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Abstract 
In order to understand the role of metacognition and self-
regulation in student learning, 35 college students were 
asked to solve problems in college linear algebra and in 
remedial math using Cognitive Constructor. Results reveal 
the predominance of forward chaining in problem solving. 

Background and Motivation   
Self-regulation refers to the degree to which a learner is a 
metacognitively, motivationally, and behaviorally active 
participant of his or her learning process. The literature 
identifies self-regulated learning (SRL) as a critical 
strategic thinking process for supporting and promoting 
students’ abilities to learn and solve problems 
(Zimmerman 2002). SRL is the essence of the top-level 
human cognition and a hallmark of human learning and 
consciousness in general.  
 The power of SRL processes (i.e., goal setting, self-
monitoring, self-evaluation, etc.: Figure 1) is based on 
consciousness of own learning processes, which enables 
transformative control of them. Transformative learning is 
usually contrasted to reflexive and adaptive learning and is 
understood as learning that “impacts on the development of 
students’ action theories, self-efficacy and professional 
attributes” (Mezirow 1981; Jones 2009). On the other 
hand, these are the impacts that separate SRL-proficient 
learners from SRL-novice learners. Therefore, we 
understand transformative SRL as the acquisition of 
general, domain-independent SRL skills that lift the learner 
into a new paradigm of thinking and learning. 
 In most cases, the failure of a student to achieve 
academically can be attributed to immature SRL skills 
(Pashler et al. 2007; Zimmerman 2008).  The ability to 
self-regulate is a learned skill, where the most effective 
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forms of self-regulatory training occur through one-on-one 
instruction between the teacher and student. This approach 
to self-regulatory training, though effective, is difficult to 
implement broadly today, given large class sizes and the 
limited number of SRL-trained instructors.  
 The problem could have a general solution in the form 
of an intelligent tutoring system (ITS). Yet, current ITSs 
provide limited SRL support, leaving the problem open 
(Winne & Nesbit 2009). 

 
Figure 1.  The cycle of three phases and the hierarchy of SRL 
components in problem solving (based on Zimmerman 2002; 
Zimmerman & Kitsantas 2005). 

Approach and the Question 
To tackle this issue, we recently proposed to build an 
intervention based on a new kind of ITS: a transformative 
SRL assistant called “Cognitive Constructor” (CC: 
Samsonovich et al. 2008, 2009). The proposed CC 
implements a functional model of student SRL that allows 
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it to diagnose, scaffold and transform SRL skills of an 
individual student via overt and covert SRL assistance.  
 Here overt SRL is understood as interactive student 
activities involving SRL elements represented by graphical 
objects in CC, while covert SRL is understood as internal 
modeling of the student SRL-related mental states used by 
CC to provide scaffolding to the student participant. 
 The detailed design, implementation and deployment of 
CC are on our future agenda. Here we present a relatively 
modest, yet critical pilot study intended to investigate the 
key mechanisms underlying the function of CC 
empirically, using its simplified version in laboratory 
settings. In this study we address only the overt SRL 
component, with the question of whether this component 
works as expected for students, transforming their thinking 
and learning paradigm within and across domains. 

Research Plan, Materials and Methods 

The Objective and Research Questions 
The general objective of this research is to understand the 
role of higher forms of consciousness, such as self-
regulation in student learning, through an experimental 
study of effects of SRL assistance on student learning 
abilities to solve problems in college linear algebra and in 
remedial math. For this purpose, a simple version of CC 
was created for a limited learning paradigm. The role of 
CC was to overtly assist students during the first SRL 
phase: Forethought (Figure 1), during the construction of 
the plan of how to solve the problem before actually 
solving it. Student activity was unnoticeably recorded by 
CC.  Specific research questions were the following.  
• Does the overt CC assistance improve performance in 

problem solving? 
• Does the CC experience have a lasting effect that 

transfers across domains? 
• What specific characteristics of the process of student 

thinking in problem solving can be learned using CC? 
 
Accordingly, the two main hypotheses addressed by this 
study were: 
• H1: Overt engagement of students in SRL processes 

with CC during problem solving significantly improves 
student performance. 

• H2: Prior CC experience in a different domain 
significantly improves student performance in problem 
solving. 

Sample 
A total of 35 student participants were included in the 
study. Out of the 35 students, 63% were male and 38% 
were female. In terms of the ethnic background: 51.4% 
were White, 20% were Asian, 5.7% were Black, 5.7% 
were Hispanic, and 14.3% identified themselves as 
“Other.” Most of the students (71.4%) were from the 

Northern Virginia while 17.1% listed themselves as 
International students, 5.7% were from out of state and 
5.7% were from another place in Virginia. Most students’ 
first language was English (62.9%). There were 45.7% 
sophomores, 22.9% juniors, 17.1% seniors and 11.4% 
freshman and one student was a non-degree student. Most 
of the students were math majors (17.1%) and computer 
science (17.1) followed by electrical engineering (11.4%). 
In terms of previous performance measures, students 
scored approximately 642 on their math SAT, 546 on their 
verbal SAT, and 1610 average SAT scores. Student 
average graduating high school GPA was 3.50 and had an 
average semester target GPA of 3.47. Student target GPA 
was positively correlated with their self-regulatory efficacy 
(r=0.44, p=0.05).  

Settings 
In the selected experimental paradigm, the following two 
problems from the aforementioned two domains were 
given to students under various combinations of the 
following conditions: with/without CC assistance, and 
before/after CC experience in another domain.  

Problem 1 (college linear algebra).  Consider a set of five 
matrices – elements of : 

 
 , the set of all 2x2 matrices with real number entries, 

forms a vector space with the standard matrix addition, 
with a zero defined as the 2x2 matrix with all zero entries, 
and with a scalar-by-vector multiplication defined as the 
standard scalar-by-matrix multiplication.  has the 
standard basis : 

.   
Does the set of matrices  span ? 

Problem 2 (advanced remedial math: Gardner 1994). 
Two ferryboats start at the same instant from opposite 
sides of a river, traveling across the water on routes at right 
angles to the shores. Each travels at a constant speed, but 
one is faster than the other. They pass each other at a point 
720 yards from the nearest shore. Both ferryboats remain 
in their slips (places where they dock) for 20 minutes 
before starting back. On the return trip they meet 400 yards 
from the other shore. How wide is the river? 
Supplementary materials. Each problem was supple- 
mented with a list of 20+ potentially useful general facts 
and steps. Elements of the list, together with elements of 
the problem, were labeled by letters of the alphabet (also 
used in CC). Here are examples of list items for Problem 1. 
• Fact?  Conclusions drawn in  with coordinate vectors 

also hold in the isomorphic . 
• Step:  Transform the given set of matrices  to 

coordinate vectors .  
• Step:  Augment the set into a matrix . 
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• Fact?  A set of vectors span  iff any vector in  can 
be written as their linear combination. 

Experimental groups and paradigms.  The list of facts 
and steps designed for each problem was given to both 
groups of participants: the CC group (that worked with 
CC) and the control group. Participants in the CC group 
were instructed (i) to represent relevant list elements by 
letters on the computer screen; (ii) to connect the selected 
elements by arrows, indicating logical and functional 
relations among them, thereby constructing a concept of a 
solution in the form of a diagram on the computer screen; 
(iii) to solve the problem on paper. No example or 
instruction was given as to in what order the letters should 
be connected by arrows. The control group was instructed 
to read the list, and then to solve the problem on paper. 
 Participants were randomly assigned to the two groups. 
Each participant worked on two problems. The order of 
problems was randomly alternated among the participants. 
When switching from the first problem (which could be 
Problem 1 or Problem 2) to the second problem, the 
participant also switched from one group to another. With 
this strategy, all possible combinations of the selected 
conditions were explored, including manipulations of 
factors like the problem order, overt SRL engagement with 
CC, the domain of knowledge, and prior CC experience. 
 
A 

B 

 

 

Figure 2. A: A representation of a correct solution to Problem 1. 
B: A typical example of a solution plan constructed by a student 
participant using CC. a, b: elements of the given problem, c: goal. 

Cognitive Constructor.  A simplified version of the CC 
tool was implemented in Matlab 7.1 and installed on GMU 
personal computers that were used in the experiment. The 
tool provided a rich interactive graphical environment, a 
fragment of a snapshot of which is shown in Figure 2 B. 
Participants had the abilities to add and remove labeled 
nodes of the graph, to draw arrows by dragging the mouse, 
to delete arrows by clicking on them, etc. Placing the 
mouse cursor over a node of the graph resulted in 
displaying the list item associated with this node. All 
actions of the participant, including their precise timing, 
were automatically recorded by CC. 
Metrics and Data Acquisition.  All student actions 
performed within the CC environment were timed and 
recorded by CC. Student solutions written on paper were 
graded by a professional instructor. In addition, all 
participants completed a number of forms and surveys. 

Results and Analysis 
Ninety one percent of the students indicated that CC was 
very helpful in approaching the math problem. Sample 
comments included “The diagram helped me draw a 
possible blueprint before starting the problem” and “It was 
quite fun showed me a little more about how I think”. 
Therefore, CC was perceived overall as a helpful tool. A 
typical solution scheme constructed by a student 
participant in the CC environment is shown in Figure 2 B. 

Performance Scores 
All student scores are given in Table 1, where each asterisk 
indicates that the student was trapped into giving an 
“obvious” wrong answer to Problem 2 (which is 1,120 
yards, obtained by adding the two distances). The asterisk 
scores were evaluated to “-1” during data analysis. 
Statistical analysis of the scores as factors of the 
manipulated conditions was done using 3-way ANOVA 
(results are summarized in Table 2 and Figure 3). 
 
Table 1. Student scores for paper solutions of the two problems. 
 
Participant ID (masked) - - - - - - - - - - - - - - - - - -
Problem 1 score 1 3 1 0 1 2 1 2 1 1 0 0 1 0 2 3 1 1
Problem 2 score * * 1 * 1 1 * * 2 1 1 1 2 * 1 2 0 2
Participant ID (masked) - - - - - - - - - - - - - - - - -
Problem 1 score 1 0 1 1 0 3 1 0 0 1 0 3 3 1 0 0 0
Problem 2 score 0 1 * 2 3 1 0 * 2 3 0 * 1 2 1 0 1
 
The ANOVA analysis was performed with respect to three 
factors and their combinations, defined as follows.  
• Problem 1 vs. Problem 2 (factor X1).  
• Planning a solution with CC or without CC (factor X2).  
• Was it the first or the second problem solving attempt 

during the experimental session (factor X3). Note that 
the combination X2*X3 defines the condition when the 
student had prior CC experience in a different domain.  
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Table 2.  Results of 3-way ANOVA analysis of student scores. 

 
The bar plot (Figure 3) represents average scores in 
problem solving under 8 conditions, grouped in 4 pairs 
according to the experimental factors. The first pair of bars 
labeled “Prob.1” and “Prob.2” shows all scores divided 
between the two problems attempted by student 
participants in this study. The second pair labeled “SRL” 
and “No SRL” divides all scores between the CC group 
(SRL) and the control group (No SRL). The third pair 
labeled “First” and “Second” separates all scores in two 
groups based on the order in which the given problem were 
solved. E.g., “First” corresponds to all cases of the first 
problem solving attempt, regardless of the problem number 
or the group. Finally, the fourth pair of bars compares two 
conditions of problem solving by the control group only: 
before and after a CC experience (labeled “Naive” and 
“Transfer”, respectively). Therefore, each pair of bars 
covers all 35×2=70 scores, except the last pair that covers 
only one half of all results. 
 

 
Figure 3.  Average student scores in problem solving associated 
with different experimental conditions suggest the likely effects 
of the CC assistance on learning to solve problems. Bars show the 
average score values, and whiskers show the standard error. 
 
 While none of the differences is significant, the relative 
positions of the means suggest positive answers to the first 
two research questions, in other words, that H1 and H2 

could be supported if more participants were involved. In 
other words, our preliminary results suggest that CC is 
likely to have positive a effect on performance in problem 
solving, including (a) immediate effect and (b) lasting 
effect that transfers across domains of knowledge. 

Specific Details of Student SRL Revealed by CC  
Analysis of the recorded student actions during problem 
solving was done by dividing all cases of arrow addition to 
the diagram into five categories: forward chaining, 
backward chaining, fan-out, convergence, and disjoined 
(explained in Figure 4). Statistics of the numbers of cases 
of each category was analyzed in the Poisson 
approximation, for which the expected values were 
estimated by random shuffling of the order of actions 
(performed within each individual participant data 
separately). Results of the shuffling were averaged over 
1,000 trials. 
 Interestingly, a significant predominance of forward 
chaining compared to other forms of step selection during 
planning was found. In other words, students tend to 
construct the plan of their solution by moving step by step 
sequentially forward in time rather than backward or 
randomly, while they were not instructed to do so.  
 

 
Figure 4.  Predominance of the forward-chaining pattern in 
constructing the solution plan. The five categories of arrow 
addition are illustrated by examples on the top: the red arrow is 
the one being added, the black arrow is the last added arrow. Blue 
bars, experimental counts. Pink bars, average counts in shuffled 
data. Asterisks indicate statistical significance of the difference 
(P < 10-14, 10-7, 0.52, 0.0004, 10-12 respectively). 

Discussion 

Summary of Findings and Conclusion 
With the current small numbers of participants and positive 
scores in this pilot study, we did not observe significant 
differences in student scores due to the alteration of 

Source Sum Sq. d.f. Mean Sq. F Prob>F
X1 2.3102 1 2.31016 1.77 0.1878
X2 1.6043 1 1.60428 1.23 0.2714
X3 0.016 1 0.01604 0.01 0.912
X1*X2 1.0311 1 1.03114 0.79 0.3771
X1*X3 0.3039 1 0.30387 0.23 0.6308
X2*X3 1.7045 1 1.70455 1.31 0.2571
Error 82.0934 63 1.30307  
Total 89.2714 69   
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experimental conditions; however, the means suggest that 
the scores are likely to be higher with CC than without CC, 
and also suggest that in problem solving without the CC 
assistance scores are likely to be higher for those students 
who had a prior CC experience in a different domain.  
 The observation of significant predominance of forward 
chaining in planning the steps of solution ahead indicates 
that student SRL is based not on random generation of 
ideas, and not on backward chaining that in this case would 
be consistent with logical analysis of the task, but on 
deliberate imagery and imaginary perception of relevant 
knowledge and the sequence of planned actions. Together 
the two groups of findings question traditional models and 
create a new transdisciplinary link for future research. 

Relation to Existing Results in the Literature  
The present study complements recent studies of the 
effects of metacognitive ITS (defined in Azevedo et al. 
2009) on student learning. In contrast with them, our 
approach is aimed at using computational implementation 
of student SRL and metacognition in an ITS rather than 
limited statistical models. The present study was based on 
an emulation of this future perspective that we outlined 
elsewhere (Samsonovich et al. 2009). The findings of the 
present work suggest that we should expect a positive 
cross-domain transfer effect and therefore a transformative 
nature of SRL assistance with an ITS based on a 
metacognitive architecture. 
 These findings are interesting in the context of recent 
related studies that demonstrated different results: e.g., the 
absence of a cross-domain transfer (Van Lehn, keynote 
talk at the 2009 AAAI Fall Symposium on Cognitive and 
Metacognitive Educational Systems, Arlington, Virginia) 
or a negative correlation between measures of 
metacognition and learning (Campbell et al. 2009). 
 Replicating principles of SRL in an ITS requires 
cognitive architectures capable of representing human-like 
mental states: a feature that separates our approach from 
other cognitive architectures (Samsonovich et al. 2009). 
Many popular ITS are based on cognitive architectures 
(e.g., on ACT-R: Anderson et al. 1995, 2004). Yet, to the 
best of our knowledge, no existing ITS implements SRL in 
a cognitively plausible way. This assessment includes the 
following existing SRL-enabled ITSs: gStudy (Nesbit & 
Winne 2007; Perry & Winne 2006), eHELP (Schwonke et 
al. 2006), Learning from errors (Gully et al. 2002; Lorenzet 
et al. 2005), Guided discovery approach (Moreno 2004), 
reflection assistant (Gama 2004), I-Help (Bull et al. 2003; 
Greer et al. 2001), Betty Brain (Biswas et al. 2005; 
Wagster et al. 2008; Leelawong & Biswas 2008), iDrive, 
Auto Tutor (Graesser 2008), Help Tutor (Anderson et al. 
1995; Aleven et al. 2006; Roll et al. 2008), and others. 
 Our finding of specific patterns of thinking during the 
Forethought SRL phase questions simple accounts of 
student problem solving by models based on traditional 
cognitive architectures, including Soar (Laird et al. 1986; 
Laird & Rosenbloom 1996) and ACT-R (Anderson & 
Lebiere 1998; Anderson et al. 2004).  Our approach to 

interpretation of the observed patterns of thinking will be 
based on our previously developed GMU-BICA 
metacognitive architecture (Samsonovich & De Jong 2005; 
Samsonovich et al. 2009).   
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