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Abstract

In this paper we show that a CNF cannot be compiled into
an Ordered Binary Decision Diagram (OBDD) of fixed-
parameter size parameterized by the primal graph treewidth
of the CNF. Thus we provide a parameterized separation be-
tween OBDDs and Sentential Decision Diagrams for which
such fixed-parameter compilation is possible. We also show
that the best existing parameterized upper bound for OBDDs
in fact holds for incidence graph treewidth parameterization.

Introduction
Knowledge compilation is a rewriting approach to proposi-
tional knowledge representation. The ‘knowledge base’ is
initially represented as a CNF or even as a Boolean circuit.
For these representations many important types of queries
are NP-hard to answer. Therefore, the initial representation
is compiled into another one for which the minimal require-
ment is that the clausal entailment query (can the given par-
tial assignment be extended to a complete satisfying assign-
ment?) can be answered in a polynomial time (Darwiche
and Marquis 2002). Such transformation can result in expo-
nential blow up of the representation size. A possible way
to circumvent this issue is to identify a structural parame-
ter of the input CNF such that the resulting transformation is
exponential in this parameter and polynomial in the number
of variables. A notable result in this direction is an O(2kn)
upper bound on the size of Decomposable Negation Nor-
mal Form (DNNF) (Darwiche 2001), where n is the num-
ber of variables of the given CNF and k is the treewidth of
its primal graph. Quite recently, the same upper bound has
been shown to hold for Sentential Decision Diagrams (SDD)
(Darwiche 2011), a subclass of DNNF that can be seen as a
generalization of the famous Ordered Binary Decision Dia-
grams (OBDD) and shares with the OBDD the key nice fea-
tures (e.g. poly-time equivalence testing). It is known that
a CNF of treewidth k can be compiled into an OBDD of size
O(nk) (Ferrara, Pan, and Vardi 2005). A natural question is
whether OBDD, similarly to SDD, admits a ‘fixed-parameter’
upper bound of form f(k)nc for some constant c.

In this paper we provide a negative answer to this ques-
tion. In particular, we demonstrate an infinite class of CNFs
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of the primal graph treewidth at most k for which the OBDD
size is at least f(k)nk/4 where f is a function exponentially
small in k. In other words, we show that the OBDD size of
these CNFs is Ω(nk/4) for every fixed k. This result pro-
vides a separation from SDD and essentially matches the up-
per bound of (Ferrara, Pan, and Vardi 2005). In fact, this
result shows impossibility of not only a fixed-parameter up-
per bound, but also of a sublinear dependence on k in the
base of the exponent or even of an exponent k/C for some
large constant C.

Our second result is ‘strengthening’ of the upper bound
O(nk) of (Ferrara, Pan, and Vardi 2005) by showing that it
holds if k is the treewidth of the incidence graph of the given
CNF thus extending the upper bound to the case of sparse
CNFs with large clauses.

In order to obtain the lower bound, we introduce a no-
tion of matching width of a graph and prove that if a CNF
F of the considered class has matching width r of the pri-
mal graph then for any ordering of the variables of F there
is a prefix S such that the number of distinct functions that
can be obtained from F by assigning the variables of S is at
least 2r. This will immediately imply that any OBDD realiz-
ing F will have at least 2r nodes. Finally we will prove that
the matching width of the considered CNFs is Ω(logn ∗ k).
Substituting this lower bound instead r will get the desired
lower bound for the OBDD size.

Similarly to the case of primal graph, the upper bound is
obtained by showing that if pathwidth of the incidence graph
of the given CNF is at most p then this CNF can be compiled
into an OBDD of size O(2pn). Then the O(nk) upper bound
is obtained using a well known relation p = O(k ∗ logn)
between the treewidth and the pathwidth of the given graph.
The approach to obtain the O(2pn) bound is similar to (Fer-
rara, Pan, and Vardi 2005): variables are ordered ’along’ the
path decomposition and it is observed that the for each prefix
the number of functions caused by assigning the ’previous’
variables is O(2p). The technical difference is that in our
case the bags of the path decomposition include clauses and
this circumstance must be taken into account.

The proposed results contribute to a large body of exist-
ing results concerning the space complexity of OBDDs. To
begin with, there are many results concerning the complex-
ity of OBDDs for particular classes of Boolean functions,
see e.g. the book (Wegener 2000) and the survey (Wegener
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2004). The space complexity of OBDD remains polyno-
mial if parameterized by the treewidth of a circuit represent-
ing the given function (Jha and Suciu 2012), however the
dependence on the treewidth becomes double exponential.
A fixed-parameter upper bound can be achieved if tree of
OBDDs is used instead of a single OBDD (McMillan 1994;
Subbarayan, Bordeaux, and Hamadi 2007). In the complex-
ity theory the OBDD is classified as the oblivious read-once
branching program, see the book (Jukna 2012) for the re-
sults concerning the complexity of branching programs on
particular classes of formulas

The proposed lower bound also contributes to the under-
standing of relationship between OBDD and SDD. Other re-
sults in this direction are (Xue, Choi, and Darwiche 2012)
showing an exponential separation between SDD and OBDD
based on the same order of variables (the order of variables
for SDD is defined as the order of visiting the corresponding
nodes of the underlying vtree by a left-right tree traversal al-
gorithm) and (Choi and Darwiche 2013) empirically show-
ing that conceptually similar heuristics produce SDDs orders
of magnitude smaller than OBDDs.

The rest of the paper is structured as follows. The next
section introduces the necessary background. The section
after that proves the lower bound, the proofs of auxiliary
statements are provided in the two following sections. Then
follows the section presenting the upper bound for the pa-
rameterization by the treewidth of the incidence graph. The
last section outlines relevant directions of further research.

Preliminaries
The structure of this section is the following. First, we in-
troduce notational conventions. Then we define the OBDD
and specify the approach we use to prove the lower bound.
Next, we introduce terminology related to CNFs. Finally, we
define the notion of treewidth.

In this paper by a set of literals we mean one that does
not contain an occurrence of a variable and its negation. For
a set S of literals we denote by V ar(S) the set of variables
whose literals occur in S. If F is a Boolean function or its
representation by a CNF or OBDD, we denote by V ar(F )
the set of variables of F . A truth assignment to V ar(F ) on
which F is true is called a satisfying assignment of F . A
set S of literals represents the truth assignment to V ar(S)
where variables occurring positively in S (i.e. whose literals
in S are positive) are assigned with true and the variables
occurring negatively are assigned with false. We denote by
FS a function whose set of satisfying assignments consists
of S′ such that S∪S′ is a satisfying assignment of F . We call
FS a subfunction of F . In other words, a Boolean function
F ′ is a subfunction of a Boolean function F is F ′ can be
obtained from F by giving a truth assignment to a subset of
variables of F .

An OBDD Z representing a Boolean function F is a di-
rected acyclic graph (DAG) with one root and two leaves la-
belled by true and false. The internal nodes are labelled
with variables of F . There is a fixed permutation SV of
V ar(F ) (that is, elements of V ar(F ) are linearly ordered
according to SV ) so that the vertices along any path from
the root to a leaf are labelled with variables according to

this order. Each internal vertex is associated with 2 leaving
edges labelled with true and false. Each path P from the
root of Z is called a computational path and is associated
with truth assignment to the variables labelling all the ver-
tices but the last one. In particular, each variable is assigned
with the value labelling the edge of the path that leaves the
corresponding vertex. We denote by A(P ) the assignment
associated with the computational path P . The set of all
A(P ) where P is a computational path ending at the true
leaf is precisely the set of satisfying assignments of F .

X2

X3

X4

T F

T

T

T

T

F

F

F

F

X1  

Figure 1: An OBDD for (x1 ∨ x2)∧ (x3 ∨ x4) under permu-
tation (x1, x2, x3, x4)

Figure 1 shows an OBDD for the function (x1 ∨ x2) ∧
(x3 ∨ x4) under the permutation (x1, x2, x3, x4). Consider
the path P = (x1, x2, x3). Then A(P ) = {¬x1, x2}.

In order to obtain the lower bound on the OBDD size we
use a standard approach of counting subfunctions. See (We-
gener 2000) for examples of application of this approach.
This approach is based on the following statement.

Proposition 1 Let F be a Boolean function on a set V of
variables and let SV be a permutation of V . Partition SV
into a prefix SV1 and a suffix SV2 and suppose that the num-
ber of distinct subfunctions of F obtained by giving truth as-
signments to all the variables of SV1 is at least x. Then an
OBDD of F with the underlying order SV contains at least
x nodes.

The standard way to utilize Proposition 1 is to show that
for any permutation SV of V there is a partition of SV into
a prefix SV1 and a suffix SV2 such that the instantiation of
variables of SV1 results in at least x different subfunctions.
Then Proposition 1 immediately implies that x is a lower
bound on the size of OBDD for any underlying order.

Given a CNF F , its primal graph has the set of vertices
corresponding to the variables of F . Two vertices are ad-
jacent if and only if there is a clause of F where the cor-
responding variables both occur. In the incidence graph of
F the vertices are partitioned into those corresponding to
the variables of F and those corresponding to its clauses. A
variable vertex is adjacent to a clause vertex if and only if the
corresponding variable occurs in the corresponding clause.

Given a graph G, its tree decomposition is a pair (T,B)
where T is a tree and B is a set of bags B(t) corresponding
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to the vertices t of T . Each B(t) is a subset of V (G) and
the bags obey the rules of union (that is,

⋃
t∈V (T ) B(t) =

V (G)), containment (that is, for each {u, v} ∈ E(G) there
is t ∈ V (t) such that {u, v} ⊆ B(t)), and connectedness
(that is for each u ∈ V (G), the set of all t such that u ∈
B(t) induces a subtree of T ). The width of (T,B) is the
size of the largest bag minus one. The treewidth of G is the
smallest width of a tree decomposition of G. If T is a path
then we use the respective notions of path decomposition
and pathwidth.
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V3
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V2 V3
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Figure 2: A graph and its tree decomposition

Figure 2 shows a graph and its tree decomposition. The
width of this tree decomposition is 2 since the size of the
largest bag is 3.

The lower bound
In this section, given two integers r and k we define a class
of CNFs, roughly speaking, based on complete binary trees
of height r where each node is associated with a clique of
size k. Then we prove that the treewidth of the primal graphs
of CNFs of this class is linearly bounded by k. Further on,
we state the main technical theorem (proven in the next sec-
tion) that claims that the smallest OBDD size for CNFs of this
class exponentially depends on rk. Finally, we re-interpret
this lower bound in terms of the number of variables and the
treewidth to get the lower bound announced in the Introduc-
tion.

Let G be a graph. A graph based CNF denoted by
CNF (G) is defined as follows. The set of variables con-
sists of variables Xu for each u ∈ V (G) and variables
Xu,v = Xv,u for each {u, v} ∈ E(G). The set of clauses
consists of clauses Cu,v = Cv,u = (Xu ∨ Xu,v ∨ Xv)
for each {u, v} ∈ E(G). In other words, the variables of
CNF (G) correspond to the vertices and edges of G. The
clauses correspond to the edges of G.

Denote by Tr a complete binary tree of height r. Let
CTr,k be the graph obtained from Tr by associating each
vertex with a clique of size k and, for each edge {u, v} of G,
making all the vertices of the cliques associated with u and
v mutually adjacent. Denote CNF (CTr,k) by Fr,k.

Figure 3 shows T2 and CT2,3. To avoid shading the pic-
ture of CT2,3 with many edges, the cliques corresponding to

Figure 3: T2 and CT2,3

the vertices of T2 are marked by circles and the bold edges
between the circles mean that that there are edges between
all pairs of vertices of the corresponding cliques.

Lemma 1 The treewidth of the primal graph of Fr,k is at
least k − 1 at most 2k − 1. In fact, for r ≥ 1, this treewidth
is exactly 2k − 1.

Proof. The primal graph of Fr,k can be obtained from
CTr,k by adding one vertex ve for each edge e of CTr,k and
making this vertex adjacent to the ends of e.

The lower bound follows from existence of a clique of
size k in CTr,k. Indeed, in any tree decomposition of CTr,k,
there is a bag containing all the vertices of such a clique
(Bodlaender and Möhring 1993). Consequently, the width
of any tree decomposition is at least k − 1. In fact if r ≥ 1
then CTr,k has a clique of size 2k created by cliques of two
adjacent nodes. Hence, due to the same argumentation, the
treewidth of CTr,k is at least 2k − 1 for r ≥ 1.

For the upper bound, consider the following tree decom-
position (T,B) of CTr,k. T is just Tr. We look upon Tr

as a rooted tree, the centre of Tr being the root. The bag
B(u) of each node u contains the clique of CTr,k corre-
sponding to u. In addition, if u is not the root vertex then
B(u) also contains the clique corresponding to the parent of
u. Observe that (T,B) satisfies the connectivity property.
Indeed, each vertex appears in the bag corresponding to its
‘own’ clique and the cliques of its children. Clearly, the set
of nodes corresponding to the bags induce a connected sub-
graph. The rest of the tree decomposition properties can be
verified straightforwardly. We conclude that (T,B) is in-
deed a tree decomposition of CTr,k.

In order to ‘upgrade’ (T,B), add
(
k
2

)
new adjacent ver-

tices to each vertex of T . These vertices will correspond to
the edges of cliques associated with the respective nodes of
Tr. In addition, add k2 new adjacent vertices to each non-
root vertex of T . These vertices will correspond to the edges
between the clique associated with the corresponding node
of Tr and the clique of its parent. The bag of each new ver-
tex will contain ve, corresponding to the edge e associated
with this bag, plus the ends of e. A direct inspection shows
that this is indeed a tree decomposition of the primal graph
of Fr,k and that the size of each bag is at most 2k.
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Notice that for r ≥ 1 the lower and upper bounds coin-
cide, thus allowing to state the treewidth precisely. �

The following is the main technical result whose proof is
given in the next section.
Theorem 1 The size of OBDD computing Fr,k is at least
2rk/2.

Let us reformulate the statement of Theorem 1 in terms
of the number of variables of Fr,k and the treewidth of its
primal graph, having in mind the bounds on the treewidth as
in Lemma 1.

First of all, taking into account that k ≥ p/2, where
p is the treewidth of the primal graph of Fr,k, the lower
bound can be seen as 2rp/4. Next, let m be the number
of variables of Fr,k. Then, it is not hard to observe that
2r ≥ m

2(k
2)
≥ m

2((p+1)
2 )

. Replacing 2r this way in 2rp/4,

we obtain ( m

2((p+1)
2 )

)p/4 =
(
2(p+1)

2

)−p/4
∗ mp/4 as a lower

bound on the OBDD size for Fr,k. Clearly, if we consider p
as a constant, this lower bound can be seen as Ω(mp/4).

Now we are ready to state the main result.

Corollary 1 There is a function f such that for each p ≥ 1
there is an infinite sequence of CNFs F1, F2 . . . , of treewidth
at most p of their primal graphs such that for each Fi the
size of OBDD computing it is at least f(p) ∗mp/4 where m
is the number of variables of Fi. Put it differently, for each
fixed p, there is a class of CNFs of treewidth at most p of the
primal graph for which the OBDD size is Ω(mp/4).

Proof. For an odd p, consider the CNFs Fr,(p+1)/2 for
all r ≥ 1 and for an even p, consider the CNFs Fr,p/2 for all
r ≥ 1. Observe that for an even p the primal graph treewidth
of Fr,p is p−1 and that the above argumentation still applies.
Indeed, since k = p/2, it is legitimate to represent the lower
bound as 2rp/4. Further on, in the inequality that follows, the
occurrence of p + 1 in the denominator (as an upper bound
of the actual treewidth) even strengthens this inequality. �

Proof of Theorem 1
The plan of the proof is the following. We introduce the
notion of matching width of a graph. Then we provide
two statements regarding this notion. The first statement
(Lemma 2) claims a linear in rk lower bound for the match-
ing width of graphs CTr,k underlying the considered class
Fr,k (the proof of the lemma is provided in the next sec-
tion). The second statement (Lemma 3) claims that if a
graph G has a matching width t then any permutation of the
variables of CNF (G) can be partitioned into a suffix and a
prefix so that there are at least 2t subfunctions of CNF (G)
resulting from instantiation of variables of the prefix. The
proof of Lemma 3 constitutes the essential part of this sec-
tion. Finally, we provide a proof of Theorem 1. In this
proof we notice that according to the approach outlined in
the Preliminaries section, Lemma 3 together with Proposi-
tion 1 implies that the size of an OBDD of CNF (G) is at
least 2t. Taking CTr,k as G and substituting the lower bound
claimed by Lemma 2, we obtain the desired lower bound for
Fr,k = CNF (CTr,k).

The matching width is defined as follows. Let SV be a
permutation of the set V = V (G) of vertices of a graph G.
Let S1 be a prefix of SV (i.e. all vertices of SV \ S1 are
ordered after S1). Let us call the matching width of S1, the
largest matching (that is, a set of edges not having common
ends) consisting of the edges between S1 and V \ S1 (we
take the liberty to use sequences as sets, the correct use will
be always clear from the context). Further on, the matching
width of SV is the largest matching width of a prefix of SV .
Finally the matching width of G, denoted by mw(G), is the
smallest matching width of a permutation of V (G).

Example 1 Consider a path of 10 vertices v1, . . . , v10
so that vi is adjacent to vi+1 for 1 ≤ i < 10.
The matching width of permutation (v1, . . . , v10) is 1
since between any suffix and prefix there is only one
edge. However, the matching width of the permutation
(v1, v3, v5, v7, v9, v2, v4, v6, v8, v10) is 5 as witnessed by the
partition {v1, v3, v5, v7, v9} and {v2, v4, v6, v8, v10}. Since
the matching width of a graph is determined by the permu-
tation having the smallest matching width, and, since the
graph has edges, there cannot be a permutation of matching
width 0, we conclude that the matching width of this graph
is 1.

Lemma 2 For any r, the matching width of CTr,k is at least
rk/2.

The proof of Lemma 2 is provided is the next section.

Remark. The above definition of matching width is a spe-
cial case of a more general notion of maximum matching
width as defined in (Vatshelle 2012). In particular our no-
tion of matching width can be seen as a variant of maxi-
mum matching width of (Vatshelle 2012) where the tree T
involved in the definition is a caterpillar.

We are now showing that for CNFs of form CNF (G),
a large matching width of G is sufficient for establishing a
strong lower bound.

Lemma 3 Let G be a graph having matching width t. De-
note CNF (G) by F . Then any permutation SF of V ar(F )
has a prefix SF1 such that there are at least 2t different func-
tions of form FS1

such that S1 is a truth assignment to the
variables of SF1.

Proof. Let us partition V ar(F ) into sets V V of vari-
ables corresponding to the vertices of G and EV of vari-
ables corresponding to the edges of G. Let SV be the per-
mutation of V V ordered in the way as they are ordered in
SF . Let SV1 be a prefix of SV witnessing the matching
width t of SV . (Recall that the matching width of SV
is at least the matching width of G.) The word ‘witness-
ing’ in this context means that there is a matching M =
{{u1, v1}, . . . , {ut, vt}} between SV1 and V (G)\SV1. Let
SF1 be the prefix of SF ending with the last element of SV1.
Thus the variables Xu1

, . . . Xut
corresponding to u1, . . . , ut

belong to SF1 while the variables Xv1
, . . . , Xvt

correspond-
ing to v1, . . . , vt do not. We denote the set of clauses
(Xui

∨Xui,vi
∨Xvi

) by TCL.

95



In the rest of the proof we essentially show that 2t differ-
ent assignments to variables Xu1 , . . . Xut produce 2t differ-
ent subfunctions of F thus confirming the lemma. Roughly
speaking, this is done by showing that by a careful fixing
the assignments to the rest of the variables of SF1 we can
achieve the effect that an assignment to Xui

does not ‘influ-
ence’ an assignment to Xvj

for i 6= j. As a result no two
assignments to Xu1

, . . . , Xut
can have the same effect on

Xv1
, . . . , Xvt

and this guarantees that desired large set of
subfunctions.

We start from defining a set of 2t assignments for which
we then claim that any two assignments induce two distinct
subfunctions of F . In particular, let S be the set of all as-
signments to the variables of SF1 that assign the variables
Xui,vi (of course, those of them that belong to SF1) with
false and the rest of variables except Xu1 , . . . , Xut with
true. It is easy to see by construction that S is in a natural
one-to-one correspondence with the set of possible assign-
ments to Xu1

, . . . , Xut
. In particular, each S ∈ S corre-

sponds to the assignment A to Xu1
, . . . , Xut

contained in it.
Indeed, the assignments of the rest of the variables are fixed
in S by construction. It follows that the size of S is 2t.

We are going to show that for any distinct S1, S2 ∈ S,
FS1
6= FS2

, confirming the lemma. Due to the correspon-
dence established above, we can specify ui such that S1 and
S2 assign Xui with distinct values. Assume w.l.o.g. that
Xui is assigned with true by S1 and with false by S2. Ob-
serve that F does not have a satisfying assignment including
S2 and assigning both Xui,vi and Xvi with false. Indeed,
as a result, the clause (Xui

∨Xui,vi ∨Xvi
) is falsified. We

are going to show that both Xui,vi and Xvi
can be assigned

with false in a satisfying assignment of F including S1.
Indeed, assign all the variables of V ar(F ) \ (V ar(S1) ∪
{Xui,vi , Xvi

}) with true and see that the resulting assign-
ment together with S1 satisfies all the clauses of F . Indeed,
if a clause (Xu ∨Xu,v ∨Xv) does not belong to TCL then
Xu,v is assigned with true (by construction, the only ‘edge’
variables assigned by false are Xui,vi , that is those that oc-
cur in the clauses of TCL) . Furthermore, for any clause
(Xuj

∨ Xuj ,vj ∨ Xvj
) of TCL such that i 6= j, Xvj

is as-
signed with true. Finally Xui

is assigned with true by S1.
It follows that indeed all the clauses of F are satisfied.

Assume that Xui,vi /∈ V ar(S1). Then, by the reason-
ing as above, FS1

has a satisfying assignment including
{¬Xui,vi

,¬Xvi
} while FS2

does not implying that FS1
6=

FS2
. Otherwise, if Xui,vi ∈ V ar(S1), it is assigned with

false in both S1 and S2, by construction. It follows that
FS1

has a satisfying assignment including ¬Xvi
while FS2

does not. It follows again that FS1
6= FS2

. �
Remark. Notice the role of variables Xu,v in the proof of

Lemma 3. They allow the values of Xui
to not influence the

values of Xvj for i 6= j and thus keep the number of differ-
ent subfunctions up to the desired bound. Due to the same
reason, it is important that the edges {u1, v1}, . . . , {ur, vr}
constitute a matching, i.e. have disjoint ends.

Proof of Theorem 1 Lemma 3 combined with Propo-
sition 1 says that if G has matching width at least t then
for any permutation of V ar(CNF (G)) the corresponding
OBDD has at least 2t nodes. In other words, 2t is a lower

bound on the OBDD size for CNF (G). Taking G = CTr,k

and hence CNF (G) = Fr,k and substituting rk/2 for t ac-
cording to Lemma 2, we obtain a lower bound of 2rk/2 on
the OBDD size of Fr,k, as required. �

Proof of Lemma 2
This section is organized as follows. First, we introduce the
notion of induced permutation. Then we provide proof of
Lemma 2 for k = 1. After that, we outline how to upgrade
this special case to a complete proof. Finally, we provide the
complete proof. Note that the proof of the special case and
the following outline are technically redundant. However,
the reader may find them useful as they provide a sketch
reflecting the proof idea.

The notion of induced permutation is defined as follows.
Let P1 be a permutation of elements of a set S1 and let
S2 ⊆ S1. Then P1 induces a permutation P2 of S2 where the
elements of S2 are ordered exactly as they are ordered in P1.
For example, let S1 = {1, . . . , 10} and let S2 be the subset
of even numbers of S1. Let P1 = (1, 8, 2, 9, 5, 6, 7, 3, 4, 10).
Then P2 = (8, 2, 6, 4, 10).

Proof of the special case of Lemma 2 for k = 1 We are
going to prove that for an odd r, the matching width of Tr

is at least (r + 1)/2. For an even r we can simply take a
subgraph of Tr isomorphic to Tr−1 (it is not hard to see that
the matching width of a graph is not less than the matching
width of its subgraph).

The proof goes by induction on r. For r = 1, this is
clear, so consider the case r > 1. Imagine Tr rooted in
the natural way, the root being its centre. Then Tr has
4 grandchildren, the subtree rooted by each of them being
Tr−2. Denote these grandchildren by T 1, . . . , T 4. Let PV
be any permutation of the vertices of Tr. This permutation
induces respective permutations PV1, . . . , PV4 of vertices
of T 1, . . . , T 4 being ordered exactly as in PV . By the in-
duction assumption, we know that each of PV1, . . . , PV4

can be partitioned into a prefix and a suffix so that the edges
between the prefix and the suffix induce graph having match-
ing of size at least (r−1)/2. Each of these prefixes naturally
corresponds to the prefix of PV ending with the same ver-
tex. Since PV1, . . . , PV4 are pairwise disjoint, this corre-
spondence supplies 4 distinct prefixes P ∗1 , . . . , PV ∗4 of PV .
Moreover, for each PV ∗i we know that the graph G∗i induced
by the edges between the vertices of PV ∗i and the rest of the
vertices has a matching of size (r − 1)/2 consisting only of
the edges of T i. In order to ‘upgrade’ this matching by 1 and
hence to reach the required size of (r + 1)/2, all we need to
show is that in an least one G∗i there is an edge both ends are
not vertices of T i and hence this edge can be safely added to
the matching.

At this point we make a notational assumption that does
not lead to loss of generality and is convenient for the fur-
ther exposition. By construction, PV ∗1 , . . . , PV ∗4 are lin-
early ordered by containment and we assume w.l.o.g. that
the ordering is by the increasing order of the subscript, that
is PV ∗1 ⊂ PV ∗2 ⊂ PV ∗3 ⊂ PV ∗4 . We claim that the upgrade
to the matching as specified above is possible for PV ∗2 .

Indeed, observe that Tr \ T 2 is a connected graph. Thus
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all we need to show is that at least one vertex of Tr \ T 2

gets into PV ∗2 and at least one vertex of Tr \T 2 gets outside
PV ∗2 , that is in V (Tr) \ PV ∗2 .

For the former, recall that PV ∗1 ⊂ PV ∗2 and that by con-
struction, PV ∗1 contains (r − 1)/2 vertices of T 1 being a
subgraph of Tr \ T 2. Thus we conclude that PV ∗2 con-
tains vertices of Tr \ T 2 For the latter, observe that since
PV ∗2 ⊂ PV ∗3 , V (Tr)\PV ∗3 ⊂ V (Tr)\PV ∗2 . Furthermore,
by construction, V (Tr) \ PV ∗3 contains (r − 1)/2 vertices
of T 3 being a subgraph of Tr \ T 2. Thus we conclude that
V (Tr) \ PV ∗2 contains vertices of Tr \ T 2 as well, thus fin-
ishing the proof. �

A proof for the general case of Lemma 2 proceeds by in-
duction on r similarly to the special case above. Of course
we need to keep in mind that instead of nodes of Tr we have
cliques of size k. The consequence of this substitution is
that at the inductive step of moving from Tr−2 to Tr we can
increase the matching width by k rather than by 1 as above.
The auxiliary Lemma 4 allows us to demonstrate the pos-
sibility of this upgrade essentially in the same way as we
did for k = 1: we just show that the considered prefix and
suffix of the given permutation both contain at least k ver-
tices outside the grandchild serving the part of the matching
guaranteed by the induction assumption.

Lemma 4 Let T be a tree with at least 2 nodes and let k
be a positive integer. Let CT be a graph obtained from T
by associating with each vertex of T a clique of an arbitrary
size k′ ≥ k and making the vertices of cliques associated
with adjacent vertices of T mutually adjacent. Let W,B
standing for ’white’ and ’black’ be a partition of V (CT )
such that |W | ≥ k and |B| ≥ k. Then CT has a matching
of size k formed by edges with one white and one black end.

Proof. The proof is by induction on the number of nodes
of T . It is clearly true when there are 2 nodes. Assume that
the tree has n > 2 nodes and let u be a leaf of T and v be its
only neighbour.

Let k′ ≥ k be the size of the clique V U associated with u
in CT . Assume w.l.o.g. that |W∩V U | ≤ |B∩V U |. Denote
|W ∩ V U | by k1. Clearly, the k1 vertices of W ∩ V U can
be matched with the vertices of B ∩ V U . If k1 ≥ k, we are
done. Next, if |B \ V U | ≥ k − k1, then the lemma follows
by induction assumption applied on T \ u.

Consider the remaining possibility where |B \ V U | =
k−k1−t for some t > 0. Observe that t ≤ k′−2k1. Indeed,
the total number of vertices of B is k′ − k1 + k− k1 − t so,
t > k′ − 2k1 will imply |B| < k, a contradiction.

Let V V be the clique associated with the neighbour v of
u. It follows from our assumption that |W ∩ V V | ≥ k1 + t
because at most k − k1 − t vertices of V V can be black.
Match k1 vertices of W∩V U with vertices of B∩V U (this is
possible due to our assumption that |W ∩V U | ≤ |B∩V U |).
Match t unmatched vertices of B ∩ V U (there are k′ − 2k1
unmatched vertices of B ∩ V U and we have just shown that
t ≤ k′ − 2k1) with t vertices of W ∩ V V . We are in the
situation where in G \u there are at least k− k1− t vertices
of W , at least k − k1 − t vertices of B and the size of each
associated clique is clearly at least k − k1 − t. Hence, the
lemma follows by the induction assumption. �

Proof of Lemma 2. We prove that for an odd r, the
matching width of CTr,k is at least (r + 1)k/2. For an even
r, it will be enough to consider a subgraph of CTr,k being
isomorphic to CTr−1,k. The proof is by induction on r. As-
sume first that r = 1. Then the lemma holds according to
Lemma 4.

For r > 1, let us view Tr as a rooted tree with its cen-
tre rt being the root. Let T 1, . . . , T 4 be the 4 subtrees of
Tr rooted by the ‘grandchildren’ of rt. Let K1, . . . ,K4 be
the subgraphs of CTr,k ‘corresponding’ to T 1, . . . , T 4. That
is, each Ki is a subgraph of CTr,k induced by (the vertices
of) cliques associated with the vertices of T i. It is not hard
to see that each T i is isomorphic to Tr−2 and each Ki is
isomorphic to CTr−2,k and that K1, . . . ,K4 are pairwise
disjoint.

Let PV be an arbitrary permutation of V (CTr,k).
Let PV1, . . . , PV4 be the respective permutations of
V (K1), . . . , V (K4) induced by PV . By the induction as-
sumption for each PVi there is a prefix PV ′i such that
the edges of Ki with one end in PV ′i and the other end
in PVi \ PV ′i induce a graph having matching of size at
least (r − 1)k/2. Let u1, . . . , u4 be the last vertices of
PV ′1 , . . . PV ′4 , respectively. Assume w.l.o.g. that these ver-
tices occur in PV in exactly this order. Let PV ′ be the
prefix of PV with final vertex u2. We are going to show that
the subgraph of CTr,k induced by the edges between PV ′

and PV \ PV ′ has matching of size at least (r + 1)k/2.
In fact, as specified above, we already have matching of
size (r − 1)k/2 if we confine ourself to the edges between
PV ′ ∩ PV2 and (PV \ PV ′) ∩ PV2. Thus, it only remains
to show the existence of matching of size k in the subgraph
of CTr,k induced by the edges between PV ∗1 = PV ′ \ PV2

and PV ∗2 = (PV \ PV ′) \ PV2. Observe that PV ∗1 , PV ∗2
is a partition of vertices of CTr,k \K2. Therefore, it is suf-
ficient to show that |PV ∗1 | ≥ k and |PV ∗2 | ≥ k and then the
existence of the desired matching of size k will follow from
Lemma 4.

Due to our assumption that u1 precedes u2 in PV , it fol-
lows that PV ′1 is contained in PV ′. Moreover, since K1

and K2 are disjoint, PV ′1 is disjoint with PV2 and hence
PV ′1 ⊆ PV ∗1 . Recall that by the induction assumption,
the vertices of PV ′1 serve as ends of a matching of size
(r − 1)k/2 with no two vertices sharing the same edge of
the matching. That is |PV ′1 | ≥ (r − 1)k/2. Since r > 1
by assumption, we conclude that |PV ′1 | ≥ k and hence
|PV ∗1 | ≥ k.

The proof that |PV ∗2 | ≥ k is symmetrical. By our as-
sumption, u2 precedes u3 is PV and hence PV3 \ PV ′3 is
contained in PV \ PV ′ and due to the disjointness of K2

and K3, PV3 \ PV ′3 is in fact contained in PV ∗2 . That
|PV3 \ PV ′3 | ≥ k is derived analogously to the proof that
|PV ′1 | ≥ k. �

OBDDs parameterized by the treewidth of the
incidence graph

Recall that the incidence graph of the given CNF F has the
set of vertices corresponding to its variables and clauses and
a variable vertex is adjacent to a clause vertex if and only
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if the corresponding variable occurs in the corresponding
clause. The upper bound of (Ferrara, Pan, and Vardi 2005)
does not straightforwardly apply to the case of incidence
graphs because there are classes of CNFs having constant
treewidth of the incidence graph and unbounded treewidth
of the primal graph. Indeed, consider, for example a CNF
with one large clause. Nevertheless, we show in this section
that the O(nk) upper bound on the size of OBDD holds if k is
the treewidth of the incidence graph of the considered CNF.

As in (Ferrara, Pan, and Vardi 2005), we show that if p is
the pathwidth of the incidence graph G of the given CNF F
then the function of F can be realized by an OBDD of size
O(2pn) implying (through the k = O(p ∗ logn)) the O(nk)
upper bound where k is the treewidth of G. The resulting
OBDD is seen as a DAG whose nodes are partitioned into
layers, each layer consisting of nodes labelled by the same
variable. The main technical lemma shows that under the
right permutation of variables the nodes of each layer cor-
respond to O(2p) subfunctions of F . Consequently, O(2p)
nodes per layer are sufficient, which in turn, immediately
implies the desired upper bound.

Let us start from fixing the notation. Let F be a CNF and
G be its incidence graph, whose nodes are X1, . . . , Xn (cor-
responding to the variables of F ) and C1, . . . , Cm (corre-
sponding to the clauses of F ) and Xi and adjacent to Cj

if and only if Xi occurs in Cj (for the sake of brevity, we
identify the vertices of G with the corresponding variables
and clauses). Let (P,B) be a path decomposition of G. Fix
an end vertex of P and enumerate the vertices of P along
the path starting from this fixed vertex. Let v1, . . . , vr be
the enumeration. For each Xi, let f(Xi) be the smallest j
such that Xi ∈ B(vj). We call a linear ordering SV of
X1, . . . , Xn such Xi < Xj whenever f(Xi) < f(Xj) an
ordering respecting f .

Now we are ready to prove the main technical lemma.

Lemma 5 Let SV be an ordering respecting f . Let SV1 be
a prefix of SV . Then the number of distinct FS such that S
is an assignment to SV1 is at most 1 + 2 ∗ 2p where p is the
width of (P,B).

Proof. Let X be the last variable of SV1. Denote f(X) by
q. We assume w.l.o.g. that all the clauses of F are pairwise
distinct and hence identify a CNF with its set of clauses. Par-
tition F into three sets of clauses: FP , consisting of those
that appear in some B(vj) for j < q and do not appear in
B(vq); FC, consisting of those that appear in B(Vq) and
FF consisting of those that appear in B(vj) for some j > q
and do not appear in B(Vq). Observe that this is indeed
a partition of clauses. Indeed, otherwise FP ∩ FF 6= ∅
as all other possibilities contradict the definition of the sets
FP, FC, FF . Then due to the connectedness property of
(P,B), either FP ∩B(vq) 6= ∅ or FF ∩B(vq) 6= ∅. How-
ever, both these possibilities contradict the definition of FP
and FF . We conclude that FP, FC, FF indeed partition
the clauses of F .

Denote by FS the set of all functions FS such that S is
an assignment to SV1. Denote by FPS, FCS, FFS the
analogous sets regarding FP , FC, and FF , respectively.

Let us compute the sizes of the latter 3 sets. Let C be a

clause of FP . By definition V ar(C) is a subset of variables
appearing in the bags B(vj) for j < q. By definition, these
variables are ordered before X . It follows that V ar(C) ⊂
V ar(SV1) and hence any assignment to SV1 either satisfies
or falsifies C. Consequently FPS is either true or false.

It is not hard to see that FCS is obtained from FC by re-
moval of all the clauses that are satisfied by S and removal
of the occurrences of V ar(S) from the rest of the clauses.
It follows that if FCS1 and FCS2 have the same set of sat-
isfied clauses then FCS1

= FCS2
in other words, FCS is

completely determined by a set of satisfied clauses. Hence
|FCS| is bounded above by the number of subsets of clauses
of FCS, i.e. it is at most 2t1 where t1 is the number of
clauses of FCS.

Finally let SV ∗ = SV1 ∩ V ar(FF ). It is not hard to see
that for an assignment S to SV1, FFS is completely deter-
mined by the subset of S assigning the variables of SV ∗.
Therefore, the number of distinct functions FFS is at most
as the number of distinct assignments to SV ∗, which is 2t2

where t2 = |SV ∗|.
Let S be an assignment on SV1. It is not hard to see that

FS = FPS ∧ FCS ∧ FFS . If FPS = false then FS =
false. Otherwise, FPS = true and hence FS = FCS ∧
FFS . In other words, FS is either false or there are F1 ∈
FCS and F2 ∈ FFS such that FS = F1 ∧ F2. That is
|FS| ≤ 1 + 2t1+t2 .

We claim that t1+t2 ≤ p+1 implying the lemma. Indeed,
the clauses of FC all belong to B(vq) by definition. Observe
that SV ∗ ⊆ B(vq) as well. Indeed, let Y ∈ SV ∗. Since
Y is either X or ordered before X , there must be j1 ≤ q
such that Y ∈ B(vj1). On the other hand, by definition of
FF , there must be j2 > q such that Y ∈ B(vj2). By the
connectedness property Y ∈ B(vq). Since FC and SV ∗

are clearly disjoint being a set of ‘clause vertices’ and a set
of ‘variable vertices’, the size of their union is the sum of
their sizes and the size of their union cannot be larger that
|B(vq)| ≤ p + 1, as required. �

The upper bound can now be formally stated.

Theorem 2 Let F be a CNF with n variables and the path-
width p of its incidence graph. Then F can be compiled into
an OBDD of size O(2pn).

Proof. In fact we prove that the O(2pn) upper bound
holds even for uniform OBDDs where each path from the
root to a leaf includes all the variables. Notice that the uni-
formity is not required by the definition of the OBDD, only
the order of variables along a computational path is essential.
For instance, the OBDD shown in Figure 1 is not uniform.

Let SV be an ordering respecting f as above. Let Z be
a smallest possible uniform OBDD of F with SV being the
underlying ordering. It is well known that the subgraph of Z
induced by any internal node u and all the vertices reachable
from u (the labels on vertices and edges are retained) is an
OBDD whose function is FA(P ) where P is an arbitrary path
from the root to u. Moreover, the minimality of Z implies
that all the nodes marked with the same variable represent
distinct functions. Indeed, if there are 2 nodes representing
the same function then one of them can be removed, with the
in-edges of the removed node becoming the in-edges of an-
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other node associated with the same function and with pos-
sible removal of some nodes that become not reachable from
the root. This produces another uniform OBDD implement-
ing the same function and having a smaller size in contra-
diction to the minimality of Z.

By construction the function of a node labeled with a vari-
able x of F is a subfunction of F obtained by an assignment
to the variables preceding x in SV . According to Lemma
5 the number of such subfunctions is O(2p). Since distinct
nodes labeled by x are associated with distinct subfunctions,
there are O(2p) nodes labeled by x. Multiplying this by the
number n of variables of F , we obtain the desired O(2pn)
bound on the number of nodes of Z. �

Corollary 2 A CNF with n variables and having treewidth
k can be compiled into an OBDD of size O(nk).

We close this section with discussion of yet another pa-
rameter of CNFs, introduced in (Huang and Darwiche 2004),
whose fixed value guarantees a linear size OBDD. In (Huang
and Darwiche 2004) this parameter has not been given a
name so, let us name it combined width. Let SV be a linear
ordering on variables of the given CNF F . For each variable
x in this ordering we define the cutwidth of x (w.r.t. to SV )
as the number of clauses with one variable ordered before x
and one variable ordered after x in SV . Further on, we de-
fine the pathwidth of x (w.r.t. to SV ) as the number of vari-
ables ordered before x that occur in clauses having at least
one occurrence of a variable ordered after x. The combined
width of x is the minimum of the cutwidth and the pathwdith
of x. The combined width of SV is the maximum over all
the combined widths of the variables. Finally, the combined
width of F is the minimum of combined widths of all pos-
sible orders of the variables of F . It is shown in (Huang
and Darwiche 2004) that a CNF of combined width w can be
complied into an OBDD of size O(2wn).

The combined width of F is a mixture of two parameters
of the primary graph of F : the cutwidth (maximum cutwidth
of a variable in the given permutation taken minimum over
all permutations) and the pathwidth. Moreover, the com-
bined width is not just their minimum but can in fact be
much smaller than both cutwidth and pathwidth. Consider
for example a CNF F = F1 ∧ F2 where F1 and F2 are CNFs
defined as follows. F1 = (x ∨ x1) ∧ . . . ∧ (x ∨ xm) and
F2 = (y1, . . . , ym) We assume that the variables of F1 are
disjoint with the variables of F2 and that m can be arbitrar-
ily large. The primary graph of F1 has a large cutwidth.
Indeed, for any ordering of variables of F1 there is a sub-
set V ′ of {x1, . . . , xm} of size at least m/2 that are either
all smaller than x or all larger than x. Specify a variable
y ∈ V ′ that is a ’median’ of V ′ according to the considered
order. Then the cutwidth of this variable will be about m/4.
Furthermore, the pathwidth of the primary graph of F2 is
large because this graph is just one big clique. On the other
hand, the combined width of F1 and F2 is small. Indeed,
order the variables as follows: x, x1, . . . , xm, y1, . . . , ym.
Then the pathwidth index of the first m + 1 variables is 1
and hence the combined width will be at most 1 as well.
Further, the cutwidth of the last m variable is 1 and hence
the combined width of these variables is 1 as well. Thus

the combined width of this order is 1 and hence the com-
bined width of F1 ∧ F2 is at most 1 which is clearly much
smaller than the minimum of the pathwdith and the cutwidth
of F (determined by the respective connected components of
the primary graph of F ). We leave the relationship between
the incidence graph treewidth and the combined width as an
open question.

Discussion
In this paper we have demonstrated an infinite class of CNFs
of primal graph treewidth at most k their primal graphs for
which the sizes of respective OBDDs are at least f(k)nk/4

for some function f . This result rules out the possibility
of compiling a CNF into an OBDD of fixed-parameter size
parameterized by the primal graph treewidth of the CNF. Our
second result shows that a CNF of incidence graph treewidth
at most k can be compiled into an OBDD of size at most
O(nk).

Two open questions naturally arise from these results.
For the first question recall that the Free Binary Decision
Diagram FBDD (a.k.a. read-once branching program) is a
generalization of OBDD that allows querying variables in
different orders along different computational paths. Does
the above lower bound hold for FBDDs realizing CNFs of
bounded treewidth? The second question is: what is the
space complexity of SDD parameterized by the incidence
graph treewidth of the input CNF?
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