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Abstract 
Data mining or knowledge discovery in databases is the 
search for relationships and global patterns that exist but 
are hidden in large databases. Many different methods have 
been proposed and one of them is the attribute-oriented 
induction method. In this method, domain knowledge in the 
form of concept hierarchies helps to generalize the concepts 
of the attributes in the database relations. This approach 
has been generalized to the rule-based attribute-oriented 
induction. The time complexity of the original algorithms is 
given by O(N log N), where N is the number of relevant 
tuples in the database. In this paper, we make use of the 
static property of the database schema and the concept 
hierarchies to derive more efficient algorithms. Given that 
the concept hierarchies and the resulting knowledge are 
small in size compared to the database, the complexity of 
our algorithm is O(N). The amount of disk I/O is decreased 
by O(log N) times compared to the previous methods. We 
believe that this improvement in performance will give 
extra power to the attribute-oriented method. 

1. Introduction 

Data mining is the search for relationships and global 
patterns that exist in large databases, but are ‘hidden’ 
among the vast amounts of data [Frawley, Piatetsky- 
Shapiro & Matheus 19911. Many different methods for 
data mining, or knowledge discovery in databases, have 
been proposed in the past. Overview of this area can be 
found in [Agrawal 1994, Piatetsky-Shapiro & Frawley 
19911. Some recent works include [Agrawal & Srikant 
1994, Faloutsos & Lin 1995, Park,Chen & Yu 19951. 

In [Cai, Cercone & Han 1991, Han, Cai & Cercone 
1992, Han, Cai & Cercone 19931, an attribute-oriented 
induction method for data-driven discovery of quantitative 
rules in relational databases is presented and a database 
learning system DBLEARN has been constructed based 
upon this approach [Han et al. 19921. It uses domain 
knowledge to generate descriptions for predefined subsets 
in a relational database. The method integrates learning- 
from-examples techniques with database operations and 
extracts generalized data from actual data in databases. 
This attribute-oriented approach uses the concept 
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hierarchy to direct the learning process. In the attribute- 
oriented induction process, lower level concepts in a 
concept tree or lattice are generalized to higher level 
concepts. The generalization algorithm can be well 
integrated with database operations, since generalization 
operations are set-oriented, and both data and knowledge 
are represented as relational tables. 

It has been shown that the complexity of this attribute- 
oriented approach is O(NlogN) [Cheung, Fu & Han 1994, 
Han, Cai & Cercone 19931, where N is the size of the 
initial relation. In this paper, we would enhance this 
performance. It is found that, as soon as the concept 
hierarchies are given, the generalization path of each 
attribute in each tuple of the database can be found. So we 
can set a path id for each attribute concept in the database. 
The generalization step is made much more efficient and 
an improved algorithm of O(N) is proposed. We also 
replace the algorithm in [Cheung, Fu & Han 19941 for the 
rule-based attribute-oriented approach by this method. 
With the help of path id, backtracking is eliminated and 
an efficient algorithm of O(N) is derived. 

The paper is organized as follows. Section 2 gives a 
brief review on the original attribute-oriented induction 
approach. Terminology and definitions are introduced in 
Section 3. Preprocessing work will be stated in Section 4. 
In Section 5, an improved generalization algorithm for the 
attribute-oriented induction is proposed, and the 
complexity of this algorithm is discussed in Section 6. 
Generalization procedure for rule-based attribute-oriented 
induction approach is presented in Section 7. A 
conclusion will be given in Section 8. 

2. Original Attribute-Oriented Approach 

In [Cai, Cercone 8z Han 1991, Han, Cai & Cercone 1992, 
Han, Cai & Cercone 19931, an attribute-oriented 
induction method for data-driven discovery of quantitative 
rules in relational databases is presented. It uses domain 
knowledge to generate descriptions for predefined subsets 
of a relationa database. This attribute-oriented approach 
uses the concept hierarchy to direct the learning process. 
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A concept hierarchy is related to a specific attribute and is 
partially ordered according to a general-to-specific 
ordering. The most general point in the hierarchy is the 
null description (ANY), while the most specific points 
correspond to the specific values of an attribute in the 
database. 

For example, assume that a university student database 
has the following schema. 

Student( Name, Status, Sex, Age, GPA) 

The concept tree table for Student is shown in Figure 
1, the concept tree of the attribute Status will be the one 
shown in Figure 2. 

(freshman) + undergraduate (sophomore) + undergraduate 
(junior) + undergraduate (senior) + undergraduate 
(M.A.) + graduate ( M.S . ) + graduate 
(Ph.D.) + graduate 
(undergraduate, graduate) + ANY(Status) 
(0.0-l .99) + poor 
(3.0-3.49) + good 
(poor, average) + weak 
(weak, strong) + ANY(GPA) 
(M, F)--+ ANY(Sex) 
(16-25) + 16-25 
(16-25,26-30) + ANY(Age) 

(2.0-2.99) + average 
(3.5-4.0) + excellent 
(good, excellent) + strong 

(26-30) + 26-30 

Figure 1 Concept tree table for a university student database 

level 0 ANY 

/ \ 
level 1 /ry, Tyha 

level 2 freshman sophomore junior senior M.A. M.S. Ph.D. 

Figure 2 Concept tree for Status 

A relation which represents intermediate (final) 
learning results is called an intermediate (final) 
generalized relation. In a generalized relation, some or 
all of its attribute values are generalized data, that is, 
nonleaf nodes in the concept hierarchies. An attribute in a 
(generalized) relation is at a desirable level if it contains 
at most a small number of distinct values in the relation. 
This small number is specified by the user as a desirable 
attribute threshold. 

A set of basic principles for the attribute-oriented 
induction in relational databases is summarized as 
follows. 

1. Generalization should be performed only on the set of 
data which is relevant to the learning task. 

2. Generalization should be performed on the smallest 
decomposable components (or attributes) of a data 
relation. 

3. 

4. 

5. 

6. 

Attribute removal: If an attribute has too many 
distinctive values and there is no higher level concept 
provided for further generalization, it should be 
removed from the relation. 
Concept tree ascension: For an attribute in an 
intermediate relation, if its values can be generalized 
to higher level concepts in the concept tree of the 
attribute, all values of the attributes are replaced by 
the higher level concepts. Outcome of the ascension is 
a generalized relation. 
Vote propagation: Vote of a generalized tuple 
indicates the number of tuples in the initial relation 
that are generalized to this tuple. The value of the 
vote of a tuple is carried to its generalized tuple and 
the votes should be accumulated when merging 
tuples. 
Attribute threshold control: For an attribute, if the 
number of its distinct values in an intermediate 
relation is still larger than its desirable attribute 
threshold, further generalization on this attribute 
should be performed. 

By applying the above principles, an initial relation _ _ would be reduced to a generalized relation call prime 
relation. This prime relation has a small number of 
distinct values (less than or equal to the attribute 
threshold). This prime relation may need to be 
generalized further to produce the final relation. Two 
additional principles are used to complete the Attribute- 
Oriented induction process. 

1. 

2. 

Generalization threshold control: If the number of 
tuples in a generalized relation is larger than the 
generalization relation threshold, further 
generalization should be performed. 
Rule formation: A tuple in the final relation is 
transformed to conjunctive normal form, and multiple 
tuples are transformed to disjunctive normal form. 

3. Terminology and definition 

Suppose the database we work on has n attributes. A 
concept tree Ti is given for each attribute Ai, for i = 1,. . .,n. 
For each Ti, the root is denoted by ANY and assume that 
each Ti is a balanced tree. 

Definition I For an attribute A, let T be the concept tree 
of A. For each leaf node a of the concept tree T, we call 
the path from a to the root ANY a generalization path. 

Definition 2 Two paths are said to be equivalent if they 
pass through the same non-empty set of nodes. Two paths 
are distinct if they are not equivalent. 
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4. Preprocess for generalization 

We shall make use of the distinct paths. Assume that 
there are mi distinct paths for attribute Ai, we can label the 
distinct paths by { 1,2,...,mi}, we call this the path id of 
the path. Each ground value a of attribute Ai has a unique 
path to the root ANY whose path id is r, where 15 r I mi. 

The entire database can be transformed to a Path 
relation which contains only path id of each ground value. 
For example, if the generalization relation threshold g is 6 
and the concept tree table and the corresponding path id’s 
for a university student database is as shown in Figure 3, 
the Initial relation of Table 1 will be transformed to the 
Path relation shown in Table 2. The attribute Name is 
removed as we found that there are a large number of 
distinct names in the initial relation and there is no 
concept at a higher level to generalize these names. 

attribute path id generalization path 

Name 
Status 

Sex 

Age 

GPA 

removed no 
1 freshman + undergraduate -ANY 
2 sophomore + undergraduate +ANY 
3 junior + undergraduate +ANY 
4 senior + undergraduate -ANY 
5 M.A. -+graduate --rANY 
6 M.S. --+ graduate +ANY 
7 Ph.D. + graduate --+ANY 
1 M+ANY 
2 F-ANY 
1 { 16-25) + 16-25 +ANY 
2 (26-30) 4 26-30 +ANY 
1 (0.0-l .99} -+ poor + weak +ANY 
2 (2.0-2.99) + average + weak +ANY 
3 (3.0-3.49) --+ good -+ strong +ANY 
4 { 3.5-4.0) -+ excellent + strong --+ANY 

Figure 3 Concept tree table and path id for each attribute 

Name Status 
John freshman 
Hack freshman 
JOe junior 

MalV senior 

Sex 
M 
M 
M 
F 

Age GPA 
20 3.2 
19 2.8 
21 2.7 
22 3.3 

Donald M.A. M 23 3.3 
l&y Ph.D. M 26 3.2 

Calvin M.S. M 26 3.6 

Table 1 Initial relation of the university student database 

1 1 1 3 
1 1 1 2 
3 1 1 2 
4 2 1 3 
5 1 I 1 3 
7 1 2 3 

Table 2 Path relation transformed from the initial relation 
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Once we have the Path relation, we can perform 
generalization on this relation. The user or the system 
would specify the generalization order of attributes of the 
relation. The concept trees of Sex, Age and GPA are 
shown in Figure 4 below. The initial relation is at levels 
2,1,2,3 with respect to the attributes Status, Sex, Age and 
GPA. We can use vectors to represent the order of 
generalization. As in the student database, let vo = 
{ 2,1,2,3} be the levels of corresponding attributes of the 
initial relation. If the user wants to generalize the attribute 
Age to level 1 first, then vi = { 2,1,1,3}. Note that with 
this sequence of vectors, elements of \ will be less than or 
equal to the corresponding element of vj whenever i 2 j. 
Eventually, there is an integer t, where t is less than or 
equal to the sum of elements in VO, such that vt = 
{ O,O,O,O}, this means that if the generalization is done t 
times, then all the tuples will be generalized to one tuple 
in the final relation. There is no restriction that each 
generalization step should generalize one attribute and 
one level only. The user can set one generalization step to 
generalize two or more attributes simultaneously and 
generalize any attribute by more than one level. For 
example, vi can be {2,1,1,2},{2,1,2,1} oreven {2,1,1,1}. 

level 
0 ANY ANY ANY 

/\ /\ / \ 
1 16-25 26-30 M F weak strong 

/\ I\ 
2 (j 116 I j I 25) (j 125 I j 5 30) poor average good excellent 

//I\ 
3 (0.0-l .99) (2.0-2.99) (3.0-3.49) { 3.5-4.0) 

Figure 4 Concept trees and levels for the Sex, Age, GPA 

Let us call the vectors as described above the level 
vectors. These vectors may be set by the user or generated 
by the system and can be set dynamically or statically. A 
dynamic approach would consider the attribute thresholds. 

Let A i,...,A, be the attributes not removed, suppose 
vo = {e0b..,e0J, 

VI = h,...,ehl, 
. . . 

vt = h,...,etnl = W ,..., 01 
are the level vectors where eij is the level of concept of 
attribute j after i generalization steps. For each ej, there is 
a corresponding qij which is the number of distinct 
concepts in the concept tree at that level for attribute j. 
The maximum possible size of the relation after i 
generalization steps, is given by qi, where 

9i = fi 4ij 
j=l 

(1) 



Let Si be the set of tuples in the intermediate or final 
generalized relation after i generalization steps. Let ISil be 
the number of tuples in Si, we have lSil< qi. 

5. Path id generalization algorithm 

Assume that the generalization relation threshold g is 
given, our task is to find the smallest s such that the 
number of tuples in the generalized relation, with attribute 
levels v,, is smaller than or equal to g. We describe two 
approaches here. 

Bottom-up approach 

The system stores the information of Figure 4 and then 
use the Path relation to do generalization. At the i-th 
generalization step, a multi-dimensional array of integer 
VoteArray[l..qir][l..qiz]...[l..qiJ of size qi can be used. 
Each element in VoteArray corresponds to a unique 
combination of concepts at vi. Alternatively, since the 
value of qi may be large, allocating an array of this size 
may be inefficient or even impossible, in that case we can 
use a list VoteList to store the same information instead 
and insert the list by the B-tree method, where the index 
of the B-tree is the concept combination. As we shall see, 
the size of the list will not exceed the threshold g. 

We describe in more details here the use of VoteArray. 
For example, with the previous student database, if vi = 
{ 1,1,1,2}, then we know that Status, Sex, Age, and GPA 
should generalize to level l,l,l, and 2 respectively and 
they shall have 2,2,2,4 concepts respectively at the 
corresponding levels. 

status : c,, = undergraduate Cl2 = graduate q11=2 
Sex : Gl =M c22 =F q12 = 2 
Age : C31 = 16-25 C32 = 26-30 q13 = 2 
GPA : Cdl = poor C42 = average q14 = 4 

Cd3 = good CM = excellent 

The product of qil, q12, q13, q14 is 2~2x2~4 = 32. We 
may use a multi-dimensional array VoteArray[l..2] 
[ 1..2][ 1..2][ 1..4], of size 32, to store the information 
during generalization. 

Initially, each entry of VoteArray and a counter U is 
set to zero. Then the tuples of the Path relation is 
processed one by one. For each tuple T of the Path 
relation, each attribute’s path id is generalized to a 
concept of that attribute. For example, with the tuple 

Status path id 1 Sex path id 1 Agepath id 1 GPApath id 

we can find the corresponding concept of each path id 
from the path id table, e.g. we find that Status path id = 1 
corresponds to the concept undergraduate, which is Cl 1. 
The other path id’s corresponding concepts are C21, C31, 

C43, so the concept combination is Cri, C2i, C3i, C43. We 
shall increment one entry of VoteArray, that correspond to 
this concept combination, by 1. For example, the array 
index for the above concept combination is (1 ,l ,1,3). If 
the value of this entry is equal to zero before the 
increment, we should increment the counter U by 1 and 
check if the counter U is greater than the threshold value 
g, if U > g then we should retrieve the next level vector 
and start the next generalization and reset the counter U 
to 0. If the counter is not greater than g, we then 
increment that entry of VoteArray and process the next 
tuple. 

The remaining tuples of the Path relation are processed 
and VoteArray is incremented accordingly. After all the 
tuples of the Path relation is processed and if the counter 
U is still not greater than the threshold value g, we can 
form the final relation S. For each entry of VoteArray not 
equal to zero, we can find the tuple of concepts that the 
entry represents. 

For the method using VoteList, we can keep a similar 
counter U, which counts the number of elements in the 
list. Similarly, the value of U is bounded by g and hence 
the size of VoteList is also bounded by g. 

In fact, we can cut down on the computational 
complexity of the above: we notice that when we need to 
start the next generalization (as the counter is greater than 
g), we don’t have to process the tuples in the Path relation 
which have been processed in previous generalizations 
again, This is because VoteArray or VoteList has stored 
the concept combinations and votes which these tuples 
generalize to. We can propagate the value of VoteArray or 
VoteList to the next generalization by using the concept 
tree table and then process the remaining tuples of the 
Path relation which have not been processed before. 
Hence, each tuple of the Path relation will be processed 
only once in the entire process in order to get the final 
relation. 

Top-down approach 

In viewing that the threshold g is small in general, a top 
down approach can be used instead of the bottom-up 
approach. Let vt = {0,0 ,..., 0}, we calculate qt, qt-i, . . . by 
equation (1) to find the value w such that qw 5 g and qw-i > 
g. Then we begin the process by retrieving vw and forming 
VoteArray or VoteList accordingly. It is clear that IS,1 I g, 
but table S, may not be the final relation we want since 
this may be an over-generalized table. We must retrieve 
the level vector v,-1 and check if the counter U,-l is 
greater than g, if this is the case then S, will be the final 
relation table we want. Otherwise, we retrieve the level 
v,.~ and check Uw-2 accordingly, we repeat this procedure 
until there is an r, where 1 5 r < t- 1, such that U, s g and 
the counter U-1 > g, then S, will be final relation we want. 
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Note that with the top down approach, we must generalize 
from the Path relation to the desired level each time. 
However, the top-down approach may need less number of 
generalization steps than the bottom-up approach. 

6. complexity of the algorithm 

For the proposed method, we need O(N) time complexity 
to transform the initial relation to the Path relation. For 
the bottom-up approach, suppose we use a list to store the 
votes of the concept combinations at each generalization. 
(We can choose to use list at any generalization steps 
since the size of the VoteList is limited by the threshold g 
and the height of the B-tree is limited by log g. The time 
complexity of the i-th generalization will then be O(log 
g-N), which indicates the complexity of processing the 
tuples of Path relation and inserting them into the list by 
B-tree method. In the worst case, we have to do the 
generalization for t times, where t is the number of level 
vectors. Therefore, the time complexity of the algorithm is 
O(t.log g-N). We shall use the VoteArray method only if it 
can give better or similar performance. As stated at the 
end of the subsection on the Bottom-up approach, we can 
cut down the computational complexity of this algorithm. 
The complexity will be bounded by O(N.log g + t.g log g). 
Given that t and g are small and independent of N, the 
complexity is equal to O(N). Generally, the generalization 
relation threshold g is a small value, e.g. around 50, we 
can expect that the VoteList can be stored entirely in the 
main memory of the computer system, therefore, the 
number of disk I/O is !!!, where B is the number of tuples 

B 
in a disk page. This is an improvement in comparison to 
the algorithm of DBLEARN [Han, Cai & Cercone 19931, 

NlogN which requires O(- 
B 

et) disk I/O as it has to merge 

tuples in the relation in each generalization step. 

7. Generalization for Rule-based attribute- 
oriented approach 

A rule-based hierarchy for background knowledge 
representation called Rule-Based Concept Graph is 
proposed in [Cheung, Fu & Han 19941. In a rule-based 
concept graph, a concept can be generalized to more than 
one higher level concept, and rules are used to determine 
which generalization path should be taken. For example, 
with the university student database defined above, if the 
expectation for the graduate student is higher, we may 
have the set of conditional generalization rules for GPA 
as in Figure 5. 

RI : 
Rz : 

2; 
Rs : 
%: 
RT : 
Rs : 
R9 : 
RIO: 
&I: 

R12: 

R13: 

{0.0-l .99} + poor 
{ 2.0-2.49) and { Status=graduate] + poor 
{ 2.0-2.49) and { Status=undergraduate) + average 
{ 2.5-2.99) + average 
{ 3.0-3.49) + good 
{ 3.5-3.79) and { Status=graduate) + good 
{ 3.5-3.79) and { Status=undergraduate) + excellent 
{ 3.8-4.0) + excellent 
{poor) --+ weak 
{average) and [ Status=senior or Status=gmduate) + weak 
{average) and { Status=freshman or Status=sophomore or 

Status=junior) + strong 
{good) 4 strong 
{excellent) + strong 

Figure 5 Conditional generalization rules for GPA 

For example, in R2 of Figure 5, { Status=graduate} is a 
condition for generalizing the concept of GPA from { 2.0- 
2.49} to poor. 

Note that for the rule-based induction approach, there 
may be more than one path from a leaf to the root ANY in 
a concept hierarchy. We have to label each distinct path 
by a unique path id for each attribute. For example, the 
paths and their corresponding path ids of GPA may be 
labelled as follows, (the paths and path ids of other 
attributes are the same as before in Figure 3). 

path 1: (0.0-l .99) + poor + weak --+ ANY 
path 2: { 2.0-2.49) + poor + weak + ANY 
path 3: { 2.0-2.49) + average + weak + ANY 
path 4: { 2.0-2.49) + average -+ strong + ANY 
path 5: { 2.5-2.99) __) average -+ weak + ANY 
path 6: { 2.5-2.99) + average y strong + ANY 
path 7: { 3.0-3.49) --+ good --+ strong --+ ANY 
path 8: { 3.5-3.79) + good + strong + ANY 
path 9: { 3.5-3.79) -+ excellent --+ strong + ANY 
path 10: { 3.8-4.0) + excellent + strong + ANY 

Once we have labelled the path id of each path in each 
attribute, we should reformulate the rules by replacing 
each concept C by a path id list. For example, suppose 
path 5, path 6, and path 7 of Status contain the concept 
graduate (see Figure 3), rule R6 will be transformed to 

Ra’ : { 3.5-3.79) and { pathjd(Status) E { 5,6,7} ) ---+ good 

We call the list {5,6,7} a path id list of the concept 
graduate. The transformed rule will help us to determine 
the path id of each attribute in each tuple. 

From R2 in Figure 5, we see that the generalization on 
the attribute GPA depends on the value of attribute Status. 
We say that GPA depends on Status. Problems may arise 
if there are cycles of dependency. We make the 
assumption that with the given set of rules, if attribute Al 
depends on attribute AZ, attribute A2 will not depend on 
Al, and there does not exists a sequence of attributes { B1, 
..*, B,} such that Al depends on B1, B1 depends on B2, . . . . 
Brml depends on B,, and B, depends on Al. This property 
ensure that no cycle of dependency can occur. 

We can build a causal relation diagram for the 
generalization according to the rules. For the set of rules 
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in Figure 3 together with other unconditional 
generalization rules such as {M,F} + ANY(Sex), we 
could build the following causal relation diagram 

status GPA Sex Age 
level 0 level 0 level 0 level 0 

t t 1‘ t 
level 1 level 1 level 1 level 1 

t 
level 2 >c 

t 1‘ 
level 2 level 2 

t 
level 3 

Form the causal relation diagram, the generalization in 
attribute GPA depends on the condition of the attribute 
Status as there are arrows from Status to GPA. With this 
casual diagram, and by the assumption that there is no 
cycle of dependency, we can find at least one dependency 
ordering of attributes [A,(l), AP(~), . . . . A,,,)] which 
satisfies the following property, 

(Pl) If generalization of Ai depends on Aj, Aj will 
appear in the order list before Ai . 

From the above causal relation diagram, the list [Sex, 
Age, Status, GPA] is one of the ordering of attributes 
which satisfy the above property. 

After we get an ordering of attributes, we can build the 
Path relation for the entire database as in section 4. We 
can use the information of path id list in the 
generalization rules of each concept to transform the 
initial relation to the Path relation one attribute by one 
attribute according to the dependency ordering. 

After forming the Path relation, we can perform 
generalization by the algorithm proposed in section 5 to 
get the final relation. However, for each generalization 
step, we have to process all tuples of the Path relation. 
Note that the Path relation in-corporated the information 
of the concept hierarchy. This eliminates the need of a 
“backtracking” procedure as described in [Cheung, Fu & 
Han 19941 and enhances performance. The complexity of 
this algorithm is O(t log g.N). Given that t and g are small 
and independent of N, the complexity is equal to O(N). 

8. Conclusion 

An important application of knowledge discovery is to 
support co-operative query answering [Motro & Yuan 
19901. With the attribute-oriented induction method, it is 
possible to ask query about high level concepts such as 
“what type of undergraduate students have strong GPA”. 
This kind of query cannot be answered directly by 
querying the underlying database since the system does 
not understand the high level concepts like undergraduate 
or strong GPA. 

In [Cai, Cercone & Han 1991, Han, Cai & Cercone 
1992, Han, Cai & Cercone 19931, an attribute-oriented 

concept tree ascension technique has been proposed. The 
system DBLEARN applies this technique for knowledge 
discovering in large database. The performance of the 
system is good and the time complexity of the algorithm is 
O(N log N), where N is the number of tuples in the initial 
relation [Han, Cai & Cercone 19931. As we find that the 
structure of the database and the set of generalization 
rules is static compare to the dynamic change of the data, 
preprocessing work can be done. In the preprocessing, the 
path id table is formed. Then we apply an efficient 
generalization process. We show that given the 
generalization threshold and concept hierarchies are 
small, the time complexity of our algorithm is O(N). The 
amount of disk YO is O(log N) times less than the original 
method. 

A Rule-based attribute-oriented approach, which is a 
generalized version of the attribute-oriented approach, has 
been proposed in [Cheung, Fu & Han 19941. This rule- 
based attribute-oriented induction method can handle 
induction on a rule-based concept hierarchy. We have 
shown that the idea of path id is used to derive an efficient 
generalization algorithm. The costly backtracking in the 
original algorithm is eliminated and similar improvement 
in performance is achieved. 
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