900 possible assignments of ORFs to the EC num-
bers.
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Figure 2: Graphical illustration of the computed gly-
colysis pathway described in the text. The pathway
contains 10 enzymes, each labeled with the associated
EC number and the identifier of one yeast ORF that
codes for an enzyme which is assigned to that function.

Additionally, we compute scores for 10000 ran-
domly chosen ORF sets of the same size (namely, ten
genes). These unstructured sets form a sufficient ran-
dom model, since the scoring functions used in this pa-
per do not exploit pathway topology.

In the following, we analyze the behavior of the dif-
ferent scoring functions on these three sets of pathways
in more detail. First, we plot the distribution of the
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Figure 3: Possible pathways defined by selecting one
alternative ORFs for any node/EC-number resulting
in 36 pathways altogether. According to the measure-
ments before and after the diauxic shift several of the
genes are predominantly expressed in one state but not
the other (light gray means only expressed before the
shift, dark gray means only after the shift) whereas
other proteins do not show significant changes in ex-
pression values (white).
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scores for the random sets of genes, for the automat-
ically generated 900 glycolysis pathways and for the
36 pathways taken from (DeRisi, Iyer, & Brown 1997).
The resulting histograms are shown in Figure 4 for the
conspicuousness score, in Figure 5 for the correlation
of gene expression on the pathway, and in Figure 6 for
the combined scoring function. In all cases, the path-
way histograms are quite well distinguished from the
distribution of random scores, i.e. most of the glycoly-
sis pathways can indeed be recognized by our method
given the current measurements.

As can be seen in Table 1, the correlation func-
tion scores those pathways best that are completely
activated in the glycolysis, i.e. before the diauxic
shift. The most distinguishing position of the path-
way is the first enzyme characterized by the expres-
sion of HXK2/YGL253W. In contrast, the two other
alternatives, HXK1/YCL040W and GLK1/YFR053C
were both up-regulated after the diauxic shift and lead
to significantly lower scores. For the ranking HXK2
(HXK1/GLK1) is more important than ENO2 (ENO1)
and PFK1 (PFK2) while TDH1/2/3 have very little sig-
nificance. For the other enzymes in the pathway only
one ORF is assigned, with no alternatives to be con-
sidered. In the described implementation, this scoring
scheme seems to prefer pathways which are most active
before the diauxic shift as compared to the state after
the shift.

For a measurement on a less well studied set of states
or with less characterized genes a natural first question
could be which of the possible pathways are the most
interesting with respect to the net change of expres-
sion within the set of state measurements. This is best
addressed with the conspicuousness score. The result-
ing scores are shown in Table 2. Here, pathways con-
taining the genes HXK1 and GLK1 receive the highest
scores as their change in expression level is more signif-
icant (though negatively correlated to other genes on
the pathway) than the change of HXK2. Again, ENO2
and PFK2 are more important than ENO1 and PFK1.

Another natural question could be which of the pos-
sible pathways are both interesting from the level of
expression changes and, at the same time, best fitting
(e.g. correlated) to the set of genes on the common
pathway. Our combined scoring function again scores
HXK1 and GLK1 highest (see Table 3), although there
is no single state in which these genes participate in
the pathway. This hints to the fact that, in the current
definition of score, the conspicuousness term dominates
over the correlation component. Pathways containing
genes known from above to be discriminative for the
glycolysis before the shift are ranked in the same order
as above. The best pathways contain HXK2, ENO2,
and PFK2 and rank TDH1, TDH3, and TDH2 in that
order. In general, however, all pathways and genes pu-
tatively participating in glycolysis pathways are scored
much higher than random sets of genes, indicating that
such a combined scoring scheme could be employed for
selecting pathways based on both criteria together. A



Consplcuousness Scores

Figure 4: Histograms of pathway scores calculated
according to Equation 7 (conspicuousness score). One
histogram is shown for each of three sets of pathways
in ORF space: the 36 ORF pathways resulting from
the glycolysis as described in (DeRisi, Iyer, & Brown
1997) (solid line, crosses), that serve as a substitute for
a standard of truth; the 900 possible assignments of
yeast ORFs to the reactions of the glycolysis pathway
as generated by our methods (dashed line); and 10000
random pathways (solid line, circles). To ensure com-
parability, all histograms are normalized to resemble
probability density functions.

final differentiation of the selected pathways, e.g. in or-
der to assign them as characteristic for a specific state
or as discriminating for two or more states should after-
wards be based on scoring systems like the correlation
score as discussed above.

p-values

Depending on the definition of the scoring function, the
score distribution may be biased by the characteristics
of the pathways scored, most importantly their size.
This hampers the comparison of scores of pathways of
different characteristics. In the field of sequence com-
parison, statistical scores, called p-values (probability
estimates) or E-values (expectation values), that rem-
edy analogous problems, have been an important pre-
requisite for the success of programs like BLAST and
FASTA. In addition to increasing the reliability of de-
cisions, these scores have an intuitive interpretation as
probabilities or expectation values of erroneous deci-
sions and can be used to guide the trade-off between
sensitivity and specificity. We propose the computa-
tion of similar p-values for pathways, for example, by
the following brute-force procedure: for each putative
pathway under investigation, a large number of random

Correlation Scores

Figure 5: Histograms of pathway scores calculated
according to Equation 10 (synchrony score), presented
as in Figure 4.

Combined Scores

Figure 6:

Histograms of pathway scores calculated
according to Equation 13 (combined score), presented
as in Figure 4.
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Genes HXK1 TDH1
GLK1 PFK1 TDH2 ENO1
Scores HXK2 PGI1 PFK2 FBAL TPI1 TDH3 PGK1 GPM1 ENO2 PYK1
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0,721 YBR196C | YGR240C | YKL060C | YDROS0C | YGR192C {¥YCRO12W | YKL152C | YGR254W | YALO38W
0,721 USgrskausd YBR196C | YGR240C | YRLO60C | YDROS0C | YIR0O09C | YCRO12W | YRL152C | YGR254W_| YALO38W
0,715 2] YBR196C | YGR240C | YRLO60C | YDROS0C | YJLO52W | YCRO12W | YKL152C | YGR254W | YALO38W
0,690 YBR196C : ¥ YKL060C | yDrROS0C | YOR00SC | YCRO12W | YRL152C x a9 YALO3BW
0,687 YBR196C § 1 YKLO60C | YDRO50C | YGR192C [YCRO12W | YKL152C pi¥s 5 YALO38W
0,685 YBR196C Paisdneed YRLO60C | YDROS0C | YJLOS2w [YCRO12w | YRL152C E¥ERIzawsl YALO38W
0,655 YBR196¢C | YGR240C | YRLO60C | yDRO50C | vJRO09C [vcrRO12w | yRL152C Btifsiass| yaLo3sw
0,653 YBR196C | YGR240C | YRL060C | yDRO50C | YGR192¢C |YCRO12W | YKL152C 4 YALO38W
0,650 vBR196C | YGr240c | YRL,060C | YDRO50C | YILOS2wW | YCRO12wW | YRL152C Egied 24 YALO3BW
0,638 [ReEEabNS YBR196C i1 YKLOGOC | YDROSOC | YIROOSC | YCRO12W | YKL152C |SBeuemie) vALO3SW
0,637 YBR196C 2ed YRL060C | YDROS0C | YGR192¢ [ycrO12w | YRL152C pSimssdag] YALO3SW
0,634 EROENAL YBR196C g YKL060C | YDROS0C | YJLO52W | YCRO12W | YRL152C : YALO38W
0,604 L9eEoEAW YBR196C | YGR240C | YRLO60C | YDRO50C | YOR009C | YCRO12W | YKL152C b¥sityas] YALO38W
0,604 5 YBR196C | YGR240C | YKLO60C | YDROS0C | YGR192C [YCRO12wW | YRL152C ERIREg#Awsd YALO3SW
0,600 ¥eantusiee]] YBR196C | YGR240C | YRLO60C | YDRO50C | YILO52W | YCRO12W | YKL152C pihs 4 YALO38W
0,583 YBR196C EVMREGARH YKLO60C | YDROS0C | YIRO09C [YCRO12W | YRL152C | YGR254W | YALO38W
0,582 YBR196C YRLO60C | YDRO50C | YGR192C |YCRO12W | YKL152C |YGR254W | YALO38W
0,580 YBR196C K @1 YKLO60C | YDROS0C | YJLOS2W | YCRO12wW | YKL152C | YGR254W | YALO38W
0,552 YBR196C | YGR240C | YKLO60C | YDRO50C [ YJR009C | YCRO12W | YKL152C | YGR254W | YALO38W
0,551 YBR196C | YGR240C | YKLO60OC | YDRO50C | YGR192C | YCRO12W | YRL152C | YGR254W | YALO38W
0,549 YBR196C | YGr240C | yRL0O60C | YDROS0C | Yor.052w | YCRO12W | YRL152C | YGR254W | YALO3BW
0,528 ¥y A YBR196C |sameetsesd YRLO60C | YDROS0C | YGr192C | YCcRO12W | YRL152C [YGR254W | YALO38W
0,527 T W] YBR196C ENRA I YRLO60C | YDRO50C | YJRO09C | YCRO12W | YRL152C | YGR254W | YALO38W
0,525 B YBR196C PSRRI YKLO60C | YDRO50C | YJLO52W | YCRO12W | YKL152C [ YGR254W | YALO3BW
0,498 Exes %] YBR196C | YGR240C | YRLO60C { YDROS0C | YGR192¢C | YCRO12W | YRL152C | YGR254W | YAL.O38W
0,496 YBR196C | YGR240C | YKLO60C | YDRO50C | YoR009C | YCRO12W | YRL152C [ YGR254W | YALO3BW
0,495 pPsredons] YBR196C | YGR240C | YRLO60C | YDROS0C | YJLOS2W | YCRO12W | YKL152C | YGR254W | YALO3SW

Table 1: The 36 pathways (see Figure 3) scored by the correlation function (see Formula 10). Dark shading of
ORF IDs indicates up-regulation during diauxic shift, light shading indicates down-regulation, no shaing indicates
unchanged expression. The pathways that are realized in the glycolysis before the diauxic shift are scored highest.
The most distinguishing position of the pathway is the first enzyme characterized by the expression of ORF YGL253W
which is up-regulated (in contrast to YCL040W and YFRO053C). The ranking resulted in the following decreasing
order of significance values: HXK2 (HXK1/GLK1) >> ENO2/YHR174w (ENO1/YGR254w) > PFK1/YMR205¢c
(PFK2/YOR240c); the genes/ORFs TDH1/YJL052¢c, TDH2/YJR009w, TDH3/YGR192w show no influence.
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Genes HXK1

GLK1

Scores HXK2 PGI1 FBAL TPI1 TDH1 PGK1 GPM1

4,358 YBR196C YKL0O60C | YDRO50C | YJLO52wW | YCRO12W | YKL152C £3
4,274 YBR196C YKLO60C | YDRO50C | YJL052wW | YCRO12W | YKL152C E
4,248 YBR196C YKLO60C | YDRO50C | YaLOS2w | YCRO12W | YRL152C &
4,164 YBR196C YKLO60C | YDROS0C | YOL.052W | YCRO12W | YRL152C £ 1 YALO38W |
4,153 YBR196C E¥nzssisi YKLO60C | YDROS0OC | YOLOS52W | YCRO12W | YKL152C | YGR254w | YALO38W
4,068 YBR196C | YGR240C | YKLO60C | YDROS0C | YILOS2wW { YCRO12W | YKL152C | YGR254W | YALO38W
4,043 "YBR196C & #5253 YKLO60C | YDROS0C | YJLOS2W | YCRO12W | YRL152C { YGR254W | YALO38W
3,958 YBR196C | YGR240C | YKLO60C | YDROS0C | YJL.052w | YCRO12w | YRL152C | YGR254w | YALO38W
3,490 5 2] YBR196C FVERFESEH YRLO60C | YDROSOC | var.052w | YCRO12W | YRL152C E¥fes e var,038wW
3,405 YBR196C | YGR240C | YKLO60C | YDROSOC | YJLOS52W | YCRO12W | YKL152C LS YALO3BW
3,284 YBR196C sy yYKIL,060C | YDROS0C | YJL.O52wW | YCRO12W | YKL152C | YGR254W | YALO38W
3,200 YBR196C | YGR240C | YRLO60C | YDROS0C | YJLO52W | YCRO12W | YKL152C | YGR254W | YALO38W

Table 2: The 36 pathways of Figure 1 reduced to 12 pathways via equivalencing TDH1, TDH2, and TDH3 (see
Figure 3) ranked according to conspicuousness expression score (see Formula 7). Pathways containing the genes
HXK1/YFR053c and GLK1/YCL040c receive the most significant scores as their change in expression level is more
significant than the change of HXK2/YGL253w.

Genes| HXK1
GLK1 PFK1 ENO1

Scores HXK2 PGI1 PFK2 FBAL TPI1 TDH1 PGK1 GPM1 ENO2 PYK1
25,143 YBR196C (WMEGISEHYKLOG0C |YDROSOC |YJLOS52W |YCRO12W |YKL152C YALO38W
23,555 YBR196C {YGR240C |vkLo60C |yprosoc |vanos2w {vcro12w |YRL152C 4 YALO38W
20,737  YBR196C § i YKLO60C |YDROSOC |YJLOS2W {YCRO12W |YKL152C YALO38W
19,740 YBR196C JYKL0O60C |YDROS0C |YJLOS2W |YCRO12W |YKL152C 4 YALO3BW
19,326 {@5is  YBR196C YKL060C |YDROS0C |YJLO52W |YCROI2W |YKL152C YALO38W
18,078 YBR196C YDROSOC |YJLOS52W |YCRO12W JYKL152C YALO38W
17,663 YBR196C YDROS50C |YJLO52W |YCRO12W |YKL152C YALO38W
16,065 YBR196C YDRO50C |YJLO52w |YCRO12wW {YRL152C YALO38W
15,852 [ YBR196C PSSEZaast | YDRO50C |YJLO52W |YCRO12W |YRL152C |YGR254W |YALO38W
14,367 YBR196C YGR240C‘1YKLO6OC YDROS0C |YJLOS52W |YCRO12W |YKL152C |YGR254W {YALO38W
13,859 YBR196C £ENig : YDRO50C |vJLos2w |ycrRo12w |YKL152C |YGR254W {YALO38W
12,438 YBR196C |YGR240C |YRLO60C |YDROS0C |YJLO52W |[YCRO12W |YKL152C |YGR254W |YALO38W

Table 3: The 12 pathways of Figure 2 (see Figure 3) scored by the combined scoring function (see Formula 13).
Similar to Table 2 pathways containing HXK1 and GLK]1 receive the highest scores.
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pathways with the same characteristics are generated
and scored. Then, the p-value of the pathway under
investigation is taken as the fraction of random path-
ways that achieve the same or a greater score. This
p-value is an estimate of the fraction of false positives
to be expected when assuming that the pathways un-
der investigation are realized in the specific cell states
represented by the current measurement. However, no
notion of false negatives is represented in this figure.
According to this procedure, the best scoring path-
ways from Tables 1-3 yield the following p-values:
0.0606 for the conspicuousness score, and less than
0.0001 for both the correlation score and the combined
score. The best scoring automatically generated path-

ways achieve values of 0.0365 for the conspicuousness -

score, and again less than 0.0001 for the other scoring
schemes.

Discussion

One of the most popular techniques for the analysis of
gene expression data is clustering. Clustering deduces a
structure (the set or hierarchy of clusters) from the data
without employing prior knowledge. This structure is,
to a certain degree, always arbitrary, due to the high
noise level of expression measurements and the lack of
clear cluster boundaries, as shown in (Raychaudhuri,
Stuart, & Altman 2000).

We propose a method that performs a detailed analy-
sis of expression data with respect to biologically mean-
ingful units, namely possible biochemical pathways. It
is a general, automatic procedure to rate those path-
ways according to evidence from expression measure-
ments, thereby allowing to test hypotheses that are rel-
evant for drug target discovery and for guidance for
further experimentation. Thus, the possible applica-
tions of our method go significantly beyond other known
methods, e.g. clustering or function prediction. To our
knowledge, the only other method that is capable of
testing hypotheses on biological networks is that pre-
sented in (Friedman et al. 2000}, which, however, does
not yet make use of prior knowledge.

Interesting related work can be found in (Marcotte
et al. 1999). Here, protein-protein interactions are
predicted on a broad data basis, including gene ex-
pression measurements. Note that these interactions
may overlap with, but are not identical to the edges in
the graphs representing metabolic pathways. Interac-
tions that are predicted by the methods of (Marcotte
et al. 1999) can be fed into our method as hypothe-
ses, and be re-evaluated in the context of the metabolic
network. The same holds for experimentally detected
interactions, which recently have been determined for
yeast with a comprehensive Yeast2hybrid screen (Uetz
et al. 2000).

Certain improvements are required to make our ap-
proach more useful. More work is required on the
development of refined scoring functions. Most obvi-
ously, the graph structure of the pathways should be
exploited. Another important point is to be able to
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take into account more complicated structures of mea-
surements than linear time series. Also, we believe that
our method will profit from advances in the definition of
(regulatory) networks. We envision that, with further
improvements and extensions implemented, the basic
idea behind our approach will be useful for applications
like the search for drug targets.
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