
Efficient Algorithms for Attribute-Oriented Induction

Hoi-Yee Hwang and Wai-Chee Fu

Department of Computer Science
Chinese University of Hong Kong

Shatin, Hong Kong
hyhwang@cs.cuhk.hk, adafu@cs.cuhk.hk

Abstract
Data mining or knowledge discovery in databases is the
search for relationships and global patterns that exist but
are hidden in large databases. Many different methods have
been proposed and one of them is the attribute-oriented
induction method. In this method, domain knowledge in the
form of concept hierarchies helps to generalize the concepts
of the attributes in the database relations. This approach
has been generalized to the rule-based attribute-oriented
induction. The time complexity of the original algorithms is
given by O(N log N), where N is the number of relevant
tuples in the database. In this paper, we make use of the
static property of the database schema and the concept
hierarchies to derive more efficient algorithms. Given that
the concept hierarchies and the resulting knowledge are
small in size compared to the database, the complexity of
our algorithm is O(N). The amount of disk I/O is decreased
by O(log N) times compared to the previous methods. We
believe that this improvement in performance will give
extra power to the attribute-oriented method.

1. Introduction

Data mining is the search for relationships and global
patterns that exist in large databases, but are ‘hidden’
among the vast amounts of data [Frawley, Piatetsky-
Shapiro & Matheus 19911. Many different methods for
data mining, or knowledge discovery in databases, have
been proposed in the past. Overview of this area can be
found in [Agrawal 1994, Piatetsky-Shapiro & Frawley
19911. Some recent works include [Agrawal & Srikant
1994, Faloutsos & Lin 1995, Park,Chen & Yu 19951.

In [Cai, Cercone & Han 1991, Han, Cai & Cercone
1992, Han, Cai & Cercone 19931, an attribute-oriented
induction method for data-driven discovery of quantitative
rules in relational databases is presented and a database
learning system DBLEARN has been constructed based
upon this approach [Han et al. 19921. It uses domain
knowledge to generate descriptions for predefined subsets
in a relational database. The method integrates learning-
from-examples techniques with database operations and
extracts generalized data from actual data in databases.
This attribute-oriented approach uses the concept

168 KDD-95

hierarchy to direct the learning process. In the attribute-
oriented induction process, lower level concepts in a
concept tree or lattice are generalized to higher level
concepts. The generalization algorithm can be well
integrated with database operations, since generalization
operations are set-oriented, and both data and knowledge
are represented as relational tables.

It has been shown that the complexity of this attribute-
oriented approach is O(NlogN) [Cheung, Fu & Han 1994,
Han, Cai & Cercone 19931, where N is the size of the
initial relation. In this paper, we would enhance this
performance. It is found that, as soon as the concept
hierarchies are given, the generalization path of each
attribute in each tuple of the database can be found. So we
can set a path id for each attribute concept in the database.
The generalization step is made much more efficient and
an improved algorithm of O(N) is proposed. We also
replace the algorithm in [Cheung, Fu & Han 19941 for the
rule-based attribute-oriented approach by this method.
With the help of path id, backtracking is eliminated and
an efficient algorithm of O(N) is derived.

The paper is organized as follows. Section 2 gives a
brief review on the original attribute-oriented induction
approach. Terminology and definitions are introduced in
Section 3. Preprocessing work will be stated in Section 4.
In Section 5, an improved generalization algorithm for the
attribute-oriented induction is proposed, and the
complexity of this algorithm is discussed in Section 6.
Generalization procedure for rule-based attribute-oriented
induction approach is presented in Section 7. A
conclusion will be given in Section 8.

2. Original Attribute-Oriented Approach

In [Cai, Cercone 8z Han 1991, Han, Cai & Cercone 1992,
Han, Cai & Cercone 19931, an attribute-oriented
induction method for data-driven discovery of quantitative
rules in relational databases is presented. It uses domain
knowledge to generate descriptions for predefined subsets
of a relationa database. This attribute-oriented approach
uses the concept hierarchy to direct the learning process.

From: KDD-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved.

A concept hierarchy is related to a specific attribute and is
partially ordered according to a general-to-specific
ordering. The most general point in the hierarchy is the
null description (ANY), while the most specific points
correspond to the specific values of an attribute in the
database.

For example, assume that a university student database
has the following schema.

Student(Name, Status, Sex, Age, GPA)

The concept tree table for Student is shown in Figure
1, the concept tree of the attribute Status will be the one
shown in Figure 2.

(freshman) + undergraduate (sophomore) + undergraduate
(junior) + undergraduate (senior) + undergraduate
(M.A.) + graduate (M.S .) + graduate
(Ph.D.) + graduate
(undergraduate, graduate) + ANY(Status)
(0.0-l .99) + poor
(3.0-3.49) + good
(poor, average) + weak
(weak, strong) + ANY(GPA)
(M, F)--+ ANY(Sex)
(16-25) + 16-25
(16-25,26-30) + ANY(Age)

(2.0-2.99) + average
(3.5-4.0) + excellent
(good, excellent) + strong

(26-30) + 26-30

Figure 1 Concept tree table for a university student database

level 0 ANY

/ \
level 1 /ry, Tyha

level 2 freshman sophomore junior senior M.A. M.S. Ph.D.

Figure 2 Concept tree for Status

A relation which represents intermediate (final)
learning results is called an intermediate (final)
generalized relation. In a generalized relation, some or
all of its attribute values are generalized data, that is,
nonleaf nodes in the concept hierarchies. An attribute in a
(generalized) relation is at a desirable level if it contains
at most a small number of distinct values in the relation.
This small number is specified by the user as a desirable
attribute threshold.

A set of basic principles for the attribute-oriented
induction in relational databases is summarized as
follows.

1. Generalization should be performed only on the set of
data which is relevant to the learning task.

2. Generalization should be performed on the smallest
decomposable components (or attributes) of a data
relation.

3.

4.

5.

6.

Attribute removal: If an attribute has too many
distinctive values and there is no higher level concept
provided for further generalization, it should be
removed from the relation.
Concept tree ascension: For an attribute in an
intermediate relation, if its values can be generalized
to higher level concepts in the concept tree of the
attribute, all values of the attributes are replaced by
the higher level concepts. Outcome of the ascension is
a generalized relation.
Vote propagation: Vote of a generalized tuple
indicates the number of tuples in the initial relation
that are generalized to this tuple. The value of the
vote of a tuple is carried to its generalized tuple and
the votes should be accumulated when merging
tuples.
Attribute threshold control: For an attribute, if the
number of its distinct values in an intermediate
relation is still larger than its desirable attribute
threshold, further generalization on this attribute
should be performed.

By applying the above principles, an initial relation _ _ would be reduced to a generalized relation call prime
relation. This prime relation has a small number of
distinct values (less than or equal to the attribute
threshold). This prime relation may need to be
generalized further to produce the final relation. Two
additional principles are used to complete the Attribute-
Oriented induction process.

1.

2.

Generalization threshold control: If the number of
tuples in a generalized relation is larger than the
generalization relation threshold, further
generalization should be performed.
Rule formation: A tuple in the final relation is
transformed to conjunctive normal form, and multiple
tuples are transformed to disjunctive normal form.

3. Terminology and definition

Suppose the database we work on has n attributes. A
concept tree Ti is given for each attribute Ai, for i = 1,. . .,n.
For each Ti, the root is denoted by ANY and assume that
each Ti is a balanced tree.

Definition I For an attribute A, let T be the concept tree
of A. For each leaf node a of the concept tree T, we call
the path from a to the root ANY a generalization path.

Definition 2 Two paths are said to be equivalent if they
pass through the same non-empty set of nodes. Two paths
are distinct if they are not equivalent.

Hwang 169

4. Preprocess for generalization

We shall make use of the distinct paths. Assume that
there are mi distinct paths for attribute Ai, we can label the
distinct paths by { 1,2,...,mi}, we call this the path id of
the path. Each ground value a of attribute Ai has a unique
path to the root ANY whose path id is r, where 15 r I mi.

The entire database can be transformed to a Path
relation which contains only path id of each ground value.
For example, if the generalization relation threshold g is 6
and the concept tree table and the corresponding path id’s
for a university student database is as shown in Figure 3,
the Initial relation of Table 1 will be transformed to the
Path relation shown in Table 2. The attribute Name is
removed as we found that there are a large number of
distinct names in the initial relation and there is no
concept at a higher level to generalize these names.

attribute path id generalization path

Name
Status

Sex

Age

GPA

removed no
1 freshman + undergraduate -ANY
2 sophomore + undergraduate +ANY
3 junior + undergraduate +ANY
4 senior + undergraduate -ANY
5 M.A. -+graduate --rANY
6 M.S. --+ graduate +ANY
7 Ph.D. + graduate --+ANY
1 M+ANY
2 F-ANY
1 { 16-25) + 16-25 +ANY
2 (26-30) 4 26-30 +ANY
1 (0.0-l .99} -+ poor + weak +ANY
2 (2.0-2.99) + average + weak +ANY
3 (3.0-3.49) --+ good -+ strong +ANY
4 { 3.5-4.0) -+ excellent + strong --+ANY

Figure 3 Concept tree table and path id for each attribute

Name Status
John freshman
Hack freshman
JOe junior

MalV senior

Sex
M
M
M
F

Age GPA
20 3.2
19 2.8
21 2.7
22 3.3

Donald M.A. M 23 3.3
l&y Ph.D. M 26 3.2

Calvin M.S. M 26 3.6

Table 1 Initial relation of the university student database

1 1 1 3
1 1 1 2
3 1 1 2
4 2 1 3
5 1 I 1 3
7 1 2 3

Table 2 Path relation transformed from the initial relation

170 KDD-95

Once we have the Path relation, we can perform
generalization on this relation. The user or the system
would specify the generalization order of attributes of the
relation. The concept trees of Sex, Age and GPA are
shown in Figure 4 below. The initial relation is at levels
2,1,2,3 with respect to the attributes Status, Sex, Age and
GPA. We can use vectors to represent the order of
generalization. As in the student database, let vo =
{ 2,1,2,3} be the levels of corresponding attributes of the
initial relation. If the user wants to generalize the attribute
Age to level 1 first, then vi = { 2,1,1,3}. Note that with
this sequence of vectors, elements of \ will be less than or
equal to the corresponding element of vj whenever i 2 j.
Eventually, there is an integer t, where t is less than or
equal to the sum of elements in VO, such that vt =
{ O,O,O,O}, this means that if the generalization is done t
times, then all the tuples will be generalized to one tuple
in the final relation. There is no restriction that each
generalization step should generalize one attribute and
one level only. The user can set one generalization step to
generalize two or more attributes simultaneously and
generalize any attribute by more than one level. For
example, vi can be {2,1,1,2},{2,1,2,1} oreven {2,1,1,1}.

level
0 ANY ANY ANY

/\ /\ / \
1 16-25 26-30 M F weak strong

/\ I\
2 (j 116 I j I 25) (j 125 I j 5 30) poor average good excellent

//I\
3 (0.0-l .99) (2.0-2.99) (3.0-3.49) { 3.5-4.0)

Figure 4 Concept trees and levels for the Sex, Age, GPA

Let us call the vectors as described above the level
vectors. These vectors may be set by the user or generated
by the system and can be set dynamically or statically. A
dynamic approach would consider the attribute thresholds.

Let A i,...,A, be the attributes not removed, suppose
vo = {e0b..,e0J,

VI = h,...,ehl,
. . .

vt = h,...,etnl = W ,..., 01
are the level vectors where eij is the level of concept of
attribute j after i generalization steps. For each ej, there is
a corresponding qij which is the number of distinct
concepts in the concept tree at that level for attribute j.
The maximum possible size of the relation after i
generalization steps, is given by qi, where

9i = fi 4ij
j=l

(1)

Let Si be the set of tuples in the intermediate or final
generalized relation after i generalization steps. Let ISil be
the number of tuples in Si, we have lSil< qi.

5. Path id generalization algorithm

Assume that the generalization relation threshold g is
given, our task is to find the smallest s such that the
number of tuples in the generalized relation, with attribute
levels v,, is smaller than or equal to g. We describe two
approaches here.

Bottom-up approach

The system stores the information of Figure 4 and then
use the Path relation to do generalization. At the i-th
generalization step, a multi-dimensional array of integer
VoteArray[l..qir][l..qiz]...[l..qiJ of size qi can be used.
Each element in VoteArray corresponds to a unique
combination of concepts at vi. Alternatively, since the
value of qi may be large, allocating an array of this size
may be inefficient or even impossible, in that case we can
use a list VoteList to store the same information instead
and insert the list by the B-tree method, where the index
of the B-tree is the concept combination. As we shall see,
the size of the list will not exceed the threshold g.

We describe in more details here the use of VoteArray.
For example, with the previous student database, if vi =
{ 1,1,1,2}, then we know that Status, Sex, Age, and GPA
should generalize to level l,l,l, and 2 respectively and
they shall have 2,2,2,4 concepts respectively at the
corresponding levels.

status : c,, = undergraduate Cl2 = graduate q11=2
Sex : Gl =M c22 =F q12 = 2
Age : C31 = 16-25 C32 = 26-30 q13 = 2
GPA : Cdl = poor C42 = average q14 = 4

Cd3 = good CM = excellent

The product of qil, q12, q13, q14 is 2~2x2~4 = 32. We
may use a multi-dimensional array VoteArray[l..2]
[1..2][1..2][1..4], of size 32, to store the information
during generalization.

Initially, each entry of VoteArray and a counter U is
set to zero. Then the tuples of the Path relation is
processed one by one. For each tuple T of the Path
relation, each attribute’s path id is generalized to a
concept of that attribute. For example, with the tuple

Status path id 1 Sex path id 1 Agepath id 1 GPApath id

we can find the corresponding concept of each path id
from the path id table, e.g. we find that Status path id = 1
corresponds to the concept undergraduate, which is Cl 1.
The other path id’s corresponding concepts are C21, C31,

C43, so the concept combination is Cri, C2i, C3i, C43. We
shall increment one entry of VoteArray, that correspond to
this concept combination, by 1. For example, the array
index for the above concept combination is (1 ,l ,1,3). If
the value of this entry is equal to zero before the
increment, we should increment the counter U by 1 and
check if the counter U is greater than the threshold value
g, if U > g then we should retrieve the next level vector
and start the next generalization and reset the counter U
to 0. If the counter is not greater than g, we then
increment that entry of VoteArray and process the next
tuple.

The remaining tuples of the Path relation are processed
and VoteArray is incremented accordingly. After all the
tuples of the Path relation is processed and if the counter
U is still not greater than the threshold value g, we can
form the final relation S. For each entry of VoteArray not
equal to zero, we can find the tuple of concepts that the
entry represents.

For the method using VoteList, we can keep a similar
counter U, which counts the number of elements in the
list. Similarly, the value of U is bounded by g and hence
the size of VoteList is also bounded by g.

In fact, we can cut down on the computational
complexity of the above: we notice that when we need to
start the next generalization (as the counter is greater than
g), we don’t have to process the tuples in the Path relation
which have been processed in previous generalizations
again, This is because VoteArray or VoteList has stored
the concept combinations and votes which these tuples
generalize to. We can propagate the value of VoteArray or
VoteList to the next generalization by using the concept
tree table and then process the remaining tuples of the
Path relation which have not been processed before.
Hence, each tuple of the Path relation will be processed
only once in the entire process in order to get the final
relation.

Top-down approach

In viewing that the threshold g is small in general, a top
down approach can be used instead of the bottom-up
approach. Let vt = {0,0 ,..., 0}, we calculate qt, qt-i, . . . by
equation (1) to find the value w such that qw 5 g and qw-i >
g. Then we begin the process by retrieving vw and forming
VoteArray or VoteList accordingly. It is clear that IS,1 I g,
but table S, may not be the final relation we want since
this may be an over-generalized table. We must retrieve
the level vector v,-1 and check if the counter U,-l is
greater than g, if this is the case then S, will be the final
relation table we want. Otherwise, we retrieve the level
v,.~ and check Uw-2 accordingly, we repeat this procedure
until there is an r, where 1 5 r < t- 1, such that U, s g and
the counter U-1 > g, then S, will be final relation we want.

Mwang 171

Note that with the top down approach, we must generalize
from the Path relation to the desired level each time.
However, the top-down approach may need less number of
generalization steps than the bottom-up approach.

6. complexity of the algorithm

For the proposed method, we need O(N) time complexity
to transform the initial relation to the Path relation. For
the bottom-up approach, suppose we use a list to store the
votes of the concept combinations at each generalization.
(We can choose to use list at any generalization steps
since the size of the VoteList is limited by the threshold g
and the height of the B-tree is limited by log g. The time
complexity of the i-th generalization will then be O(log
g-N), which indicates the complexity of processing the
tuples of Path relation and inserting them into the list by
B-tree method. In the worst case, we have to do the
generalization for t times, where t is the number of level
vectors. Therefore, the time complexity of the algorithm is
O(t.log g-N). We shall use the VoteArray method only if it
can give better or similar performance. As stated at the
end of the subsection on the Bottom-up approach, we can
cut down the computational complexity of this algorithm.
The complexity will be bounded by O(N.log g + t.g log g).
Given that t and g are small and independent of N, the
complexity is equal to O(N). Generally, the generalization
relation threshold g is a small value, e.g. around 50, we
can expect that the VoteList can be stored entirely in the
main memory of the computer system, therefore, the
number of disk I/O is !!!, where B is the number of tuples

B
in a disk page. This is an improvement in comparison to
the algorithm of DBLEARN [Han, Cai & Cercone 19931,

NlogN which requires O(-
B

et) disk I/O as it has to merge

tuples in the relation in each generalization step.

7. Generalization for Rule-based attribute-
oriented approach

A rule-based hierarchy for background knowledge
representation called Rule-Based Concept Graph is
proposed in [Cheung, Fu & Han 19941. In a rule-based
concept graph, a concept can be generalized to more than
one higher level concept, and rules are used to determine
which generalization path should be taken. For example,
with the university student database defined above, if the
expectation for the graduate student is higher, we may
have the set of conditional generalization rules for GPA
as in Figure 5.

RI :
Rz :

2;
Rs :
%:
RT :
Rs :
R9 :
RIO:
&I:

R12:

R13:

{0.0-l .99} + poor
{ 2.0-2.49) and { Status=graduate] + poor
{ 2.0-2.49) and { Status=undergraduate) + average
{ 2.5-2.99) + average
{ 3.0-3.49) + good
{ 3.5-3.79) and { Status=graduate) + good
{ 3.5-3.79) and { Status=undergraduate) + excellent
{ 3.8-4.0) + excellent
{poor) --+ weak
{average) and [Status=senior or Status=gmduate) + weak
{average) and { Status=freshman or Status=sophomore or

Status=junior) + strong
{good) 4 strong
{excellent) + strong

Figure 5 Conditional generalization rules for GPA

For example, in R2 of Figure 5, { Status=graduate} is a
condition for generalizing the concept of GPA from { 2.0-
2.49} to poor.

Note that for the rule-based induction approach, there
may be more than one path from a leaf to the root ANY in
a concept hierarchy. We have to label each distinct path
by a unique path id for each attribute. For example, the
paths and their corresponding path ids of GPA may be
labelled as follows, (the paths and path ids of other
attributes are the same as before in Figure 3).

path 1: (0.0-l .99) + poor + weak --+ ANY
path 2: { 2.0-2.49) + poor + weak + ANY
path 3: { 2.0-2.49) + average + weak + ANY
path 4: { 2.0-2.49) + average -+ strong + ANY
path 5: { 2.5-2.99) __) average -+ weak + ANY
path 6: { 2.5-2.99) + average y strong + ANY
path 7: { 3.0-3.49) --+ good --+ strong --+ ANY
path 8: { 3.5-3.79) + good + strong + ANY
path 9: { 3.5-3.79) -+ excellent --+ strong + ANY
path 10: { 3.8-4.0) + excellent + strong + ANY

Once we have labelled the path id of each path in each
attribute, we should reformulate the rules by replacing
each concept C by a path id list. For example, suppose
path 5, path 6, and path 7 of Status contain the concept
graduate (see Figure 3), rule R6 will be transformed to

Ra’ : { 3.5-3.79) and { pathjd(Status) E { 5,6,7}) ---+ good

We call the list {5,6,7} a path id list of the concept
graduate. The transformed rule will help us to determine
the path id of each attribute in each tuple.

From R2 in Figure 5, we see that the generalization on
the attribute GPA depends on the value of attribute Status.
We say that GPA depends on Status. Problems may arise
if there are cycles of dependency. We make the
assumption that with the given set of rules, if attribute Al
depends on attribute AZ, attribute A2 will not depend on
Al, and there does not exists a sequence of attributes { B1,
..*, B,} such that Al depends on B1, B1 depends on B2,
Brml depends on B,, and B, depends on Al. This property
ensure that no cycle of dependency can occur.

We can build a causal relation diagram for the
generalization according to the rules. For the set of rules

172 KDD-95

in Figure 3 together with other unconditional
generalization rules such as {M,F} + ANY(Sex), we
could build the following causal relation diagram

status GPA Sex Age
level 0 level 0 level 0 level 0

t t 1‘ t
level 1 level 1 level 1 level 1

t
level 2 >c

t 1‘
level 2 level 2

t
level 3

Form the causal relation diagram, the generalization in
attribute GPA depends on the condition of the attribute
Status as there are arrows from Status to GPA. With this
casual diagram, and by the assumption that there is no
cycle of dependency, we can find at least one dependency
ordering of attributes [A,(l), AP(~), A,,,)] which
satisfies the following property,

(Pl) If generalization of Ai depends on Aj, Aj will
appear in the order list before Ai .

From the above causal relation diagram, the list [Sex,
Age, Status, GPA] is one of the ordering of attributes
which satisfy the above property.

After we get an ordering of attributes, we can build the
Path relation for the entire database as in section 4. We
can use the information of path id list in the
generalization rules of each concept to transform the
initial relation to the Path relation one attribute by one
attribute according to the dependency ordering.

After forming the Path relation, we can perform
generalization by the algorithm proposed in section 5 to
get the final relation. However, for each generalization
step, we have to process all tuples of the Path relation.
Note that the Path relation in-corporated the information
of the concept hierarchy. This eliminates the need of a
“backtracking” procedure as described in [Cheung, Fu &
Han 19941 and enhances performance. The complexity of
this algorithm is O(t log g.N). Given that t and g are small
and independent of N, the complexity is equal to O(N).

8. Conclusion

An important application of knowledge discovery is to
support co-operative query answering [Motro & Yuan
19901. With the attribute-oriented induction method, it is
possible to ask query about high level concepts such as
“what type of undergraduate students have strong GPA”.
This kind of query cannot be answered directly by
querying the underlying database since the system does
not understand the high level concepts like undergraduate
or strong GPA.

In [Cai, Cercone & Han 1991, Han, Cai & Cercone
1992, Han, Cai & Cercone 19931, an attribute-oriented

concept tree ascension technique has been proposed. The
system DBLEARN applies this technique for knowledge
discovering in large database. The performance of the
system is good and the time complexity of the algorithm is
O(N log N), where N is the number of tuples in the initial
relation [Han, Cai & Cercone 19931. As we find that the
structure of the database and the set of generalization
rules is static compare to the dynamic change of the data,
preprocessing work can be done. In the preprocessing, the
path id table is formed. Then we apply an efficient
generalization process. We show that given the
generalization threshold and concept hierarchies are
small, the time complexity of our algorithm is O(N). The
amount of disk YO is O(log N) times less than the original
method.

A Rule-based attribute-oriented approach, which is a
generalized version of the attribute-oriented approach, has
been proposed in [Cheung, Fu & Han 19941. This rule-
based attribute-oriented induction method can handle
induction on a rule-based concept hierarchy. We have
shown that the idea of path id is used to derive an efficient
generalization algorithm. The costly backtracking in the
original algorithm is eliminated and similar improvement
in performance is achieved.

References
[U

PI

[31

r41

[51

Fl

E71

181

M

[lOI

[111

WI

Agrawal, R. 1994. Tutorial: Data Mining. In Proc. 13th ACM Symp.
on Principles of Database Systems.
Agrawal, R.; and Srikant, R. 1994. Fast Algorithms for Mining
Association Rules in Large Databases. In Proc. 20th Intl Conf.,
VLDB.
Cai, Y.; Cercone, N.; and Han, J. 1991. Attribute-oriented induction
in relational databases. In G. Piatetsky-Shapiro and W. J. Frawley,
editors, Knowledge Discovery in Databases, pages 213-228.
AAAUMIT Press.
Cheung, D.; Fu, A.; and Han, J. 1994. Knowledge discovery in
databases: A rule-based attribute-oriented approach. In 8 th Intl.
Symp. of Methodologies for Intelligent Systems.
Faloutsos, C.; and Lin, K. 1995. FastMap: A Fast Algorithm for
Indexing, Data-Mining and Visualization. ACM SIGMOD Intl. Conf.
on Management of Data.
Frawley, W. J.; P&et&y-Shapiro, G.; and Matheus, C. J. 1991.
Knowledge discovery in databases: An overview. In G. Piatetsky-
Shapiro and W. J. Frawley, editors, Knowledge Discovery in
Databases, pages l-27. AAAFMIT Press.
Han, J.; Cai, Y.; and Cercone, N. 1992. Knowledge discovery in
databases: An attribute-oriented approach. In Proc. 18th Intl. Conf.,
VLDB, pages 547-559, Canada.
Han, J.; Cai, Y.; Cercone, N.; and Y. Huang. 1992. DBLEARN: A
knowledge discovery system for databases. In Proc. 1st Intl. Conf. on
Information and Knowledge Management, pages 473-48 1, Baltimore,
Maryland, Nov.
Han, J.; Cai, Y.; and Cercone. N. 1993. Data-driven discovery of
quantitative rules in relational databases. IEEE Trans. Knowledge and
Data Engineering, 5:29-40.
Motro, A.; and Yuan, Q. 1990. Querying database knowledge. In
Proceedings of 1990 ACM-SIGMOD Intl. Conf. on Management of
Data, pages 173-183, Atlantic City, NJ.
Park, J.; Chen, M.; and Yu, P. 1995. An Effective Hash Based
Algorithm for Mining Association Rules. ACM SIGMOD Intl. Conf.
on Management of Data.
Piatetsky-Shapiro, G.; and Frawley, W. J. 1991. Knowledge
Discovery in Databases. AAAUMIT Press.

Hwang 173

